1
|
Wang C, Li C, You F, Zhou Y, Tu G, Liu R, Yi P, Wu X, Nie H. Multi-Omics Analysis of Gut Microbiome and Host Metabolism in Different Populations of Chinese Alligators ( alligator sinensis) During Various Reintroduction Phases. Ecol Evol 2025; 15:e71221. [PMID: 40212922 PMCID: PMC11981878 DOI: 10.1002/ece3.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Reintroduction plays a significant role in the self-maintenance and reconstruction of wild animal populations, serving as a communication bridge between captive and wild animals. The Chinese alligator (Alligator sinensis) is a distinct and endangered reptile species found in China. The mechanisms by which artificially bred Chinese alligators adapt following their release into the wild remain poorly understood. This study aims to elucidate the alterations in gut microbiomes and metabolic phenotypes of Chinese alligators during their reintroduction. During the Chinese alligator's reintroduction, Fusobacterium and Cetobacterium became more abundant, while typical pathogens declined significantly. The gut type of the Chinese alligator changed from Acinetobacter to Cetobacterium. The construction of the gut microbial community was dominated by neutral (random) processes and shifted towards deterministic processes with the progression of reintroduction. In terms of species function, reintroduction significantly upregulated the expression of host immune-related genes and significantly decreased the expression of gut bacterial pathogenic genes and antibiotic resistance genes. Metagenomic and metabolomic KEGG enrichment analyses indicate that glucoside hydrolase families 13 and 23-alongside glycolysis and gluconeogenesis pathways-may play pivotal roles in energy metabolism, host-pathogen interactions, and homeostasis maintenance for Chinese alligators. Differential metabolite analysis identified significant upregulation of metabolites related to neuroendocrine immune modulation and significant down-regulation of anti-inflammatory metabolites during Chinese alligator reintroduction. Association analysis showed that there were significant co-metabolic effects between microorganisms and metabolites, which coordinated host adaptive interaction. This study provides insights into the synergistic mechanisms of host adaptation and wild environment adaptation for Chinese alligators.
Collapse
Affiliation(s)
- Chong Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinCollege of Life Sciences, Anhui Normal UniversityWuhuChina
| | - Changcheng Li
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinCollege of Life Sciences, Anhui Normal UniversityWuhuChina
| | - Fuyong You
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinCollege of Life Sciences, Anhui Normal UniversityWuhuChina
| | - Yongkang Zhou
- Anhui Chinese Alligator National Nature ReserveXuanchengAnhuiChina
| | - Genjun Tu
- Anhui Chinese Alligator National Nature ReserveXuanchengAnhuiChina
| | - Ruoya Liu
- Anhui Chinese Alligator National Nature ReserveXuanchengAnhuiChina
| | - Pingsi Yi
- Anhui Chinese Alligator National Nature ReserveXuanchengAnhuiChina
| | - Xiaobing Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinCollege of Life Sciences, Anhui Normal UniversityWuhuChina
| | - Haitao Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinCollege of Life Sciences, Anhui Normal UniversityWuhuChina
| |
Collapse
|
2
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
3
|
Demongeot J, Magal P. Population dynamics model for aging. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19636-19660. [PMID: 38052618 DOI: 10.3934/mbe.2023870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The chronological age used in demography describes the linear evolution of the life of a living being. The chronological age cannot give precise information about the exact developmental stage or aging processes an organism has reached. On the contrary, the biological age (or epigenetic age) represents the true evolution of the tissues and organs of the living being. Biological age is not always linear and sometimes proceeds by discontinuous jumps. These jumps can be negative (we then speak of rejuvenation) or positive (in the event of premature aging), and they can be dependent on endogenous events such as pregnancy (negative jump) or stroke (positive jump) or exogenous ones such as surgical treatment (negative jump) or infectious disease (positive jump). The article proposes a mathematical model of the biological age by defining a valid model for the two types of jumps (positive and negative). The existence and uniqueness of the solution are solved, and its temporal dynamic is analyzed using a moments equation. We also provide some individual-based stochastic simulations.
Collapse
Affiliation(s)
| | - Pierre Magal
- University of Bordeaux, IMB, UMR 5251, F-33400 Talence, France. CNRS, IMB, UMR 5251, F-33400 Talence, France
| |
Collapse
|
4
|
Siddiqui R, Akbar N, Maciver SK, Alharbi AM, Alfahemi H, Khan NA. Gut microbiome of Crocodylus porosus and cellular stress: inhibition of nitric oxide, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Arch Microbiol 2023; 205:344. [PMID: 37768360 DOI: 10.1007/s00203-023-03680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Crocodiles are renowned for their resilience and capacity to withstand environmental stressors, likely influenced by their unique gut microbiome. In this study, we determined whether selected gut bacteria of Crocodylus porosus exhibit anti-inflammatory effects in response to stress, by measuring nitric oxide release, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Using the Griess assay, the findings revealed that among several C. porosus gut bacterial isolates, the conditioned media containing the metabolites of two bacterial strains (CP27 and CP36) inhibited nitric oxide production significantly, in response to the positive control, i.e., taxol-treatment. Notably, CP27 and CP36 were more potent at reducing nitric oxide production than senloytic compounds (fisetin, quercetin). Using enzyme linked immunosorbent assays, the production of pro-inflammatory cytokines (IL-1β, TNF-α, PGE2), was markedly reduced by treatment with CP27 and CP36, in response to stress. Both CP27 and CP36 contain a plethora of metabolites to exact their effects [(3,4-dihydroxyphenylglycol, 5-methoxytryptophan, nifedipine, 4-chlorotestosterone-17-acetate, 3-phenoxypropionic acid, lactic acid, f-Honaucin A, l,l-Cyclo(leucylprolyl), 3-hydroxy-decanoic acid etc.], indicative of their potential in providing protection against cellular stress. Further high-throughput bioassay-guided testing of gut microbial metabolites from crocodiles, individually as well as in combination, together with the underlying molecular mechanisms, in vitro and in vivo will elucidate their value in the rational development of innovative therapies against cellular stress/gut dysbiosis.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, 21944, Taif, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, 65799, Al-Baha, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
5
|
Siddiqui R, Elmoselhi AB, Khan NA. Space medicine: gut microbiome of hardy species is a potential source to counter disorders during space travel. Future Sci OA 2023; 9:FSO868. [PMID: 37485442 PMCID: PMC10357397 DOI: 10.2144/fsoa-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
It is proposed that gut microbiome of species like cockroaches may offer a potential source of novel mechanisms/molecules that can be translated into humans to safeguard astronauts against stressors of the space environment during deep space exploration missions.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, University City, Sharjah, 26666, UAE
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Adel B Elmoselhi
- College of Medicine, University of Sharjah, University City, Sharjah, 27272, UAE
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- College of Medicine, University of Sharjah, University City, Sharjah, 27272, UAE
| |
Collapse
|
6
|
Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA. Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. Future Sci OA 2023; 9:FSO861. [PMID: 37180607 PMCID: PMC10167718 DOI: 10.2144/fsoa-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Aim To determine whether selected gut bacteria of crocodile exhibit antibacterial properties. Materials & methods Two bacteria isolated from Crocodylus porosus gut were used, namely: Pseudomonas aeruginosa and Aeromonas dhakensis. Conditioned media were tested against pathogenic bacteria and metabolites were analyzed using liquid chromatography-mass spectrometry. Results & conclusion Antibacterial assays revealed that conditioned media showed potent effects against pathogenic Gram-positive and Gram-negative bacteria. LC-MS revealed identity of 210 metabolites. The abundant metabolites were, N-Acetyl-L-tyrosine, Acetaminophen, Trans-Ferulic acid, N, N-Dimethylformamide, Pyrocatechol, Cyclohexanone, Diphenhydramine, Melatonin, Gamma-terpinene, Cysteamine, 3-phenoxypropionic acid, Indole-3-carbinol, Benzaldehyde, Benzocaine, 2-Aminobenzoic acid, 3-Methylindole. These findings suggest that crocodile gut bacteria are potential source of novel bioactive molecules that can be utilized as pre/post/antibiotics for the benefit of human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamza Mohammad Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad Harb Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
7
|
Microbiome and One Health: Potential of Novel Metabolites from the Gut Microbiome of Unique Species for Human Health. Microorganisms 2023; 11:microorganisms11020481. [PMID: 36838446 PMCID: PMC9958914 DOI: 10.3390/microorganisms11020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
For thousands of years, the notion that human health and performance are concomitant with the health and diversity of the microbiome has been deliberated upon [...].
