1
|
Portillo R, Synova T, Staud F. Effects of prenatal cannabinoid use on the monoamine system in the fetoplacental unit: A systematic review of animal and human studies. Drug Alcohol Depend 2025; 268:112579. [PMID: 39899918 DOI: 10.1016/j.drugalcdep.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/04/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND The rapid increase in cannabis use during pregnancy-up by 170 % between 2009 and 2016-raises pressing concerns about its effects on fetal health, particularly on the delicate monoamine system within the fetoplacental unit, which is crucial for placental function and neurodevelopment. OBJECTIVE This systematic review explores the impact of prenatal cannabinoid exposure on the monoamine system within the fetoplacental unit, with a focus on its implications for fetal development through the lens of the Developmental Origins of Health and Disease (DOHaD) framework. METHODS A comprehensive search across multiple databases initially retrieved 18,252 papers. After rigorous screening, only 16 animal studies and 4 human studies met the inclusion criteria. Findings were synthesized to evaluate the effects of prenatal cannabis exposure on neurotransmitter regulation, receptor function, and gene expression. RESULTS Although no studies directly addressed the monoamine system in the placenta, animal models revealed significant disruptions in neurotransmitter regulation and neurodevelopmental changes following prenatal cannabis exposure. Human studies suggested potential cognitive and behavioral risks for offspring exposed in utero. CONCLUSION This review exposes a critical gap in the literature on cannabis' effects on the placental monoamine system. While evidence points to notable neurodevelopmental risks, the scarcity of focused research underscores the need for further investigation to fully understand the implications of prenatal cannabis exposure.
Collapse
Affiliation(s)
- Ramon Portillo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Tetiana Synova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
3
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
4
|
AL-Eitan L, Abusirdaneh R. The synthetic cannabinoid 5-fluoro ABICA upregulates angiogenic markers and stimulates tube formation in human brain microvascular endothelial cells. J Taibah Univ Med Sci 2024; 19:359-371. [PMID: 38357583 PMCID: PMC10864802 DOI: 10.1016/j.jtumed.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Objective Synthetic cannabinoids (SCs), a class of psychoactive compounds emulating the effects of natural cannabis, have prompted addiction and psychosis concerns. However, recent research has suggested potential pharmacological applications, particularly in brain angiogenesis-an essential physiological process for growth, repair, and tissue maintenance, in which new blood vasculature is formed from existing vasculature. This study explored the in vitro ability of the SC 5-fluoro ABICA to enhance new blood formation processes in human brain microvascular endothelial cells (HBMECs). Methods HBMECs were treated with various concentrations of 5-fluoro ABICA (1 μM, 0.1 μM, 0.01 μM, 0.001 μM, and 0.0001 μM). A comprehensive analysis was conducted, including MTT assays indicating cell viability, wound healing assays indicating migration ability, and tube formation assays indicating the angiogenesis potential of endothelial cells. Additionally, mRNA expression and protein levels of specific pro-angiogenic factors were measured, and the phosphorylation levels of glycogen synthase kinase-3β were detected in treated HBMECs through ELISA, real-time PCR, and western blotting. Results Treatment with 5-fluoro ABICA effectively stimulated proliferation, migration, and tube formation in HBMECs in a dose-dependent manner; markedly increased the expression of pro-angiogenic factors; and upregulated levels of phosphorylated-GSK-3β. Conclusion Our findings demonstrate that 5-fluoro ABICA stimulates angiogenesis in endothelial cells, thus potentially offering therapeutic options for diseases associated with angiogenesis. However, further research is needed to fully understand the molecular mechanism of 5-fluoro ABICA in angiogenesis, including ethical considerations regarding its use in medical research.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Rawan Abusirdaneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Liu K, Kadannagari S, Deruiter J, Pathak S, Abbott KL, Salamat JM, Pondugula SR, Akingbemi BT, Dhanasekaran M. Effects of developmental exposures to Bisphenol-A and Bisphenol-S on hepatocellular function in male Long-Evans rats. Life Sci 2023; 326:121752. [PMID: 37172818 DOI: 10.1016/j.lfs.2023.121752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (μg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.
Collapse
Affiliation(s)
- Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Surekha Kadannagari
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
6
|
Patrone LGA, Ferrari GD, da Silva RM, Alberici LC, Lopes NP, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Sex- and age-specific respiratory alterations induced by prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 in rats. Br J Pharmacol 2023. [PMID: 36710256 DOI: 10.1111/bph.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Gustavo D Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Moreira da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
7
|
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol 2023; 63:187-209. [PMID: 35914767 DOI: 10.1146/annurev-pharmtox-031122-113758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Collapse
Affiliation(s)
- Rita Roque-Bravo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rafaela Sofia Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rui F Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; , .,Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, IUCS-CESPU, Gandra, Portugal
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| |
Collapse
|