1
|
Nag S, Damodar KSH, Mukherjee S, Rao DR, Debnath I, Haryini S, Mohanto S, Ahmed MG, Subramaniyan V. Unveiling the trending paradigms of synthesis and theranostic biomedical potentials of nano-diamonds (NDs) - a state-of-the-art update. INORG CHEM COMMUN 2025; 177:114313. [DOI: 10.1016/j.inoche.2025.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
2
|
Khan S, Mathur A, Khan F. Endophytic fungi-bioinspired nanoparticles potential to control infectious disease. Crit Rev Microbiol 2025:1-23. [PMID: 40323186 DOI: 10.1080/1040841x.2025.2497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
The growing demand for nanomedicine and its potentially diverse biological function required the investigation of raw materials for fabricating the nanomaterial. Current developments have emphasized the implementation of green chemistry to develop metal-oxide and metal nanoparticles. Endophytic fungi have emerged as a potential reservoir of bioactive compounds exemplified by unique structures and influential antibacterial properties. Over the past decade, substantial progress has been achieved in uncovering and profiling these valuable antibacterial compounds. These endophytic fungi-derived bioactive chemicals have diverse applications in various biological properties. Nanoparticle synthesis from materials derived from endophytic fungi, be it whole extracts or pure components, owing to their accessibility, cost-effectiveness in fabrication, material-tissue compatibility, and modest cytotoxicity toward higher organism cells. Nanoparticles from endophytic fungi have been utilized to treat various diseases, including those caused by bacterial, viral, and fungal pathogens. The present review provides a comprehensive discussion of the mechanistic insight into the synthesis and application of endophytic fungi-bioinspired nanoparticles as potential therapeutic agents to control microbial infection. The underlying action mechanism involved in the antimicrobial action of the nanoparticles has also been discussed. The discussion highlights various attributes of nanoparticles that may significantly benefit future researchers as potential therapeutic agents to control microbial infection.
Collapse
Affiliation(s)
- Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Sharma D, Sharma R, Sharma P, Wangoo N, Sharma RK. Lipoic acid assisted microwave based synthesis of Au-Ag nanoclusters with tunable fluorescence for antimicrobial and bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126212. [PMID: 40222232 DOI: 10.1016/j.saa.2025.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
This study reports on the pioneering synthesis and application of monometallic lipoic acid (LA) stabilized gold nanoclusters (LA@AuNCs) and bimetallic gold-silver nanoclusters (LA@Au-AgNCs) fabricated via a novel microwave-assisted method. The synthesis process unveils a significant augmentation in the quantum yield of LA@AuAgNCs up to 7.9-fold compared to their monometallic counterparts (LA@Au NCs), showcasing the efficacy of the novel microwave-assisted fabrication methodology. The rapid synthesis facilitated by microwave heating not only ensures efficiency but also contributes to superior optical properties. Additionally, the strategic modulation of exogenous parameters, such as thermal conditions and ionic metal concentrations, was leveraged to meticulously engineer the nanocluster surface characteristics, facilitating the procurement of tunable photoluminescent emission spectra spanning from 650 to 800 nm. The applicability of the synthesized metallic nanoclusters has been rigorously evaluated, demonstrating their efficacy as a dual-functional therapeutic agent. Primarily, their antimicrobial properties are pronounced against both Gram-positive and Gram-negative bacterial strains, attributed to the ultrasmall dimensions of the synthesized nanoclusters. Also, these intrinsically fluorescent metallic nanoclusters were employed as advanced bioimaging probes for the precise labelling and visualization of bacterial cells.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India
| | - Pankaj Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
4
|
Algadi H, Abdelfatah Alhoot M, Yaaqoob LA. Systematic review of antibacterial potential in calcium oxide and silicon oxide nanoparticles for clinical and environmental infection control. J Appl Biomed 2025; 23:1-11. [PMID: 40145881 DOI: 10.32725/jab.2025.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 03/28/2025] Open
Abstract
A substantial threat to worldwide health, the proliferation of antibiotic-resistant bacteria compels researchers to seek innovative antibacterial substances. This systematic review assesses the role of nanoparticles, particularly Calcium oxide and Silicon oxide nanoparticles, in infection control. The article examines the mechanisms by which these nanoparticles act against various bacteria and evaluates their potential as novel agents in infection control strategies. A systematic literature search from 2015 to 2024 encompassing Web of Science, PubMed, Wiley, Science Direct, and Google Scholar, yielded 70 publications meeting the review criteria. This comprehensive methodology provides a thorough understanding of the capabilities and limitations of Calcium oxide and Silicon oxide nanoparticles as antibacterial agents. The review aims to build a solid foundation for the utilization of nanoparticles in addressing the obstacles presented by antibiotic resistance by combining data from various investigations. Additionally, it aims to explore the safety and environmental implications associated with their use in clinical and environmental settings, providing a comprehensive analysis that may contribute to future studies and real-world applications in the field of antimicrobial technology.
Collapse
Affiliation(s)
- Hend Algadi
- Management & Science University, Postgraduate Center, Shah Alam, Selangor, Malaysia
| | - Mohammed Abdelfatah Alhoot
- Management & Science University, School of Graduate Studies, Shah Alam, Selangor, Malaysia
- Management & Science University, International Medical School, Shah Alam, Selangor, Malaysia
| | - Laith A Yaaqoob
- University of Baghdad, Science College, Department of Biotechnology, Baghdad, Iraq
| |
Collapse
|
5
|
Mouhram NA, Mosallam S, Hassan M, El-Gazar AA, El-Nabarawi MA, Fayez SM. Tailoring moxifloxacin hydrochloride loaded oleic acid liposomes for the topical management of Methicillin-Resistant Staphylococcus aureus (MRSA)- Induced skin infection: In-vitro characterization and in-vivo assessment. Int J Pharm 2025; 670:125115. [PMID: 39710307 DOI: 10.1016/j.ijpharm.2024.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Oleic acid liposomes (OALs) are novel vesicular carriers ofunsaturated fatty acids and their corresponding ionized species, arranged within an enclosed lipid bilayer. This study aimed to encapsulate moxifloxacin HCl (MOX), a broad-spectrum antibacterial drug into OALs for effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA) infection through topical application. Various OALs were formulatedby combining varied quantities of phosphatidylcholine (PC), oleic acid (OA), and cholesterol (CH) with 50 mg of MOX. The OALs were produced utilizing varying sonication durations. MOX-loaded OALs were formulated using the thin film hydration method by applying (24) a full factorial design utilizing the Design-Expert® software. The formula for MOX-loaded OALs was OAL13, which consisted of 200 mg of PC and 20 mg of OA. The mixture was sonicated for 5 min. The OAL13 exhibited spherical vesicles with a small diameter and a smooth outer surface. Additionally, the entrapment efficiency was measured to be 75.00 ± 1.41 %, the particle size was 234.65 ± 4.74 nm, the polydispersity index was 0.53 ± 0.01, and the zeta potential was -38.50 ± 0.42 mV. The OAL13 formula exhibited an extended release profile. Moreover, the antibiofilm activity of OAL13 gel and MOX-loaded liposomes gel against MRSA infection demonstrates greater activity than the MOX gel at the maximum concentration used (MIC/2). Furthermore, the in-vivo study showed that OAL13 improved MOX's antimicrobial and immunomodulatory effects against MRSA infection by increasing TLR-2 and IL-1β, as well as their downstream molecules NF-κB and TNF-α. Moreover, the histopathological examination conducted by a skin irritation test has verified the safety of OAL13. Overall, the results demonstrated the significant efficacy of MOX-loaded OALs in the treatment of MRSA infected wounds when applied topically.