Collapse
|
8
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
9
|
Siddiqui R, Qaisar R, Khan NA, Alharbi AM, Alfahemi H, Elmoselhi A. Effect of Microgravity on the Gut Microbiota Bacterial Composition in a Hindlimb Unloading Model. Life (Basel) 2022; 12:life12111865. [PMID: 36431000 PMCID: PMC9698145 DOI: 10.3390/life12111865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
We utilised a ground-based microgravity hindlimb unloading (HU) mouse model to elucidate the gut microbiota bacterial changes in mice under a simulated microgravity environment. Four-month-old, male C57/Bl6 mice were randomly divided into ground-based controls and the HU groups and kept under controlled environmental conditions. For the microgravity environment, the mice were suspended in special cages individually for 20 days. At the end of the suspension, the mice were sacrificed; gut dissections were performed, followed by a metagenomic analysis of bacterial species, which was carried out by extracting DNA and 16S rRNA analysis. The results revealed that the gut bacterial communities of mice under gravity and microgravity were different. Notably, our findings revealed differences in the bacterial community structure. Around 449 bacterial OTUs were specific to mice kept under normal gravity versus 443 bacterial OTUs under microgravity conditions. In contrast, 694 bacterial OTUs were common to both groups. When the relative abundance of taxa was analyzed, Bacteroidetes dominated the gut (64.7%) of normal mice. Conversely, mice in the microgravity environment were dominated by Firmicutes (42.7%), and the relative abundance of Bacteroidetes differed significantly between the two groups (p < 0.05). The distribution of Muribaculaceae between normal mice versus microgravity mice was significantly different, at 62% and 36.4%, respectively (p < 0.05). Furthermore, a significant decrease in 11 bacteria was observed in mice under simulated microgravity, including Akkermansia muciniphila, Eubacterium coprostanoligenes, Bacteroides acidifaciens, Clostridium leptum, Methylorubrum extorquens, Comamonas testosterone, Desulfovibrio fairfieldensis, Bacteroides coprocola, Aerococcus urinaeequi, Helicobacter hepaticus, and Burkholderiales. Further studies are needed to elucidate gut bacterial metabolites of these identified bacterial species in microgravity conditions and normal environment. Notably, the influence of these metabolites on obesity, neuroprotection, musculoskeletal and cardiovascular dysfunction, longevity, inflammation, health, and disease in astronauts ought to be investigated and will be important in developing procedures against adverse effects in astronauts following space travel.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7722
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Adel Elmoselhi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Siddiqui R, Mungroo MR, Alharbi AM, Alfahemi H, Khan NA. The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms 2022; 10:microorganisms10091869. [PMID: 36144471 PMCID: PMC9506335 DOI: 10.3390/microorganisms10091869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbial composition codevelops with the host from birth and is influenced by several factors, including drug use, radiation, psychological stress, dietary changes and physical stress. Importantly, gut microbial dysbiosis has been clearly associated with several diseases, including cancer, rheumatoid arthritis and Clostridium difficile-associated diarrhoea, and is known to affect human health and performance. Herein, we discuss that a shift in the gut microbiota with age and reversal of age-related modulation of the gut microbiota could be a major contributor to the incidence of numerous age-related diseases or overall human performance. In addition, it is suggested that the gut microbiome of long-lived animals such as reptiles should be investigated for their unique properties and contribution to the potent defense system of these species could be extrapolated for the benefit of human health. A range of techniques can be used to modulate the gut microbiota to have higher abundance of “beneficial” microbes that have been linked with health and longevity.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
11
|
Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Vet Sci 2022; 9:vetsci9080380. [PMID: 35893773 PMCID: PMC9331562 DOI: 10.3390/vetsci9080380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests, such as cockroaches, snake, crocodiles, water monitor lizards, etc., come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves against pathogens. Besides the immunity they may confer, bacteria associated with animals/pests may offer a potential source of novel antibacterial agents. This paper discusses the current knowledge of bacteria isolated from land and marine animals with antibacterial properties and proposes untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules. Abstract The development of novel bioactive molecules is urgently needed, especially with increasing fatalities occurring due to infections by bacteria and escalating numbers of multiple-drug-resistant bacteria. Several lines of evidence show that the gut microbiome of cockroaches, snakes, crocodiles, water monitor lizards, and other species may possess molecules that are bioactive. As these animals are routinely exposed to a variety of microorganisms in their natural environments, it is likely that they have developed methods to counter these microbes, which may be a contributing factor in their persistence on the planet for millions of years. In addition to the immune system, the gut microbiota of a host may thwart colonization of the gastro-intestine by pathogenic and/or foreign microorganisms through two mechanisms: (i) production of molecules with antibacterial potential targeting foreign microorganisms, or (ii) production of molecules that trigger host immunity targeting foreign microorganisms that penetrate the host. Herein, we discuss and deliberate on the current literature examining antibacterial activities that stem from the gut bacteria of animals such as crocodiles, cockroaches, and water monitor lizards, amongst other interesting species, which likely encounter a plethora of microorganisms in their natural environments. The overall aim is to unveil a potential library of novel bioactive molecules for the benefit of human health and for utilization against infectious diseases.
Collapse
|