1
|
Yang S, Yu B, Zhang Q, Zhang Y, Fu L, Zhou B, Wu H, Li J, Gong S. Amantadine modulates novel macrophage phenotypes to enhance neural repair following spinal cord injury. J Transl Med 2025; 23:60. [PMID: 39806436 PMCID: PMC11726942 DOI: 10.1186/s12967-024-05916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration. METHODS We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi). High-dimensional gene co-expression network analysis (hdWGCNA) and slingshot trajectory analysis were employed to identify key gene modules and macrophage differentiation pathways. Subsequently, immunofluorescence staining, flow cytometry, and western blotting were performed to validate the identified effects of amantadine on macrophage differentiation and inflammation. RESULTS To elucidate the molecular mechanisms underlying the injury response at the transcriptional level, we performed a microarray analysis followed by gene set enrichment analysis (GSEA). The results revealed that pathways related to phagocytosis and macrophage activation are significantly involved post-injury, shedding light on the regulatory role of macrophages in SCI repair. To further investigate macrophage dynamics within the injured spinal cord, we conducted scRNA-Seq, identifying three distinct macrophage subtypes: border-associated macrophages (BAMs), inflammatory macrophages (IMs), and chemotaxis-inducing macrophages (CIMs). Trajectory analysis suggested a differentiation pathway from Il-1b+ IMs to Mrc1+ BAMs, and subsequently to Arg1+ CIMs, indicating a potential maturation process. Given the importance of these pathways in the injury response, we utilized molecular docking to hypothesize that amantadine might modulate this process. Subsequent in vitro and in vivo experiments demonstrated that amantadine reduces Il-1b+ IMs and facilitates the transition to Mrc1+ BAMs and Arg1+ CIMs, likely through modulation of the HIF-1α and NF-κB pathways. This modulation promotes neural regeneration and enhances functional recovery following SCI. CONCLUSIONS Amantadine modulates macrophage phenotypes following SCI, reduces early inflammatory responses, and enhances neural function recovery. These findings highlight the therapeutic potential of amantadine as a treatment for SCI, and provide a foundation for future translational research into its clinical applications.
Collapse
Affiliation(s)
- Shijie Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Beibei Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Qing Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yongfeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Longhui Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Bisheng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Haining Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianzhong Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| | - Shouping Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
- Xi'an Medical University, Xi'an, China.
| |
Collapse
|
2
|
Yao XQ, Chen JY, Garcia-Segura ME, Wen ZH, Yu ZH, Huang ZC, Hamel R, Liu JH, Shen X, Huang ZP, Lu YM, Zhou ZT, Liu CT, Shi JM, Zhu QA, Peruzzotti-Jametti L, Chen JT. Integrated multi-omics analysis reveals molecular changes associated with chronic lipid accumulation following contusive spinal cord injury. Exp Neurol 2024; 380:114909. [PMID: 39097074 DOI: 10.1016/j.expneurol.2024.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Functional and pathological recovery after spinal cord injury (SCI) is often incomplete due to the limited regenerative capacity of the central nervous system (CNS), which is further impaired by several mechanisms that sustain tissue damage. Among these, the chronic activation of immune cells can cause a persistent state of local CNS inflammation and damage. However, the mechanisms that sustain this persistent maladaptive immune response in SCI have not been fully clarified yet. In this study, we integrated histological analyses with proteomic, lipidomic, transcriptomic, and epitranscriptomic approaches to study the pathological and molecular alterations that develop in a mouse model of cervical spinal cord hemicontusion. We found significant pathological alterations of the lesion rim with myelin damage and axonal loss that persisted throughout the late chronic phase of SCI. This was coupled by a progressive lipid accumulation in myeloid cells, including resident microglia and infiltrating monocyte-derived macrophages. At tissue level, we found significant changes of proteins indicative of glycolytic, tricarboxylic acid cycle (TCA), and fatty acid metabolic pathways with an accumulation of triacylglycerides with C16:0 fatty acyl chains in chronic SCI. Following transcriptomic, proteomic, and epitranscriptomic studies identified an increase of cholesterol and m6A methylation in lipid-droplet-accumulating myeloid cells as a core feature of chronic SCI. By characterizing the multiple metabolic pathways altered in SCI, our work highlights a key role of lipid metabolism in the chronic response of the immune and central nervous system to damage.
Collapse
Affiliation(s)
- Xin-Qiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Ying Chen
- Comprehensive Medical Treatment Ward, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Monica Emili Garcia-Segura
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zi-Han Wen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zi-Han Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Regan Hamel
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jun-Hao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xing Shen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Meng Lu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Tao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Cui-Ting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Min Shi
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Luca Peruzzotti-Jametti
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jian-Ting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Megagiannis P, Mei Y, Yan RE, Yuan L, Wilde JJ, Eckersberg H, Suresh R, Tan X, Chen H, Farmer WT, Cha K, Le PU, Catoire H, Rochefort D, Kwan T, Yee BA, Dion P, Krishnaswamy A, Cloutier JF, Stifani S, Petrecca K, Yeo GW, Murai KK, Feng G, Rouleau GA, Ideker T, Sanjana NE, Zhou Y. Autism-associated CHD8 controls reactive gliosis and neuroinflammation via remodeling chromatin in astrocytes. Cell Rep 2024; 43:114637. [PMID: 39154337 DOI: 10.1016/j.celrep.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E Yan
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Lin Yuan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Wilde
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailey Eckersberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Kuwook Cha
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tony Kwan
- McGill Genome Center and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean-Francois Cloutier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Maurya SK, Borgonovo JE, Biswal S, Martínez-Cerdeño V, Mishra R, Muñoz EM. Editorial: Trends in neuroimmunology: cross-talk between brain-resident and peripheral immune cells in both health and disease. Front Immunol 2024; 15:1442322. [PMID: 39026666 PMCID: PMC11256089 DOI: 10.3389/fimmu.2024.1442322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Shashank K. Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Janina E. Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
5
|
Peruzzotti-Jametti L, Willis CM, Krzak G, Hamel R, Pirvan L, Ionescu RB, Reisz JA, Prag HA, Garcia-Segura ME, Wu V, Xiang Y, Barlas B, Casey AM, van den Bosch AMR, Nicaise AM, Roth L, Bates GR, Huang H, Prasad P, Vincent AE, Frezza C, Viscomi C, Balmus G, Takats Z, Marioni JC, D'Alessandro A, Murphy MP, Mohorianu I, Pluchino S. Mitochondrial complex I activity in microglia sustains neuroinflammation. Nature 2024; 628:195-203. [PMID: 38480879 PMCID: PMC10990929 DOI: 10.1038/s41586-024-07167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.
Collapse
Affiliation(s)
- L Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - C M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - G Krzak
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - R Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - L Pirvan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - R-B Ionescu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - J A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - H A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - M E Garcia-Segura
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - V Wu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Y Xiang
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - B Barlas
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - A M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - A M R van den Bosch
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - A M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - L Roth
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - G R Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - H Huang
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - P Prasad
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - A E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C Frezza
- University Hospital Cologne, Cologne, