1
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
2
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Bautista F, Goguitchaichvili A, Pérez-Guille BE, Soriano-Rosales RE, Koseoglu E, Mukherjee PS. Single-domain magnetic particles with motion behavior under electromagnetic AC and DC fields are a fatal cargo in Metropolitan Mexico City pediatric and young adult early Alzheimer, Parkinson, frontotemporal lobar degeneration and amyotrophic lateral sclerosis and in ALS patients. Front Hum Neurosci 2024; 18:1411849. [PMID: 39246712 PMCID: PMC11377271 DOI: 10.3389/fnhum.2024.1411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 μT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.
Collapse
Affiliation(s)
| | | | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | - Avto Goguitchaichvili
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | | | | | - Emel Koseoglu
- Department of Neurology, Erciyes Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
3
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Hosseini E, Kianifard D. Effect of prenatal stress and extremely low-frequency electromagnetic fields on anxiety-like behavior in female rats: With an emphasis on prefrontal cortex and hippocampus. Brain Behav 2023; 13:e2949. [PMID: 36942730 PMCID: PMC10097060 DOI: 10.1002/brb3.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Prenatal stress (PS) is a problematic situation resulting in psychological implications such as social anxiety. Ubiquitous extremely low-frequency electromagnetic fields (ELF-EMF) have been confirmed as a potential physiological stressor; however, useful neuroregenerative effect of these types of electromagnetic fields has also frequently been reported. The aim of the present study was to survey the interaction of PS and ELF-EMF on anxiety-like behavior. METHOD A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, stress (their mothers were exposed to stress), EMF (their mothers underwent to ELF-EMF), and EMF/stress (their mothers concurrently underwent to stress and ELF-EMF). The rats were assayed using elevated plus-maze and open field tests. RESULTS Expressions of the hippocampus GAP-43, BDNF, and caspase-3 (cas-3) were detected by immunohistochemistry in Cornu Ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC). Anxiety-like behavior increased in all treatment groups. Rats in the EMF/stress group presented more serious anxiety-like behavior. In all treatment groups, upregulated expression of cas-3 was seen in PFC, DG, and CA1 and downregulated expression of BDNF and GAP-43 was seen in PFC and DG and the CA1. Histomorphological study showed vast neurodegenerative changes in the hippocampus and PFC. CONCLUSION The results showed ,female rats that underwent PS or/and EMF exhibited critical anxiety-like behavior and this process may be attributed to neurodegeneration in PFC and DG of the hippocampus and possibly decreased synaptic plasticity so-called areas.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Faculty of Veterinary Medicine, Division of Physiology, Department of basic science, Urmia University, Urmia, Iran
| | - Davoud Kianifard
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Maternal stress induced anxiety-like behavior exacerbated by electromagnetic fields radiation in female rats offspring. PLoS One 2022; 17:e0273206. [PMID: 35998127 PMCID: PMC9397925 DOI: 10.1371/journal.pone.0273206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
There is a disagreement on whether extremely low frequency electromagnetic fields (ELF-EMF) have a beneficial or harmful effect on anxiety-like behavior. Prenatal stress induces frequent disturbances in offspring physiology such as anxiety-like behavior extending to adulthood. This study was designed to evaluate the effects of prenatal stress and ELF-EMF exposure before and during pregnancy on anxiety-like behavior and some anxiety-related pathways in the hippocampus of female rat offspring. A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, Stress (rats whose mothers underwent chronic stress), EMF (rats whose mothers were exposed to electromagnetic fields) and EMF/S (rats whose mothers were simultaneously exposed to chronic stress and ELF-EMF). The rats were given elevated plus-maze and open field tests and then their brains were dissected and their hippocampus were subjected to analysis. ELISA was used to measure 24(S)-hydroxy cholesterol, corticosterone, and serotonin levels. Cryptochrome2, steroidogenic acute regulatory protein, 3B-Hydroxy steroid dehydrogenase, N-methyl-D-aspartate receptor 2(NMDAr2) and phosphorylated N-methyl-D-aspartate receptor 2(PNMDAr2) were assayed by immunoblotting. Anxiety-like behavior increased in all treatment groups at the same time EMF increased anxiety induced by maternal stress in the EMF/S group. The stress group showed decreased serotonin and increased corticosterone levels. ELF-EMF elevated the PNMDAr2/NMDAr2 ratio and 24(S)-hydroxy cholesterol compared to the control group but did not change corticosterone. EMF did not restore changes induced by stress in behavioral and molecular tests. The results of the current study, clarified that ELF-EMF can induce anxiety-like behavior which may be attributed to an increase in the PNMDAr2/NMDAr2 ratio and 24(S)-OHC in the hippocampus, and prenatal stress may contribute to anxiety via a decrease in serotonin and an increase in corticosterone in the hippocampus. We also found that anxiety-like behavior induced by maternal stress exposure, is exacerbated by electromagnetic fields radiation.
Collapse
|