Collapse
Affiliation(s)
- Nadein Abdelsalam Mouhram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Sahar M Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
6
|
Jasmine, Singh N, Nagpal D, Puniani S, Gupta P. Golden Therapeutic Approach to Combat Viral Diseases Using Gold Nanomaterials. Assay Drug Dev Technol 2025; 23:70-83. [PMID: 39660386 DOI: 10.1089/adt.2024.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Gold nanoparticles (AuNPs), due to their unique properties and surface modification abilities, have become a promising carrier for a range of biomedical applications. AuNPs have intrinsic antiviral characteristics because of their capacity to enhance drug distribution by making antiviral medications more stable and soluble, which assures that higher quantities reach the intended site. Through surface changes, AuNPs can bind directly to viral particles or infected cells, increasing therapeutic efficiency and reducing side effects. AuNPs efficiently damage cell membranes and hinder viral reproduction within a host cell. Furthermore, because of their large surface area-to-volume ratio, which enables many functional groups to connect, improving interaction with virus particles and ceasing their multiplication. By altering dimensions and morphology or conjugating it with additional antiviral drugs, AuNPs can array their synergistic antiviral activity. Thus, the development of AuNP conjugated therapy presents a promising avenue to address the demand for novel anti-viral therapeutics against infections resistant to several drugs.
Collapse
Affiliation(s)
- Jasmine
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Neelam Singh
- Noida Institute of Engineering and Technology (Pharmacy Institute), Noida, India
| | - Dheeraj Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Sanchit Puniani
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Puneet Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Li MY, Peng H. Revolutionizing Sports with Nanotechnology: Better Protection and Stronger Support. ACS Biomater Sci Eng 2025; 11:135-155. [PMID: 39710931 DOI: 10.1021/acsbiomaterials.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Modern sports activities have increasingly benefited from the development of nanotechnology, which is extensively applied in various sports events and associated activities and facilities. Nanotechnology deals with materials with nanoscale size, providing unique properties and functions compared with their bulk counterparts. Nanotechnology can not only provide better training feedback by tracking the athlete's physiological signals as well as performance details but also protect humans with nanomaterial-functionalized sports fabrics, equipment, and medicine. Nanotechnology has significantly advanced sports in various aspects, thereby leading to a rising research interest in this interdisciplinary field. This article highlights several representative nanotechnologies applied in sports such as nanomaterials in wearable sensors, personal heat management devices, functional sports fabrics, and sports medicine and discusses the principles, current challenges, as well as future opportunities.
Collapse
Affiliation(s)
- Mu-Yang Li
- School of Physical Education, Shaoguan University, 512005 Shaoguan, Guangdong, China
| | - Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| |
Collapse
|
8
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Długosz O, Żebracka A, Sochocka M, Franz D, Ochnik M, Chmielowiec-Korzeniowska A, Banach M. Selective and complementary antimicrobial and antiviral activity of silver, copper, and selenium nanoparticle suspensions in deep eutectic solvent. ENVIRONMENTAL RESEARCH 2025; 264:120351. [PMID: 39537005 DOI: 10.1016/j.envres.2024.120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Metallic and nonmetallic nanoparticles are bioactive compounds that exhibit broad resistance to bacteria, fungi, and even viruses. In this paper, a deep eutectic solvent (DES) based on betaine, glucose, and ethylene glycol was used to obtain suspensions of silver, copper, and selenium nanoparticles. Depending on the nanoparticle precursor used, Ag, Cu, and Se nanoparticles (NPs) with an average particle size of 50-100 nm were prepared, and the properties of the products were confirmed by the STEM, XPS, DLS, and UV-VIS methods. The use of a DES, without the need for additional reactants, allowed the production of stable nanoparticles with increased bioactivity against microorganisms. The obtained systems showed high bioactivity against strains of S. aureus, E. coli, and C. albicans. Nanosuspensions, by generating reactive oxygen species (ROSs), caused enzyme inactivation and the inhibition of the metabolic processes of microorganisms. Particle-generated cell degradation processes were investigated through ROS generation assays, API assays, the determination of the MIC/MBC, and cell decomposition rate assays in the early logarithmic growth phase. Copper nanoparticles derived from copper(II) acetate were also highly active against the human influenza A/H1N1 viruses, human coronavirus (HCoV-OC43, Betacoronavirus 1), and vesicular stomatitis virus (VSV, Rhabdoviridae), showing a virus titer reduction of more than 93.7-99.96%.
Collapse
Affiliation(s)
- Olga Długosz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland; Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland.
| | - Anna Żebracka
- Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Academy of Sciences Polish, Poland
| | - Dominika Franz
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Academy of Sciences Polish, Poland
| | - Michał Ochnik
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Academy of Sciences Polish, Poland
| | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
10
|
Mahapatra C, Jadhav S, Kumar P, Roy DN, Kumar A, Paul MK. Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis coinfection. Expert Rev Anti Infect Ther 2024; 22:1143-1155. [PMID: 39466600 DOI: 10.1080/14787210.2024.2423359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, including the excision of infected tissue, remain a standard treatment option. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach. AREAS COVERED We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported. EXPERT OPINION The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Sakshi Jadhav
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Prasoon Kumar
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
11
|
Girma A, Mebratie G, Mekuye B, Abera B, Bekele T, Alamnie G. Antibacterial Capabilities of Metallic Nanoparticles and Influencing Factors. NANO SELECT 2024; 5. [DOI: 10.1002/nano.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
ABSTRACTThe increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology‐based medicines for combating multidrug resistance in microorganisms. Among these, metallic nanoparticles (MNPs) hold great promise in addressing this challenge due to their broad‐spectrum and robust antimicrobial properties. This review illustrates the antibacterial activities of MNPs and further elucidates how different factors including synthesis method, size, shape, surface charge, pH, dose, type of capping or stabilizing agents of MNPs, and Gram‐type of the bacteria, impact their antibacterial activities, which are expected to promote the future development of more potent MNP‐based antibacterial agents.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Gedefaw Mebratie
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
- Department of Physics College of Science Bahir Dar University Bahir Dar Ethiopia
| | - Bawoke Mekuye
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Birhanu Abera
- Department of Physics College of Natural and Computational Science Injibara University Injibara Ethiopia
| | - Tigabu Bekele
- Department of Chemistry College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Getachew Alamnie
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| |
Collapse
|
12
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
14
|
Al-Momani H, Albalawi H, Al Balawi D, Khleifat KM, Aolymat I, Hamed S, Albiss BA, Khasawneh AI, Ebbeni O, Alsheikh A, Zueter AM, Pearson JP, Ward C. Enhanced Efficacy of Some Antibiotics in the Presence of Silver Nanoparticles Against Clinical Isolate of Pseudomonas aeruginosa Recovered from Cystic Fibrosis Patients. Int J Nanomedicine 2024; 19:12461-12481. [PMID: 39611007 PMCID: PMC11602434 DOI: 10.2147/ijn.s479937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Given the increasing frequency of drug-resistant bacteria and the limited progress in developing new antibiotics, it is necessary to explore new methods of combating microbial infections. Nanoparticles, particularly silver nanoparticles (Ag-NPs), have shown exceptional antibacterial characteristics; however, elevated concentrations of Ag-NPs can produce noticeable levels of toxicity in mammalian cells. Aim This study examined the potential synergistic effect of combining a low dosage of Ag-NPs and anti-pseudomonas drugs against Pseudomonas aeruginosa (ATCC strain) and eleven clinical isolates from cystic fibrosis patients. Methods The Ag-NPs were chemically produced by utilizing a seed extract from Peganum Harmala and characterized via ultraviolet-visible spectroscopy and scanning electron microscopy. The broth microdilution technique was utilized to investigate the minimum inhibitory concentration (MIC) of Ag-NPs and eight antibiotics (Piperacillin, Ciprofloxacin, Levofloxacin, Meropenem, Amikacin, Ceftazidime, Gentamicin, Aztreonam). The fractional inhibitory concentration index (FICI) was determined via the checkerboard method to evaluate the synergistic effects of Ag-NPs and various antibiotics. Results The biosynthesized Ag-NPs were uniformly spherical and measured around 15 nm in size. When combined with antibiotics, Ag-NP produced statistically significant reductions in the amount of antibiotics required to completely prevent P. aeruginosa growth for all strains. The findings revealed that the MIC of Ag-NPs was 15 ug/mL for all strains which decreased substantially when administered with antibiotics at a dose of 1.875-7.5 ug/mL. The majority of Ag-NP and antibiotic combinations exhibited a synergistic or partially synergistic impact. This was particularly noticeable in combinations containing Meropenem, Ciprofloxacin, and Aztreonam (in which the FIC index was less than or equal to 0.5). Conclusion The findings revealed that combining Ag-NPs with antibiotics was more effective than using Ag-NPs or antibiotics in isolation and that combinations of Ag-NPs and antimicrobial agents displayed synergistic activity against the majority of strains assessed.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Khaled M Khleifat
- Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid, 22110, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ola Ebbeni
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ayman Alsheikh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, 13110, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HHUK
| |
Collapse
|
15
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Nageeb WM, Adam SH, Hashem N, Abdelsalam N. In-vitro and In-silico evaluation of antimicrobial and antibiofilm effect of Neem oil and Calcium hydroxide nanoparticles against Mutans Streptococci and Enterococcus faecalis isolated from endodontic infections. Sci Rep 2024; 14:26441. [PMID: 39488551 PMCID: PMC11531576 DOI: 10.1038/s41598-024-75669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024] Open
Abstract
Different Streptococcal species including Streptococcus mutans, Streptococcus sobrinus and Enterococcus faecalis are commonly isolated in root canal infections including refractory, recurrent, and persistent cases. Calcium hydroxide (Ca (OH)2) has been widely used in endodontics as an intracanal medicament. However, using new antimicrobial herbal alternatives offers promising potentials which can be additionally enhanced by using nanoparticles (NPs). In this study, we evaluate the antimicrobial efficacy and antibiofilm effect of Neem oil including its NPs preparations and we compare the effect of conventional Ca (OH)2 to Ca (OH)2 NPs using standard disc diffusion method and quantitative microtitre dish biofilm formation assay against common pathogens isolated from root canal samples. Molecular docking was used to test the binding of 10 Streptococcal macromolecules to 5 candidate neem active constituents. Neem NPs 0.125 mg/ml showed better antibacterial effect than both Neem 15 mg/ml and Neem 0.15 mg/ml. Ca (OH)2 NPs 0.125 mg/ml also showed better antibacterial effect than each of Ca (OH)2 10 mg/ml and Ca (OH)2 0.1 mg/ml. Best biofilm mass inhibition was achieved by Neem oil 0.15 mg/ml at 74.55% ( IQ: 67.36-87.65) and Neem NPs 0.0125 mg/ml at 59.33% (IQ: 51--75.27). For Ca (OH)2, the best biofilm mass inhibition was observed with Ca (OH)2 NPs 0.125 mg/ml at 54.7% (IQ: 42.37- 77.25). Both neem oil and neem NPs show promising antibacterial and antibiofilm potential against Mutans Streptococci group at low concentrations and hence are good candidates for use as endodontic medications. In silico analysis shows that both Sitosterol and Gedunin appear to be important active constituents of neem and possible drug candidates. Additionally, Ca (OH)2 NPs showed significantly higher antimicrobial effect against Mutans streptococci group than conventional Ca (OH)2 preparations.
Collapse
Affiliation(s)
- Wedad M Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Sherouk Hussein Adam
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Nasr Hashem
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Nelly Abdelsalam
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Yalçın MS, Özdemir S, Prokopiuk V, Virych P, Onishchenko A, Tollu G, Pavlenko V, Kutsevol N, Dizge N, Tkachenko A, Ocakoglu K. Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems. Curr Microbiol 2024; 81:437. [PMID: 39487865 DOI: 10.1007/s00284-024-03953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024]
Abstract
Synthesis of metal oxide nanoparticles-polymer nanocomposites is an emerging strategy in nanotechnology to improve targeted delivery and reduce the toxicity of nanoparticles. In this study, we report biological effects of previously described hybrid nanocomposites containing dextran-graft-polyacrylamide/zinc oxide nanoparticles (D-PAA/ZnO NPs) prepared from zinc sulfate (D-PAA/ZnONPs(SO42-)) and zinc acetate (D-PAA/ZnONPs(-OAc)) focusing primarily on their antimicrobial activity. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems were tested in a complex way to assess their antioxidant activity (DPPH assay), antidiabetic potential (α-amylase inhibition), DNA cleavage activity, antimicrobial, and antibiofilm activity. In addition, the toxicity of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems against primary murine splenocytes was tested using MTT assay. The studied nanosystems inhibited E.coli growth. For all the investigated strains, minimum inhibitory concentrations (MICs) of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) were in the range of 8 mg/L-128 mg/L and 16 mg/L-128 mg/L, respectively. The nanocomposites demonstrated effective antibiofilm properties as 94.27% and 86.43%. The compounds showed good antioxidant, anti-α-amylase, and DNA cleavage activities. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems reduced cell viability and promoted cell death of primary murine spleen cells at concentrations higher than those that proved to be antibacterial indicating the presence of therapeutic window. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems show antioxidant, antidiabetic, DNA cleavage, antimicrobial, and antibiofilm activity against the background of good biocompatibility suggesting the presence of therapeutic potential, which should be further investigated in vivo.
Collapse
Affiliation(s)
- M Serkan Yalçın
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Pavlo Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Yenisehir, TR-33343, Mersin, Turkey
| | - Vadim Pavlenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nataliya Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Yenişehir, 33343, Mersin, Turkey
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine.
| | - Kasim Ocakoglu
- Department of Eng. Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400, Tarsus, Turkey
| |
Collapse
|
18
|
Marcu Spinu S, Dragoi Cudalbeanu M, Avram I, Fierascu RC, Rosu PM, Morosanu AM, Cimpeanu CL, Babeanu N, Ortan A. Antibacterial and Antitumoral Potentials of Phytosynthesized Silver/Silver Oxide Nanoparticles Using Tomato Flower Waste. Int J Mol Sci 2024; 25:9871. [PMID: 39337358 PMCID: PMC11432378 DOI: 10.3390/ijms25189871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the phytosynthesis of silver-based nanoparticles using tomato flower waste extracts for the first time in the literature. The determination of total polyphenolic and flavonoid contents in the extracts showed high gallic acid equivalents (6436-8802 mg GAE/kg dm) and high quercetin equivalents (378-633 mg QE/kg dm), respectively, dependent on the extraction method. By the Ultra Performance Liquid Chromatography technique, 14 polyphenolic compounds were identified and quantified in the tomato flower waste extracts. The abundant phenolic compounds were caffeic acid (36,902-32,217 mg/kg) and chlorogenic acid (1640-1728 mg/kg), and the abundant flavonoid compounds were catechin (292-251 mg/kg) and luteolin (246-108 mg/kg). Transmission electron microscopy of the nanoparticles revealed a particle size range of 14-40 nm. Fourier Transform infrared spectroscopy and X-ray diffraction studies confirmed the phytosynthesis of the silver/silver oxide nanoparticles. These findings hold significant results for the antibacterial and antitumoral potential applications of the obtained nanoparticles, opening new areas for research and development and inspiring further exploration. The impact of this research on the field of metallic nanoparticle phytosynthesis is substantial, as it introduces a novel approach and could lead to significant advancements in the field.
Collapse
Affiliation(s)
- Simona Marcu Spinu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Mihaela Dragoi Cudalbeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independenței, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Petronela Mihaela Rosu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Ana-Maria Morosanu
- Institute of Biology Bucharest, Romanian Academy, 060031 Bucharest, Romania
| | - Carmen Laura Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Narcisa Babeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Alina Ortan
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| |
Collapse
|
19
|
Hou T, Sana SS, Jeyavani J, Li H, Boya VKN, Vaseeharan B, Kim SC, Zhang Z. Biomedical applications of chitosan-coated phytogenic silver nanoparticles: An alternative drug to foodborne pathogens. Int J Biol Macromol 2024; 280:135590. [PMID: 39276903 DOI: 10.1016/j.ijbiomac.2024.135590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) was performed using crude rosmarinic acid (RA) from plants as a reducing agent and coated with chitosan biopolymer. The prepared particles were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). A surface plasmon resonance peak at 430 nm indicates the emergence of AgNPs. XRD showed that the AgNPs were crystalline with an average crystalline size of 30 nm and TEM studies revelad that AgNPs were spherical without aggregation. The prepared CS-AgNPs exhibited good bactericidal properties against foodborne pathogens, such as Escherichia coli, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. In particular, 100 μg/mL CS-AgNPs inhibited the growth of the selected bacteria and controlled their biofilm-forming ability. Band-aid cloth assay confirmed that the CS-AgNPs could be used in the medical field to prevent bacterial infections. The prepared CS-AgNPs increased the survival rate of Artemia species and exhibited antioxidant activity in conjunction with bactericidal properties against selected foodborne pathogens.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Vijaya Kumar Naidu Boya
- Department of Material Science and Nanotechnology, Yogi Vemana University, Kadapa 516005, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
| |
Collapse
|
20
|
Naguib GH, Abd El-Aziz GS, Mira A, Kayal RA, Al-Turki L, Mously H, Alnowaiser A, Mazhar J, Hamed MT. Enhanced Antimicrobial Properties of Polymeric Denture Materials Modified with Zein-Coated Inorganic Nanoparticles. Int J Nanomedicine 2024; 19:9255-9271. [PMID: 39282577 PMCID: PMC11397330 DOI: 10.2147/ijn.s476261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background Polymeric denture materials can be susceptible to colonization by oral microorganisms. Zein-coated magnesium oxide nanoparticles (zMgO NPs) demonstrate antimicrobial activity. The aim of this study was to investigate the antimicrobial effect and adherence of different oral microorganisms on hybrid polymeric denture materials incorporated with zMgO NPs. Methods Five types of polymeric denture materials were used. A total of 480 disc-shaped specimens were divided by material type (n=96/grp), then subdivided by zMgO NPs concentration: control with no nanoparticles and other groups with zMgO NPs concentrations of 0.3%, 0.5% and 1% by weight. Characterization of the polymeric denture materials incorporating zMgO NPs was done, and the antimicrobial activity of all groups was tested against four types of microorganisms: 1) Streptococcus mutans, 2) Staphylococcus aureus, 3) Enterococcus faecalis and 4) Candida albicans. The samples underwent an adherence test and an agar diffusion test. Experiments were done in triplicates. Results The characterization of the hybrid samples revealed variation in the molecular composition, as well as a uniform distribution of the zMgO NPs in the polymeric denture materials. All hybrid polymeric denture materials groups induced a statistically significant antimicrobial activity, while the control groups showed the least antimicrobial activity. The agar diffusion test revealed no release of the zMgO NPs from the hybrid samples, indicating the NPs did not seep out of the matrix. Conclusion The zMgO NPs were effective in reducing the adherence of the tested microorganisms and enhancing the antimicrobial activity of the polymeric denture materials. This antimicrobial effect with the polymeric dentures could aid in resisting microbial issues such as denture stomatitis.
