1
|
Wang D, Zhu Y, Dong J, Zhi Y, Wei G, Kang X, Liu X. Exploring the functional variations of key candidate genes affecting egg production by hypothalamic-pituitary-ovarian axis in chickens. Poult Sci 2025; 104:105027. [PMID: 40132314 PMCID: PMC11986515 DOI: 10.1016/j.psj.2025.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Potential genetic variants associated with chicken egg production traits have been extensively identified, most of which are located in the non-coding regions of the genome. However, which functional variants really drive the egg-laying phenotype change remain elusive. In the present study, by integrating the previously screened egg-laying related candidate genetic variants, transcriptome data derived from 16 high- and low-yield Gushi chickens, and epigenomic analyses, 22 potential functional variants (PFVs) were systematically identified. These PFVs potentially drive the differences in egg production phenotypes by affecting the expression of 10 egg-laying related key candidate genes in the hypothalamus (ZNF804B, DPP10, NEO1 and GABRG1), pituitary (DPP10 and GNG7), and ovary (PHIP, OSTN, GADD45B, NFXL1 and ADAMTS17). Subsequently, the regulatory activity and function of one PFV, chr3:79510218A>T, located in the third intron of the pleckstrin homology domain interacting protein gene (PHIP), were investigated in chicken ovarian granulosa cells. Association analysis confirmed the significant association of chr3:79510218A>T with egg number from 21 to 43 week of age in Gushi chicken (P = 0.0022) and Guangxi Yao chicken (P = 0.0388), as well as with ovarian PHIP expression levels (P = 0.0010). Functional analysis indicated that the T allele of chr3:79510218A>T enhanced the transcriptional activity and upregulated PHIP expression in vitro by binding transcription factor forkhead box I1 (FOXI1). Furthermore, the knockdown of PHIP led to the inhibition of ovarian granulosa cell proliferation and a reduction in the synthesis and secretion of progesterone (PROG) hormones. Collectively, this study unveil the egg-laying related functional variants and illustrate a potential genetic regulation mechanism, and will help accelerate the molecular design breeding process of chicken egg production.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yiqian Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Jiajia Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Guanghui Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Agustono B, Yunita MN, Lokapirnasari WP, Warsito SH, Marbun TD, Windria S. Dietary supplementation of microbiota inoculum and single clove garlic extract on growth performance, egg quality, reproductive organ, and hematological trait in laying quail. Open Vet J 2025; 15:690-699. [PMID: 40201813 PMCID: PMC11974290 DOI: 10.5455/ovj.2025.v15.i2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/03/2025] [Indexed: 04/10/2025] Open
Abstract
Background Several alternative feed additives to replace AGP to maintain good quail performance include the use of probiotics and herbal extracts. Aim In this study, the researchers want to find out the best dosage of microbiota inoculum as probiotics (Lactobacillus acidophilus, Bifidobacterium, and Lactobacillus plantarum), single garlic extract (Allium Sativum L), and combination groups to improve laying quail egg production, hematology profile (erythrocytes, hemoglobin, hematocrit, leukocytes, and platelets), and reproductive organs in terms of length and weight and have better egg quality on the internal (Haugh units, yolk score, albumin index, yolk index) and external (shell thickness, egg weight) while laying phase of laying quail. Methods A total of 100 4-week-old laying quails of uniform body weight were randomly distributed into five treatments with four replicates each and five quails in each replicate. There were 5 treatment groups: T0 quails were given basal feed; T1 quails were given basal feed and drinking water added with probiotics at a dose of 4 ml/l; T2 quails were given feed added with a single garlic extract at a dose of 2 ml/g and ordinary drinking water; T3 quails were given feed with a single garlic extract at a dose of 2 ml/g and drinking water supplemented with probiotics at a dose of 4 ml/l; and T4 quails were given a single garlic extract at a dose of 1 ml/g and drinking water supplemented with probiotics at a dose of 2 ml/l. The study investigated the effects of microbiota inoculum, including probiotics, garlic extract, and a control group, on reproductive organ morphologies in chickens. Results showed significant improvements in weight vagina, uterus, oviduct, ovarium, weight cloaca, growth performance, body weight, egg production, internal egg quality, yolk color score, yolk index, albumin index, external egg quality, Haugh unit, egg height, shape index, egg cell weight, and egg cell thickness. Results The number of erythrocytes was significantly higher in the chickens treated with the microbiota inoculum compared to the control group. Hemoglobin levels were not significant in all treatments, but hematocrit levels were significant in the chickens treated with the microbiota inoculum. Leukocytes were also significantly higher in the chickens treated with the microbiota inoculum compared to the control group. Conclusion The use of a combination of microbiota inoculum in drinking water and garlic extract in feed has been proven to be effective in reducing feed consumption, maintaining hematology, increasing reproductive organs, and boosting the number of laying quail productions, thereby reducing feed conversion ratio.
Collapse
Affiliation(s)
- Bodhi Agustono
- Doctoral Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Health, Medicine and Life Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | | - Widya Paramita Lokapirnasari
- Division of Animal Husbandry, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sunaryo Hadi Warsito
- Division of Animal Husbandry, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sarasati Windria
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| |
Collapse
|
3
|
Huang X, Li S, Tan Y, Xu C, Huang Y, Yin Z. Proteomic analysis of egg production peak and senescence in the ovaries of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson). BMC Genomics 2025; 26:17. [PMID: 39773120 PMCID: PMC11708302 DOI: 10.1186/s12864-024-11180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The Taihe black-boned silky fowl, a distinguished indigenous breed of chicken, is renowned for its dual utility in both traditional medicinal and culinary applications. However, the breed faces significant challenges due to its suboptimal reproductive capabilities and a notably brief egg-laying period, which have impeded its broader development and cultivation. In this research endeavor, we employed an advanced, rapid DIA (Data independent acquisition) quantitative proteomics method on the Astral platform to meticulously analyze the ovarian proteome of these chickens. By analyzing the ovarian proteomic information of Taihe black-boned silky fowl during peak and decline egg-laying periods, we aim to identify potential reproductive candidate proteins and the molecular mechanisms underlying egg-laying decline. This could enable us to implement interventions to improve the reproductive efficiency of this valuable breed. RESULT In this study, a total of 8,281 proteins were identified within the ovarian proteome of the Taihe black-boned silky fowl. Among these, 303 proteins exhibited significant differential expression, with 98 proteins significantly up-regulated and 205 proteins significantly down-regulated. The functional annotation of these proteins illuminated their crucial roles in the steroid hormone synthesis pathways, which are pivotal during the peak of egg production. Furthermore, during the later stages of laying, there was a noticeable upregulation of proteins associated with inflammatory senescence and oxidative stress. This change suggests an increase in reproductive stress within the ovary, highlighting the physiological shifts that affect productivity as the chickens age. CONCLUSION This study identified key candidate protein markers in the Taihe black-boned silky fowl during critical phases of their reproductive cycle, specifically peak and late egg-laying periods. These findings contribute valuable new scientific insights that can be utilized for the breeding optimization and effective management of this unique breed. By elucidating the protein dynamics during different laying phases, the research offers potential strategies aimed at enhancing reproductive performance and extending the reproductive lifespan of the Taihe black-boned silky fowl. This could lead to significant improvements in both the sustainability and profitability of farming this indigenous breed.
Collapse
Affiliation(s)
- Xuan Huang
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Shibao Li
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Mogano RR, Mpofu TJ, Mtileni B, Hadebe K. South African indigenous chickens' genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poult Sci 2025; 104:104508. [PMID: 39657468 PMCID: PMC11681890 DOI: 10.1016/j.psj.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Selection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits. The lack of knowledge about genetic diversity and genetic mechanisms underlying adaptive variants may compromise the goal of conserving indigenous chicken breeds. The main insights of the study are that indigenous chickens are highly diversified, and environmental factors play a key role in enabling chicken adaptation and distribution. Genomic and spatial technologies have made it possible to explore the genetic structure and fully comprehend the mechanism underlying the local adaptation of indigenous chickens. These technologies can aid in creating programs that enhance productivity and promote climate-resilient breeds. This review explores the impact of natural selection on indigenous chicken, genetic diversity, population size, and the advancement of technologies in understanding local adaptation drivers. In conclusion, this review highlights the importance of studying the habitats and how this will guide in conserving local breeds in their intended production environment.
Collapse
Affiliation(s)
- Reneilwe Rose Mogano
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa.
| |
Collapse
|
5
|
Zhang W, Chen X, Nie R, Guo A, Ling Y, Zhang B, Zhang H. Single-cell transcriptomic analysis reveals regulative mechanisms of follicular selection and atresia in chicken granulosa cells. Food Res Int 2024; 198:115368. [PMID: 39643375 DOI: 10.1016/j.foodres.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Eggs are an important food source for people. Follicle selection and atresia are the two directions of pre-hierarchical follicles that affect egg production in chickens. Granulosa cells (GCs), the vital somatic cells in follicles, determine the fate of follicles. In this study, single-cell RNA sequencing was performed on the GC layers from five follicular stages (small white follicles, atretic small white follicles, small yellow follicles, atretic small yellow follicles, and F6) to map the cellular differentiation trajectories and explore the follicle fate-determining genes. The results showed that GCs were genetically heterogeneous and could be divided into four subtypes, and the presence of GCs-Ⅲ with a steroid-producing capacity in unselected small follicles is a novel finding that differs from conventional wisdom. In addition, degenerated GCs were annotated for the first time, and GC degeneration was found to be significantly related to lipid metabolism disorders. Many candidate switch genes had been marked out, among which the overexpression of transforming growth factor-beta 2 (TGFB2) and insulin like growth factor binding protein 5 (IGFBP5) could inhibit the proliferation and differentiation of GCs and induce their degeneration. This study provided new insights into the regulatory mechanisms of follicle selection and atresia, which have significant value for improving egg production and prolonging the laying period of laying hens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Gong Y, Lin Z, Sun H, Yu C, Qiu M, Xiong X, Yin L, Zhang D, Wang Y, Yang C, Liu Y. miR-24-3p inhibits lipid synthesis and progesterone secretion in chicken granulosa cells via ERK1/2 signaling pathway. Theriogenology 2024; 230:250-262. [PMID: 39348732 DOI: 10.1016/j.theriogenology.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Normal follicular development is the basis for ovulation in poultry. Our previous sequencing analysis revealed a high expression of miR-24-3p in chicken follicles from degenerated ovaries, suggesting that miR-24-3p may modulate follicular development. Hence, this study investigated the specific mechanisms of miR-24-3p in regulating chicken follicular development. The results revealed that the proliferation, lipid synthesis, and progesterone secretion were significantly inhibited after miR-24-3p overexpression in chicken granulosa cells, vice versa by miR-24-3p knockdown. Dual-specificity phosphatase 16 (DUSP16) and thousand and one amino acid kinase 1 (TAOK1) were identified as potential target genes of miR-24-3p. Further validation revealed that knockdown of DUSP16 and TAOK1 suppressed proliferation, lipid synthesis, and progesterone secretion in chicken granulosa cells. Moreover, we observed that miR-24-3p, along with knockdown of DUSP16 and TAOK1, increased the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Our previous study proved that activation of ERK1/2 inhibited lipid synthesis and progesterone secretion of chicken granulosa cells. In summary, we demonstrated that miR-24-3p targeting DUSP16 and TAOK1 disrupts lipid synthesis and progesterone secretion via ERK1/2 signaling pathway in chicken granulosa cells in vitro. These results may provide a new theoretical basis for resolving miRNAs regulation on reproductive performance of chickens.
Collapse
Affiliation(s)
- Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hao Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xia Xiong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Wadood AA, Xiquan Z. Unraveling the mysteries of chicken proteomics: Insights into follicle development and reproduction. J Proteomics 2024; 308:105281. [PMID: 39154802 DOI: 10.1016/j.jprot.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chicken proteomics is a valuable method for comprehending the many mechanisms involved in follicle growth and reproduction in birds. This study offers a thorough summary of the latest progress in chicken proteomics research, specifically highlighting the knowledge obtained regarding follicle development and reproductive physiology. Proteomic studies have revealed essential proteins and pathways that play a role in follicle development, including those that control oocyte size, maturation, and ovulation. Proteomic investigations have provided insight into the molecular pathways that govern reproductive processes. By utilizing advanced proteomic technologies, including mass spectrometry and protein microarray analysis, we have been able to identify and measure many proteins in chicken follicles at their different developmental stages. The utilization of proteomic methods has enabled the identification of previously unknown biomarkers for reproductive efficiency that expedited the creation of innovative diagnostic instruments for monitoring reproductive health in chicken. Chicken proteomics not only offers insights into follicle growth and reproduction but also uncovers the effects of environmental influences on reproductive function. This provides new opportunities for exploring the molecular pathways that cause these effects. The integration of current data with upcoming proteomic technologies offers the potential for innovative strategies to enhance chicken reproduction.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhang Xiquan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Tan Y, Huang X, Xu C, Huang Y, Li S, Yin Z. Integrating Genomics and Transcriptomics to Identify Candidate Genes for Egg Production in Taihe Black-Bone Silky Fowls ( Gallus gallus domesticus Brisson). Int J Mol Sci 2024; 25:9373. [PMID: 39273321 PMCID: PMC11395579 DOI: 10.3390/ijms25179373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The Taihe Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) possesses significant value in terms of consumption, medicinal applications, and ornamental appeal, representing a precious genetic resource and traditional Chinese medicinal material. However, considerable variation exists within populations regarding egg-laying performance. This study integrates a whole-genome selection signal analysis (SSA) with a transcriptome analysis to identify genes associated with egg-laying traits in Taihe Black-Bone Silky Fowls. We identified 31 candidate genes under selection from the high-yield chicken (HC) and low-yield chicken (LC) groups. Additionally, through RNA-seq analysis, 257 common differentially expressed genes (DEGs) were identified from four comparative groups. Two overlapping genes-LPL and SETBP1-were found in both the selected gene and DEG lists. These selected genes and DEGs were enriched in pathways related to ovarian development, including the lysosome pathway, the ECM-receptor interaction pathway, the TGF-beta signaling pathway, the Wnt signaling pathway, the PPAR signaling pathway, and the glycerolipid metabolism pathway. These research findings contribute to the breeding of Taihe Black-Bone Silky Fowls with high egg production traits and provide a theoretical foundation for exploring the regulatory mechanisms of avian reproduction.
Collapse
Affiliation(s)
- Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Manaa EA, El-Attrouny MM, El-Barbary A, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, El-Tarabany MS, Ramadan SI. Laying performance, genetic parameters, and the expression of FSHβ, LHβ, FSHR, and LHR genes in Japanese quails selected for early egg production. Poult Sci 2024; 103:103358. [PMID: 38176363 PMCID: PMC10796976 DOI: 10.1016/j.psj.2023.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
Investigating the impact of early egg production selection (the first 90 d of laying) on egg production features, cumulative selection response (CSR), and the mRNA expression of gonadotropins (FSHβ and LHβ), and their receptors (FSHR and LHR), in Japanese quails was the goal. The selection experiment involved 1293 females in all, 257 from the base group and 1036 from the 4 selected generations. Age and body weight at sexual maturity (ASM, BWSM), weight of the first egg (WFE), days to the first 10 eggs (DF10E), egg mass for the first 10 eggs (EMF10E), egg weight (EW), egg number at the first 90 d of laying (EN90D), and egg mass at the first 90 d of laying (EM90D) were all recorded. Most egg production traits had heritability estimates that were low to moderate and ranged from 0.17 to 0.33., where the highest estimates were reported for EN90D (0.33) and BWSM (0.32). With the exception of EN90D, low to moderate positive genetic correlations were observed between ASM and other egg production traits (0.17-0.44). The fourth generation showed significantly (P < 0.05) lower ASM and DF10E but higher BWSM, WFE, EN90D, EM10E, and EM90D when compared with the base generation. CSR were significant (P < 0.05) for ASM (-6.67 d), BWSM (27.13 g), WFE (0.93 g), DF10E (-1.25 d), EN90D (7.24 egg), EM10E (10.57 g), and EM90D (140.0 g). FSHβ, LHβ, FSHR, and LHR gene mRNA expression was considerably (P < 0.05) greater in the fourth generation compared to the base generation. In conclusion, selection programs depending on the efficiency of egg production (EN90D) could improve the genetic gain of egg production traits and upregulate the mRNA expression of FSHβ, LHβ, FSHR, and LHR genes in selected quails (fourth generation). These findings might help to enhance breeding plans and create commercial lines of high egg production Japanese quails.
Collapse
Affiliation(s)
- Eman A Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Mahmoud M El-Attrouny
- Department of Animal Productions, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt
| | - Amal El-Barbary
- Poultry Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt
| | - Sherif I Ramadan
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt
| |
Collapse
|
10
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
11
|
Kui H, Li P, Wang T, Luo Y, Ning C, Li M, Liu S, Zhu Q, Li J, Li D. Dynamic mRNA expression during chicken ovarian follicle development. G3 (BETHESDA, MD.) 2023; 14:jkad237. [PMID: 37832513 PMCID: PMC10755205 DOI: 10.1093/g3journal/jkad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Ovarian follicle development is a complex and well-orchestrated biological process of great economic significance for poultry production. Specifically, understanding the molecular mechanisms underlying follicular development is essential for high-efficiency follicular development can benefit the entire industry. In addition, domestic egg-laying hens often spontaneously develop ovarian cancer, providing an opportunity to study the genetic, biochemical, and environmental risk factors associated with the development of this cancer. Here, we provide high-quality RNA sequencing data for chicken follicular granulosa cells across 10 developmental stages, which resulted in a total of 204.57 Gb of clean sequencing data (6.82 Gb on average per sample). We also performed gene expression, time-series, and functional enrichment analyses across the 10 developmental stages. Our study revealed that SWF (small while follicle), F1 (F1 hierarchical follicles), and POFs (postovulatory follicles) best represent the transcriptional changes associated with the prehierarchical, preovulatory, and postovulatory stages, respectively. We found that the preovulatory stage F1 showed the greatest divergence in gene expression from the POF stage. Our research lays a foundation for further elucidation of egg-laying performance of chicken and human ovarian disease.
Collapse
Affiliation(s)
- Hua Kui
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu 610000, People’s Republic of China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu 610000, People’s Republic of China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| | - Yingyu Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Chunyou Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Mengmeng Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Siying Liu
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| | - Qing Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, People’s Republic of China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| |
Collapse
|
12
|
Zhang L, Zhu R, Sun G, Wang J, Zuo Q, Zhu S. Whole-Transcriptome Sequencing of Ovary Reveals the ceRNA Regulation Network in Egg Production of Gaoyou Duck. Genes (Basel) 2023; 15:9. [PMID: 38275591 PMCID: PMC10815415 DOI: 10.3390/genes15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
To investigate the regulatory mechanism of the competing endogenous RNAs (ceRNAs) on the egg performance of Gaoyou ducks, full transcriptome sequencing was performed to analyze the ovarian tissues in Gaoyou ducks. The ducks were categorized into high- and low-yield groups based on the individual in-cage egg production records and the hematoxylin-eosin (HE) staining results. The differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) were further processed by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. In total, 72 DEmRNAs; 23 DElncRNAs; 4 DEcircRNAs; and 5 signaling pathways, including the ovarian steroidogenesis, PI3K-Akt, hedgehog, tryptophan metabolism, and oocyte meiosis signaling pathways, were significantly enriched. These results suggest that they could be associated with the Gaoyou duck's ovarian function and affect the total egg production or double-yolked egg production. Furthermore, a coregulation network based on the related candidate ceRNAs across the high- and low-yield egg production groups was constructed. Our findings provide new insights into the mechanisms underlying the molecular regulation of related circRNA/lncRNA-miRNA-mRNA in the egg production and double-yolked egg traits of Gaoyou ducks.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (R.Z.); (G.S.); (J.W.)
| | - Rui Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (R.Z.); (G.S.); (J.W.)
| | - Guobo Sun
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (R.Z.); (G.S.); (J.W.)
| | - Jian Wang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (R.Z.); (G.S.); (J.W.)
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (L.Z.); (R.Z.); (G.S.); (J.W.)
| |
Collapse
|
13
|
Tai Y, Yang X, Han D, Xu Z, Cai G, Hao J, Zhang B, Deng X. Transcriptomic diversification of granulosa cells during follicular development between White Leghorn and Silky Fowl hens. Front Genet 2022; 13:965414. [PMID: 35957698 PMCID: PMC9360743 DOI: 10.3389/fgene.2022.965414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production rate in chicken is related to the continuity of follicle development. In this study, we found that the numbers of white prehierarchical, dominant, and yellow preovulatory follicles in the high-yielding layer breed, White Leghorn (WL), were significantly higher than those in the low egg-yielding variety, Silky Fowl (SF). The proliferation and differentiation of granulosa cells (GCs) play an important role in follicle maturation. Histological observation revealed a large number of melanocytes in the outer granulosa layer of follicles in SF but not in WL. Finally, RNA-sequencing was used to analyze the gene expression profiles and pathways of the GC layer in the follicles in both WL and SF hens. Transcriptome analysis of prehierarchical GCs (phGCs) and preovulatory GCs (poGCs) between WL and SF showed that steroid hormone-, oxytocin synthesis-, tight junction-, and endocytosis-related genes were expressed at higher levels in WL phGCs than in SF phGCs, whereas the insulin signaling pathway- and vascular smooth muscle contraction-related genes were upregulated in SF phGCs. Fatty acid synthesis, calcium signaling, and Wnt signaling pathway-related genes were expressed at higher levels in WL poGCs than in SF poGCs; however, adrenergic signaling, cGMP-PKG, and melanogenesis-related genes were upregulated in SF poGCs. These results indicate that genes that promote GC proliferation and secretion of various sex hormones are more active in WL than in SF hens. The upregulated signaling pathways in SF help in providing energy to GCs and for angiogenesis and melanogenesis. In vitro experiments confirmed that both the proliferation of poGCs and synthesis of reproductive hormones were higher in WL than in SF hens.
Collapse
Affiliation(s)
- Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Ganxian Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Jiaqi Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Bingjie Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
- Hainan Sanya Research Institute, Seed Laboratory, Sanya, China
- *Correspondence: Xuemei Deng,
| |
Collapse
|