1
|
Lee AH, Orliaguet L, Youm YH, Maeda R, Dlugos T, Lei Y, Coman D, Shchukina I, Andhey PS, Smith SR, Ravussin E, Stadler K, Chen B, Artyomov MN, Hyder F, Horvath TL, Schneeberger M, Sugiura Y, Dixit VD. Cysteine depletion triggers adipose tissue thermogenesis and weight loss. Nat Metab 2025:10.1038/s42255-025-01297-8. [PMID: 40461845 DOI: 10.1038/s42255-025-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/09/2025] [Indexed: 06/11/2025]
Abstract
Caloric restriction and methionine restriction-driven enhanced lifespan and healthspan induces 'browning' of white adipose tissue, a metabolic response that increases heat production to defend core body temperature. However, how specific dietary amino acids control adipose thermogenesis is unknown. Here, we identified that weight loss induced by caloric restriction in humans reduces thiol-containing sulfur amino acid cysteine in white adipose tissue. Systemic cysteine depletion in mice causes lethal weight loss with increased fat utilization and browning of adipocytes that is rescued upon restoration of cysteine in diet. Mechanistically, cysteine-restriction-induced adipose browning and weight loss requires sympathetic nervous system-derived noradrenaline signalling via β3-adrenergic-receptors that is independent of FGF21 and UCP1. In obese mice, cysteine deprivation induced rapid adipose browning, increased energy expenditure leading to 30% weight loss and reversed metabolic inflammation. These findings establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.
Collapse
Affiliation(s)
- Aileen H Lee
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Lucie Orliaguet
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yun-Hee Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar Sairam Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Bandy Chen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Todorović D, Stojanović M, Mutavdžin Krneta S, Jakovljević Uzelac J, Gopčević K, Medić A, Labudović Borović M, Stanković S, Djuric DM. Effects of four-week lasting aerobic treadmill training on hepatic injury biomarkers, oxidative stress parameters, metabolic enzymes activities and histological characteristics in liver tissue of hyperhomocysteinemic rats. Mol Cell Biochem 2025; 480:2511-2524. [PMID: 39384708 DOI: 10.1007/s11010-024-05133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Disruptions in homocysteine (Hcy) metabolism may increase the liver's susceptibility to developing conditions such as alcoholic liver disease, viral hepatitis, hepatocellular carcinoma (HCC), and cirrhosis. The aim of this study was to examine effects of aerobic treadmill training on hepatic injury biomarkers in sera, oxidative stress parameters, the activity of metabolic enzymes, and histological characteristics in the liver tissue of rats with experimentally induced hyperhomocysteinemia. Male Wistar albino rats were divided into four groups (N = 10, per group): C-saline 0.2 mL/day sc. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; H-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; CPA-saline 0.2 mL/day sc. 2×/day for 14 days + aerobic treadmill training for 28 days; and HPA-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + aerobic treadmill training for 28 days. The serum albumin concentration was decreased in both physically active (PA) groups compared to sedentary groups. Concentration of malondialdehyde in liver tissue homogenates was lower in both PA groups compared to the H group. The total lactate dehydrogenase and malate dehydrogenase activities were significantly elevated in the HPA group compared to the C and H groups. Activities of aminotransferases in sera samples, and activities of catalase and superoxide dismutase in liver tissue did not significantly differ between groups. No significant histological changes were found in liver tissue in groups. This study demonstrated that aerobic treadmill training can reduce lipid peroxidation in liver tissue under hyperhomocysteinemic conditions, providing a protective effect. However, hyperhomocysteinemia can alter energy metabolism during aerobic exercise, shifting it toward anaerobic pathways and leading to elevated lactate dehydrogenase activity in the liver. Given that conditions like hyperhomocysteinemia are associated with an increased risk of cardiovascular diseases and liver damage, understanding how exercise influences these dynamics could guide therapeutic approaches.