Collapse
Affiliation(s)
- Ghada H Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulghani Mira
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A Kayal
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lulwa Al-Turki
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Alnowaiser
- Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
21
|
Alam Shah MK, Nawaz A, Latif MS, Ullah W, Ullah A, Khan AA, Malik A, Kumarasamy V, Subramaniyan V, Azad AK. Chitosan-based Mupirocin and Alkanna tinctoria extract nanoparticles for the management of burn wound: In vitro and in vivo characterization. NANOTECHNOLOGY REVIEWS 2024; 13. [DOI: 10.1515/ntrev-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Abstract
Serious consequences including septicemia and amputations can result from complex wounds, which is a serious healthcare concern. In addition, there are currently only a few choices for management, which justifies the search for novel, highly effective wound-healing medications. This research work was aimed at fabricating chitosan-based Alkanna tinctoria and Mupirocin nanoparticles by ionic gelation technique for burn wound management. Preliminary studies were conducted, and the prepared nanoparticles were characterized by various techniques that involve, high-performance liquid chromatography for the detection of components in A. tinctoria root extract, ATR-FTIR, particle size, zeta potential, percent drug content (DC%), percent entrapment efficiency (EE%), scanning electron microscopy, and transmission electron microscopy (TEM) for surface morphology. The optimized formulation CS-AT-MU-NPs3 shows a particle size of 340.8 ± 34.46 nm and positive zeta potential 27.3 ± 3.10 mV. In vitro drug release study was also performed, which demonstrated improved and controlled release of the drug from the nanoparticles. The CS-AT-MU-NPs3 exhibited a maximum release up to 92.61% (AT) and 88.35% (MU). Antibacterial and antifungal activities of the formulation were also accessed by utilizing the agar well diffusion technique. The combination of AT and MU in chitosan-based nanoparticles was significantly effective against bacterial and fungal strains like Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans as compared to other formulations. The skin irritation study was also conducted, which shows that the prepared formulation did not cause any observable changes to the skin in terms of inflammation, erythema, edema, or any other symptoms associated with skin irritation. All the chitosan-based nanoparticles showed almost 75% reduction in wound contraction, while the optimized formulation CS-AT-MU-NPs3 showed complete wound healing on the 15th day. Based on the results, it can be assumed that chitosan-based nanoparticles containing A. tinctoria and Mupirocin demonstrated good wound healing and could be used to effectively manage burn wounds of any description.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Asif Nawaz
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Muhammad Shahid Latif
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Wasi Ullah
- Advance Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University , Dera Ismail Khan , 29050, KP , Pakistan
| | - Aziz Ullah
- Department of Chemical Engineering, Pukyong National University , Busan 48513 , Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif , 56000 Cheras , Kuala Lumpur , Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor Darul Ehsan , Malaysia
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, 68100 Batu Caves , Kuala Lumpur , Malaysia
| |
Collapse
|
22
|
Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, Liu C, Guo L, Tang Y, Wang X, Yang X, Wang E, Xu C. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 496:153803. [DOI: 10.1016/j.cej.2024.153803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Zeng C, Alsaiari NS, Saif MJ, Junaid Dilshad M, Akhtar TM, Isram M, Ali A, Younus S, Alomayrah N, Al-Buriahi MS, Mahmood K, Ali MY. Modulation of dielectric and antibacterial properties of Zn 0.5Mn 0.5O nanoparticles by post growth annealing method. Heliyon 2024; 10:e36035. [PMID: 39247313 PMCID: PMC11379577 DOI: 10.1016/j.heliyon.2024.e36035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
In this manuscript, we have investigated the dielectric and antibacterial potential of hydrothermally synthesized ZnMnO nanoparticles. The synthesized nanoparticles were annealed at various temperatures ranging from 450 to 650 °C with a step of 50 °C to modulate the structural, vibrational, dielectric, and antibacterial properties. XRD data confirmed the hexagonal structure of the synthesized samples and crystalline size was decreased to 4.8 nm at annealing temperature 600 °C. The lattice structure was further verified by Raman spectroscopy measurements, which strongly verified the XRD data due the presence of ZnMnO vibrational modes. The dielectric measurements revealed that the dielectric constant and los tangent were found to be increased with the increase annealing temperature and decreased with frequency, while a.c conductivity has an increasing trend with both parameters (temperature and frequency). The plot of real and complex parts of impedance against frequency demonstrated that both parameters decrease with the increased in frequency. But when we analyzed the behavior of the real part of impedance against the annealing temperature, a degradation in real part behavior is observed. The antibacterial activity of ZnMnO nanoparticles was determined by using the disc diffusion method against E. coli bacteria, which was grown on a Petri dish at room temperature for 24 h. This observation revealed that the samples annealed at 450 °C and 550 °C show remarkable antibacterial sensitivity as compared to other samples. It is concluded that crystalline size of 20 nm is found to be optimal value for good anti-baterial behavior.
Collapse
Affiliation(s)
- Cheng Zeng
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P .O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - M Junaid Dilshad
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | | | | | - Adnan Ali
- Department of Physics, Government College University Faisalabad, Pakistan
| | - S Younus
- Department of Physics, Government College University Faisalabad, Pakistan
| | - Norah Alomayrah
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M S Al-Buriahi
- Department of Physics, Sakarya University, Sakarya, Turkey
| | - K Mahmood
- Department of Physics, Government College University Faisalabad, Pakistan
| | - M Yasir Ali
- Department of Physics, Government College University Faisalabad, Pakistan
| |
Collapse
|
24
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
25
|
Niebles Navas AF, Araujo-Rodríguez DG, Valencia-Llano CH, Insuasty D, Delgado-Ospina J, Navia-Porras DP, Zapata PA, Albis A, Grande-Tovar CD. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024; 29:3850. [PMID: 39202929 PMCID: PMC11356782 DOI: 10.3390/molecules29163850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Andrés Felipe Niebles Navas
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniela G Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
26
|
Naguib G, Mously H, Mazhar J, Alkanfari I, Binmahfooz A, Zahran M, Hamed MT. Bond strength and surface roughness assessment of novel antimicrobial polymeric coated dental cement. DISCOVER NANO 2024; 19:123. [PMID: 39105979 PMCID: PMC11303365 DOI: 10.1186/s11671-024-04074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Resin cement integrated with zein-incorporated magnesium oxide nanoparticles has previously been found to inhibit oral microbes and decrease bacterial biofilm. However, the bond strength and surface features of this biomaterial have yet to be investigated. The objective of this study was to evaluate the shear bond strength, mode of fracture, and surface roughness of resin cement modified with zein-incorporated magnesium oxide nanoparticles. Characterization of the cement was performed by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. 126 human teeth were divided into 3 groups and cemented to lithium disilicate ceramic using resin cement with zein-incorporated magnesium oxide nanoparticles at concentrations of 0%, 1%, and 2% (n = 42). 21 samples of each group were subjected to the shear bond strength test, while the other 21 underwent thermocycling for 10,000 cycles before the test, after which all samples were evaluated for the mode of fracture. To assess surface roughness, resin cement disks were analyzed by a profilometer before and after undergoing thermocycling for 10,000 cycles. The shear bond strength of the cement with 1% and 2% nanoparticles was significantly higher than the control before thermocycling. The mode of fracture was found to be mainly adhesive with all groups, with the unmodified cement presenting the highest cohesive failure. There was no significant difference in surface roughness between the groups before or after thermocycling. The addition of zein-incorporated magnesium oxide nanoparticles to resin cement improved or maintained the shear bond strength and surface roughness of the resin cement.
Collapse
Affiliation(s)
- Ghada Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt.
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ibrahim Alkanfari
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulelah Binmahfooz
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Zahran
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
27
|
Zhang TG, Miao CY. Iron Oxide Nanoparticles as Promising Antibacterial Agents of New Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1311. [PMID: 39120416 PMCID: PMC11314400 DOI: 10.3390/nano14151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) is growing into a major public health crisis worldwide. The reducing alternatives to conventional agents starve for novel antimicrobial agents. Due to their unique magnetic properties and excellent biocompatibility, iron oxide nanoparticles (IONPs) are the most preferable nanomaterials in biomedicine, including antibacterial therapy, primarily through reactive oxygen species (ROS) production. IONP characteristics, including their size, shape, surface charge, and superparamagnetism, influence their biodistribution and antibacterial activity. External magnetic fields, foreign metal doping, and surface, size, and shape modification improve the antibacterial effect of IONPs. Despite a few disadvantages, IONPs are expected to be promising antibacterial agents of a new generation.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Queen J E, Prasad T AA, Vithiya B SM, Tamizhdurai P, Albakri GS, Khalid M, Alreshidi MA, Yadav KK. Bio fabricated palladium nano particles using phytochemicals from aqueous cranberry fruit extract for anti-bacterial, cytotoxic activities and photocatalytic degradation of anionic dyes. RSC Adv 2024; 14:23730-23743. [PMID: 39091373 PMCID: PMC11292603 DOI: 10.1039/d4ra03177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
The low cost and ecological compatibility of green technology makes it superior to chemical approaches in the generation of metal nanoparticles. The current study shows the use of cranberry fruit extract in the environmentally friendly green production of palladium nanoparticles. It is well known that the fruit extract from cranberries has a rich phytochemical composition that makes it a useful bio reducing agent for the formation of PdNPs. Several spectroscopic techniques, including ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX), were used to characterize the palladium nanoparticles (PdNPs). The diffractogram of the XRD analysis shows significant reflections at 39.98° (111), 46.49° (200), and 67.95° (220), which indicate the face-centered cubic (FCC) structure of PdNPs and demonstrate the crystallinity of the produced nanoparticles from the green method. The SEM and TEM structural and morphological analyses reveal that the synthesized nanoparticles have a spherical shape with size ranging between 2 nm to 50 nm. In addition, the synthesized PdNPs demonstrated possible antibacterial activity on both Gram-positive and Gram-negative bacteria as well as a cytotoxic effect on the MCF-7 breast cancer cell line. The degradation of Indigo Carmine (IC) and Sunset Yellow (SY) dyes can be effectively catalyzed by biogenic PdNPs, according to the results.
Collapse
Affiliation(s)
- Edal Queen J
- PG and Research Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Affiliated to University of Madras, Chennai) Arumbakkam Chennai 600106 Tamilnadu India
| | - Augustine Arul Prasad T
- PG and Research Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Affiliated to University of Madras, Chennai) Arumbakkam Chennai 600106 Tamilnadu India
| | - Scholastica Mary Vithiya B
- PG and Research Department of Chemistry, Auxilium College (Affiliated to Thiruvalluvar University, Vellore) Gandhi Nagar Vellore 632006 Tamilnadu India
| | - P Tamizhdurai
- PG and Research Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Affiliated to University of Madras, Chennai) Arumbakkam Chennai 600106 Tamilnadu India
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Asir-Abha 61421 Saudi Arabia
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University Ratibad Bhopal 462044 India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University Thi-Qar Nasiriyah 64001 Iraq
| |
Collapse
|
29
|
Shahbaz M, Sabir N, Amin N, Zulfiqar Z, Zahid M. Synthesis and characterization of chromium aluminum carbide MAX phases (Cr xAlC x-1) for potential biomedical applications. Front Chem 2024; 12:1413253. [PMID: 39021388 PMCID: PMC11252007 DOI: 10.3389/fchem.2024.1413253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
MAX phases, characterized as nanolaminates of ternary carbides/nitrides structure, possess a unique combination of ceramic and metallic properties, rendering them pivotal in materials research. In this study, chromium aluminum carbide ternary compounds, Cr2AlC (211), Cr3AlC2 (312), and Cr4AlC3 (413) were successfully synthesized with high purity using a facile and cost-effective sol-gel method. Structural, morphological, and chemical characterization of the synthesized phases was conducted to understand the effects of composition changes and explore potential applications. Comprehensive characterization techniques including XRD for crystalline structure elucidations, SEM for morphological analysis, EDX for chemical composition, Raman spectroscopy for elucidation of vibrational modes, XPS to analyze elemental composition and surface chemistry, and FTIR spectroscopy to ensure the functional groups analysis, were performed. X-ray diffraction analysis indicated the high purity of the synthesized Cr2AlC phase as well as other ternary compounds Cr3AlC2 and Cr4AlC3, suggesting its suitability as a precursor for MXenes production. Additionally, the antimicrobial activity against Candida albicans and biocompatibility assessments against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and HepG2 cell line were investigated. The results demonstrated significant antifungal activity of the synthesized phases against Candida albicans and negligible impact on the viability of E. coli and S. aureus. Interestingly, lower concentrations of Cr2AlC MAX phase induced cytotoxicity in HepG2 cells by triggering intercellular oxidative stress, while Cr3AlC2 and Cr4AlC3 exhibited lower cytotoxicity compared to Cr2AlC, highlighting their potential in biomedical applications.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
- Punjab Institute of Nuclear Medicine (PINUM), Faisalabad, Pakistan
| | - Nadeem Sabir
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Amin
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Zobia Zulfiqar
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
30
|
Bakhshi A, Naghib SM, Rabiee N. Antibacterial and Antiviral Nanofibrous Membranes. ACS SYMPOSIUM SERIES 2024:47-88. [DOI: 10.1021/bk-2024-1472.ch002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
31
|
AlHarethi AA, Abdullah QY, AlJobory HJ, Anam AM, Arafa RA, Farroh KY. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. DISCOVER NANO 2024; 19:105. [PMID: 38907852 PMCID: PMC11193706 DOI: 10.1186/s11671-024-04040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.
Collapse
Affiliation(s)
- Amira A AlHarethi
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen.
| | - Qais Y Abdullah
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Hala J AlJobory
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - AbdulRahman M Anam
- Department of Pharmacology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen
| | - Ramadan A Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
32
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
33
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
34
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
35
|
Kar P, Oriola AO, Oyedeji AO. Molecular Docking Approach for Biological Interaction of Green Synthesized Nanoparticles. Molecules 2024; 29:2428. [PMID: 38893302 PMCID: PMC11173450 DOI: 10.3390/molecules29112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant progress has been made in the subject of nanotechnology, with a range of methods developed to synthesize precise-sized and shaped nanoparticles according to particular requirements. Often, the nanoparticles are created by employing dangerous reducing chemicals to reduce metal ions into uncharged nanoparticles. Green synthesis or biological approaches have been used recently to circumvent this issue because biological techniques are simple, inexpensive, safe, clean, and extremely productive. Nowadays, much research is being conducted on how different kinds of nanoparticles connect to proteins and nucleic acids using molecular docking models. Therefore, this review discusses the most recent advancements in molecular docking capacity to predict the interactions between various nanoparticles (NPs), such as ZnO, CuO, Ag, Au, and Fe3O4, and biological macromolecules.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola O. Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
36
|
Morone MV, Chianese A, Dell’Annunziata F, Folliero V, Lamparelli EP, Della Porta G, Zannella C, De Filippis A, Franci G, Galdiero M, Morone A. Ligand-Free Silver Nanoparticles: An Innovative Strategy against Viruses and Bacteria. Microorganisms 2024; 12:820. [PMID: 38674764 PMCID: PMC11052337 DOI: 10.3390/microorganisms12040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum β-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.
Collapse
Affiliation(s)
- Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Carla Zannella
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Antonio Morone
- Consiglio Nazionale delle Ricerche, Instituto di Struttura della Materia U.O. di Tito Scalo, 85050 Potenza, Italy
| |
Collapse
|
37
|
Proniewicz E, Vijayan AM, Surma O, Szkudlarek A, Molenda M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. Int J Mol Sci 2024; 25:4242. [PMID: 38673825 PMCID: PMC11050608 DOI: 10.3390/ijms25084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland;
| | | | - Olga Surma
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-055 Krakow, Poland;
| | - Marcin Molenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| |
Collapse
|
38
|
Badawy MSEM, Riad OKM, Harras MF, Binsuwaidan R, Saleh A, Zaki SA. Chitosan-Aspirin Combination Inhibits Quorum-Sensing Synthases ( lasI and rhlI) in Pseudomonas aeruginosa. Life (Basel) 2024; 14:481. [PMID: 38672752 PMCID: PMC11051473 DOI: 10.3390/life14040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) controls the virulence of P. aeruginosa. This study aims to determine the anti-QS activity of aspirin alone and in combination with chitosan to reach maximum inhibition. We tested ten virulent Pseudomonas aeruginosa (P. aeruginosa) isolates and screened for N-acyl homoserine lactone (AHL) production using Agrobacterium tumefaciens as a biosensor. P. aeruginosa isolates were treated with sub-minimum inhibitory concentrations (MICs) of aspirin and chitosan-aspirin. We used broth microdilution and checkerboard titration methods to determine the MICs and the synergistic effect of these two compounds, respectively. Real-time polymerase chain reaction (PCR) was used to estimate the anti-QS activity of the aspirin-chitosan combination on the expression of lasI and rhlI genes. RESULTS Aspirin decreased the motility and production of AHLs, pyocyanin, and biofilm. Chitosan potentiated the inhibitory effect of aspirin. The chitosan-aspirin combination inhibited lasI and rhlI gene expression in PAO1 (ATCC 15692) by 7.12- and 0.92-fold, respectively. In clinical isolates, the expression of lasI and rhlI was decreased by 1.76 × 102- and 1.63 × 104-fold, respectively. Molecular docking analysis revealed that aspirin could fit into the active sites of the QS synthases lasI and rhlI with a high binding affinity, causing conformational changes that resulted in their inhibition. CONCLUSIONS The chitosan-aspirin combination provides new insights into treating virulent and resistant P. aeruginosa.
Collapse
Affiliation(s)
- Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Omnia Karem M. Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Marwa F. Harras
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.B.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.B.); (A.S.)
| | - Samar A. Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
39
|
Mohamed AT, Hameed RA, El-Moslamy SH, Fareid M, Othman M, Loutfy SA, Kamoun EA, Elnouby M. Facile synthesis of Fe 2O 3, Fe 2O 3@CuO and WO 3 nanoparticles: characterization, structure determination and evaluation of their biological activity. Sci Rep 2024; 14:6081. [PMID: 38480834 PMCID: PMC10937632 DOI: 10.1038/s41598-024-55319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.
Collapse
Affiliation(s)
- Asmaa T Mohamed
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
| | - Reda Abdel Hameed
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt
| | - Mohamed Fareid
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Mohamad Othman
- Basic Science Department, Preparatory Year, University of Ha'il, 1560, Hail, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig, 11796, Cairo, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt.
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg Al-Arab City, 21934, Alexandria, Egypt.
| | - Mohamed Elnouby
- Nanotechnology and Composite Materials Department, Advanced Technology and New Materials Research (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
40
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
41
|
Sedky NK, Mahdy NK, Abdel-Kader NM, Abdelhady MMM, Maged M, Allam AL, Alfaifi MY, Shamma SN, Hassan HAFM, Fahmy SA. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: biological, molecular, and computational-based investigations. RSC Adv 2024; 14:8583-8601. [PMID: 38487521 PMCID: PMC10938292 DOI: 10.1039/d3ra08908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 μg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Nour M Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Manal M M Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University Cairo 11829 Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, Nile University Giza Egypt
| | - Aya L Allam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Hatem A F M Hassan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20-1222613344
| |
Collapse
|
42
|
Hussen NH, Hasan AH, FaqiKhedr YM, Bogoyavlenskiy A, Bhat AR, Jamalis J. Carbon Dot Based Carbon Nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer Agents. ACS OMEGA 2024; 9:9849-9864. [PMID: 38463310 PMCID: PMC10918813 DOI: 10.1021/acsomega.3c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Antimicrobial and anticancer drugs are widely used due to increasing widespread infectious diseases caused by microorganisms such as bacterial, fungal, viral agents, or cancer cells, which are one of the major causes of mortality globally. Nevertheless, several microorganisms developed resistance to antibiotics as a result of genetic changes that have occurred over an extended period. Carbon-based materials, particularly carbon dots (C-dots), are potential candidates for antibacterial and anticancer nanomaterials due to their low toxicity, ease of synthesis and functionalization, high dispersibility in aqueous conditions, and promising biocompatibility. In this Review, the content is divided into four sections. The first section concentrates on C-dot structures, surface functionalization, and morphology. Following that, we summarize C-dot classifications and preparation methods such as arc discharge, laser ablation, electrochemical oxidation, and so on. The antimicrobial applications of C-dots as antibacterial, antifungal, and antiviral agents both in vivo and in vitro are discussed. Finally, we thoroughly examined the anticancer activity displayed by C-dots.