Collapse
Affiliation(s)
- Dušan Todorović
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Marija Stojanović
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Slavica Mutavdžin Krneta
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Jovana Jakovljević Uzelac
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Kristina Gopčević
- Faculty of Medicine, Institute of Chemistry in Medicine "Petar Matavulj", University of Belgrade, Belgrade, Serbia
| | - Ana Medić
- Faculty of Medicine, Institute of Chemistry in Medicine "Petar Matavulj", University of Belgrade, Belgrade, Serbia
| | - Milica Labudović Borović
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Dj. Kostic", University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Center for Medical Biochemistry, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan M Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Zawieja E, Chmurzynska A. Betaine and aging: A narrative review of findings, possible mechanisms, research perspectives, and practical recommendations. Ageing Res Rev 2025; 104:102634. [PMID: 39647584 DOI: 10.1016/j.arr.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The rapid aging of the global population necessitates addressing age-related conditions through innovative strategies. Nutritional supplements have emerged as potential interventions for preventing or slowing age-related changes, with betaine being a promising candidate. This systematic review aims to provide a comprehensive analysis of current literature on the impact of betaine on the aging process. Specifically, we summarize the mechanisms through which betaine is proposed to affect aging, we integrate existing findings, we identify gaps in the literature, and we discuss practical implications for promoting healthy aging. Evidence suggests that betaine may counteract aging-related changes in methylation potential by increasing concentration of S-adenosylmethionine, a key methyl donor. Additionally, betaine reduces homocysteine concentrations, potentially mitigating vascular, neurodegenerative, and oxidative damage. Betaine has also been shown to enhance mitochondrial function, to reduce oxidative stress, and to attenuate inflammation. It may serve as a preventive agent against sarcopenia by promoting anabolic signaling pathways and improving muscle strength in younger adults. Betaine may also exert an effect on bone remodeling and adipose tissue metabolism, with animal studies indicating enhanced fat oxidation and reduced fat synthesis. Although certain limited studies have suggested betaine's potential in mitigating age-related neurodegenerative diseases, the currently available evidence does not establish a clear link between dietary betaine intake and the incidence of cardiovascular diseases or type-2 diabetes. In conclusion, emerging evidence highlights the potential of betaine in attenuating age-related changes. However, further research is required to elucidate the efficacy and safety of betaine supplementation in older populations.
Collapse
Affiliation(s)
- Emilia Zawieja
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul. Wojska Polskiego 31, Poznań 60-624, Poland.
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul. Wojska Polskiego 31, Poznań 60-624, Poland
| |
Collapse
|
4
|
Bucarey JL, Trujillo-González I, Paules EM, Espinosa A. Myokines and Their Potential Protective Role Against Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1363. [PMID: 39594505 PMCID: PMC11591161 DOI: 10.3390/antiox13111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Myokines, bioactive peptides released by skeletal muscle, have emerged as crucial regulators of metabolic and protective pathways in peripheral tissues, particularly in combating oxidative stress and inflammation. Their plasma concentration significantly increases following exercise, offering valuable insights into the role of physical activity in preventing sarcopenia and mitigating metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review focuses on discussing the roles of specific myokines in activating intracellular signaling pathways within the liver, which confer protection against steatosis and lipid peroxidation. We detail the mechanism underlying lipid peroxidation and highlight the liver's antioxidant defenses, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), which are pivotal in reducing ferroptosis. Furthermore, we provide an in-depth analysis of key myokines, including myostatin, brain-derived neurotrophic factor (BDNF), and irisin, among others, and their potential impact on liver function. Finally, we discuss the molecular mechanisms through which these myokines influence oxidate stress and lipid metabolism, emphasizing their capacity to modulate antioxidant responses in the liver. Finally, we underscore the therapeutic potential of exercise as a non-pharmacological intervention to enhance myokine release, thereby preventing the progression of MASD through improved hepatic antioxidant defenses. This review represents a comprehensive perspective on the intersection of exercise, myokine biology, and liver health.
Collapse
Affiliation(s)
- José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - Isis Trujillo-González
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Evan M. Paules
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Alejandra Espinosa
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| |
Collapse
|
5
|
Lee AH, Orliaguet L, Youm YH, Maeda R, Dlugos T, Lei Y, Coman D, Shchukina I, Andhey S, Smith SR, Ravussin E, Stadler K, Hyder F, Artyomov MN, Sugiura Y, Dixit VD. Cysteine depletion triggers adipose tissue thermogenesis and weight-loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606880. [PMID: 39149397 PMCID: PMC11326254 DOI: 10.1101/2024.08.06.606880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dietary interventions such as caloric restriction (CR)1 and methionine restriction2 that prolong lifespan induce the 'browning' of white adipose tissue (WAT), an adaptive metabolic response that increases heat production to maintain health3,4. However, how diet influences adipose browning and metabolic health is unclear. Here, we identified that weight-loss induced by CR in humans5 reduces cysteine concentration in WAT suggesting depletion of this amino-acid may be involved in metabolic benefits of CR. To investigate the role of cysteine on organismal metabolism, we created a cysteine-deficiency mouse model in which dietary cysteine was eliminated and cystathionine γ-lyase (CTH)6, the enzyme that synthesizes cysteine was conditionally deleted. Using this animal model, we found that systemic cysteine-depletion causes drastic weight-loss with increased fat utilization and browning of adipose tissue. The restoration of dietary cysteine in cysteine-deficient mice rescued weight loss together with reversal of adipose browning and increased food-intake in an on-demand fashion. Mechanistically, cysteine deficiency induced browning and weight loss is dependent on sympathetic nervous system derived noradrenaline signaling via β3-adrenergic-receptors and does not require UCP1. Therapeutically, in high-fat diet fed obese mice, one week of cysteine-deficiency caused 30% weight-loss and reversed inflammation. These findings thus establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.
Collapse
Affiliation(s)
- Aileen H. Lee
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lucie Orliaguet
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yun-Hee Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, School of Engineering and Applied Science, Yale University
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University
| | - Irina Shchukina
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sairam Andhey
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, School of Engineering and Applied Science, Yale University
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University
| | - Maxim N. Artyomov
- Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
7
|
Han HK, Mukherjee S, Park SY, Lee JH, Lee EH, Kim S, Lee YH, Song DK, Lee S, Bae JH, Im SS. Regulation of Betaine Homocysteine Methyltransferase by Liver Receptor Homolog-1 in the Methionine Cycle. Mol Cell Biol 2024; 44:245-258. [PMID: 38804232 PMCID: PMC11204035 DOI: 10.1080/10985549.2024.2354821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Betaine-homocysteine S-methyltransferase (BHMT) is one of the most abundant proteins in the liver and regulates homocysteine metabolism. However, the molecular mechanisms underlying Bhmt transcription have not yet been elucidated. This study aimed to assess the molecular mechanisms underlying Bhmt transcription and the effect of BHMT deficiency on metabolic functions in the liver mediated by liver receptor homolog-1 (LRH-1). During fasting, both Bhmt and Lrh-1 expression increased in the liver of Lrh-1f/f mice; however, Bhmt expression was decreased in LRH-1 liver specific knockout mice. Promoter activity analysis confirmed that LRH-1 binds to a specific site in the Bhmt promoter region. LRH-1 deficiency was associated with elevated production of reactive oxygen species (ROS), lipid peroxidation, and mitochondrial stress in hepatocytes, contributing to hepatic triglyceride (TG) accumulation. In conclusion, this study suggests that the absence of an LRH-1-mediated decrease in Bhmt expression promotes TG accumulation by increasing ROS levels and inducing mitochondrial stress. Therefore, LRH-1 deficiency not only leads to excess ROS production and mitochondrial stress in hepatocytes, but also disrupts the methionine cycle. Understanding these regulatory pathways may pave the way for novel therapeutic interventions against metabolic disorders associated with hepatic lipid accumulation.
Collapse
Affiliation(s)
- Hee-Kyung Han
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sulagna Mukherjee
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Soo-Young Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eun-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Suji Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Yun Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
8
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
9
|
Alkaissi H, McFarlane SI. A Novel Finding of Increased ß-Aminoisobutyric Acid Levels in Classic Homocystinuria With Homocysteine-Lowering Treatment. Cureus 2023; 15:e36911. [PMID: 37128514 PMCID: PMC10148673 DOI: 10.7759/cureus.36911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Although commonly seen as a milder elevation of homocysteine levels in adult patients, on rare occasions, the internist may face extremely elevated homocysteine levels (>100 µmol/L). In such rare cases, the search for a monogenic disease is warranted. In this report, we present a patient with classical homocystinuria, where the diagnosis was delayed due to various factors. The patient experienced a constellation of symptoms over an extended period, including visual problems, recurrent thrombosis, and neurodevelopmental delay. Delayed diagnosis of genetic diseases is problematic, as patients may grow from pediatric care to adult internal medicine, where knowledge and exposure to such a rare genetic disorder are limited. A diagnosis was finally confirmed with amino acid profiling, revealing extremely elevated homocysteine levels, which were reduced with sequential treatment modalities, including folate, vitamin B12, vitamin B6, methionine restriction, and betaine. We also present derangements in other amino acids, namely, methionine, taurine, serine, and urea cycle products. With treatment, a progressive increase in body weight is noticed. Furthermore, we present a novel finding of increased levels of ß-aminoisobutyric acid with homocysteine-lowering treatment. ß-aminisobutyric acid is a myokine that potentiates some of the metabolic benefits of exercising muscle such as improved insulin resistance and browning of white adipose tissue.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, New York, USA
- Internal Medicine, Veterans Affairs Medical Center, New York, USA
- Internal Medicine, State University of New York Downstate Medical Center, New York, USA
| | - Samy I McFarlane
- Internal Medicine, State University of New York Downstate Medical Center, New York, USA
| |
Collapse
|