Collapse
Affiliation(s)
- Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region, Iraq
| | - Yar Muhammed FaqiKhedr
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
43
|
Navarro-López DE, Perfecto-Avalos Y, Zavala A, de Luna MA, Sanchez-Martinez A, Ceballos-Sanchez O, Tiwari N, López-Mena ER, Sanchez-Ante G. Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles. Antibiotics (Basel) 2024; 13:220. [PMID: 38534655 DOI: 10.3390/antibiotics13030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Yocanxóchitl Perfecto-Avalos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Araceli Zavala
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Marco A de Luna
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Araceli Sanchez-Martinez
- Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
| | - Oscar Ceballos-Sanchez
- Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| |
Collapse
|
44
|
Muhammed A, Asere TG, Diriba TF. Photocatalytic and Antimicrobial Properties of ZnO and Mg-Doped ZnO Nanoparticles Synthesized Using Lupinus albus Leaf Extract. ACS OMEGA 2024; 9:2480-2490. [PMID: 38250416 PMCID: PMC10795139 DOI: 10.1021/acsomega.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Dye effluents discharged from various industries contribute to environmental contamination, making their treatment highly necessary. Infectious diseases also pose a threat to public health worldwide. Nanomaterials have promising features and are potential candidates for overcoming the problems of drug resistance in microbes and environmental pollution. Therefore, this study aimed to synthesize zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) using the plant extract of Lupinus albus for applications in photocatalysis and antimicrobial activity. A sample of Lupinus albus leaves was collected from Motta, in the eastern Gojjam zone of Ethiopia. The leaves were air-dried and then ground into a powder. The powdered plant material was extracted using distilled water. The ZnO and Mg-doped ZnO NPs were synthesized using 0.1 M Zn(NO3)2·6H2O, 7.5% 0.1 M Mg(NO3)2.6H2O, and 10 mL of the leaf extract. The nanoparticles (NPs) were characterized using UV-vis, FT-IR, XRD, and SEM. The average crystallite sizes of ZnO and Mg-doped ZnO NPs were determined using the Debye-Scherrer formula and were found to be 28.1 and 34.4 nm, respectively. The antimicrobial activity of the synthesized NPs was evaluated against four bacterial strains (Escherichia coli, Bacillus cereus, Salmonella typhi, and Staphylococcus aureus) and one fungal strain (Candida albicans) by using the agar disk diffusion method. The Mg-doped ZnO NPs exhibited significant antimicrobial activity, with a maximum zone of inhibition measuring 24 and 22 mm against Escherichia coli and Salmonella typhi, respectively. The photocatalytic activity of ZnO and Mg-doped ZnO NPs was investigated by studying the degradation of methylene blue (MB) dye under sunlight irradiation for 120 min. The results showed that Mg-doped ZnO NPs exhibited higher photocatalytic activity (99.6%) than ZnO NPs (94.1%). In conclusion, the synthesized NPs could serve as viable alternatives for antimicrobial drugs and photocatalysts to mitigate the pollution of the environment caused by organic dyes.
Collapse
Affiliation(s)
- Abdu Muhammed
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tsegaye Girma Asere
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
45
|
Nishshankage K, Buddhinie PKC, Ezzat AO, Zhang X, Vithanage M. Antifungal efficacy of biogenic waste derived colloidal/nanobiochar against Colletotrichum gloeosporioides species complex. ENVIRONMENTAL RESEARCH 2024; 241:117621. [PMID: 37952852 DOI: 10.1016/j.envres.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Anthracnose caused by Colletotrichum spp. usually resulting in significant postharvest losses in the banana production chain. This study investigated the inhibitory effect of corn cob colloidal/nanobiochar (CCN) and Gliricidia sepium wood colloidal/nanobiochar (GCN) on the Colletotrichum gloeosporioides species complex. The CCN and GCN materials were synthesized and thoroughly characterized using various techniques, including UV-Vis and Fluorescence spectroscopy. Then after the fungal growth was examined on Potato Dextrose Agar (PDA) media supplemented with different CCN and GCN concentrations of 0.4 - 20 g/L and CCN and GCN with zeolite at various weight percentages of 10% to 50% w/w. Results from the characterization revealed that CCN exhibited a strong UV absorbance peak value of 0.630 at 203 nm, while GCN had a value of 0.305 at 204 nm. In terms of fluorescence emission, CCN displayed a strong peak intensity of 16,371 at 412 nm, whereas GCN exhibited a strong peak intensity of 32,691 at 411 nm. Both CCN and GCN, at concentrations ranging from 1 to 8 and 0.4 - 20 g/L, respectively, displayed notable reductions in mycelial densities and inhibited fungal growth compared to the control. Zeolite incorporation further enhanced the antifungal effect. To the best of our knowledge, this is the first study to demonstrate the promising potential of colloidal/nanobiochar in effectively controlling anthracnose disease. The synthesized CCN and GCN demonstrate promising antifungal potential against Colletotrichum gloeosporioides species complex, offering the potential for the development of novel and effective antifungal strategies for controlling anthracnose disease in Musa spp.
Collapse
Affiliation(s)
- Kulathi Nishshankage
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - P K C Buddhinie
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Abdelrahman O Ezzat
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth, Australia.
| |
Collapse
|
46
|
Vojnits K, Mohseni M, Parvinzadeh Gashti M, Nadaraja AV, Karimianghadim R, Crowther B, Field B, Golovin K, Pakpour S. Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:383. [PMID: 38255551 PMCID: PMC10817529 DOI: 10.3390/ma17020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Majid Mohseni
- Research and Development Laboratory, PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | | | - Anupama Vijaya Nadaraja
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Ramin Karimianghadim
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Ben Crowther
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Brad Field
- PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | - Kevin Golovin
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| |
Collapse
|
47
|
El-Gebaly AS, Sofy AR, Hmed AA, Youssef AM. Green synthesis, characterization and medicinal uses of silver nanoparticles (Ag-NPs), copper nanoparticles (Cu-NPs) and zinc oxide nanoparticles (ZnO-NPs) and their mechanism of action: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 55:103006. [DOI: 10.1016/j.bcab.2023.103006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
49
|
Leonov GE, Vakhrushev IV, Novikova VD, Burunova VV, Kovshova TS, Malinovskaya YA, Yarygin KN. Selective Accumulation of Poly(Lactic-Co-Glycolic Acid) Nanoparticles in Endotheliocytes and Mesenchymal Stromal Cells Cultured as Mixed-Cell Spheroids. Bull Exp Biol Med 2023; 176:241-245. [PMID: 38194063 DOI: 10.1007/s10517-024-06003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 01/10/2024]
Abstract
The use of drug-loaded nanoparticles is an actively developed approach in targeted cancer therapy. Prevascularized spheroids generated from mesenchymal stem cells and endotheliocytes are considered as a model to evaluate the tropism of therapeutic nanoparticles to a specific tissue. Nanoparticles based on co-polymer of lactic and glycolic acids (poly(lactic-co-glycolic acid; PLGA) labeled with cyanine dye (Cy5) were incubated with prevascularized spheroids, and the rate of their penetration and their distribution in the spheroid-forming cells were evaluated. Endotheliocytes more intensively accumulated nanoparticles than mesenchymal stem cells: the number of nanoparticles in mixed-cell spheroids of mesenchymal stem cells and endotheliocytes was greater than in spheroids built solely of mesenchymal stem cells by 5±1.2 times. The developed 3D in vitro cell model provides a low-cost way to assess tissue tropism of therapeutic nanoparticles under conditions closer to natural in comparison with 2D culture.
Collapse
Affiliation(s)
- G E Leonov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V D Novikova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V V Burunova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - T S Kovshova
- Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Yu A Malinovskaya
- Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
50
|
Balu SK, Andra S, Jeevanandam J, Kulabhusan PK, Khamari A, Vedarathinam V, Hamimed S, Chan YS, Danquah MK. Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. CROP PROTECTION 2023; 174:106398. [DOI: 10.1016/j.cropro.2023.106398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|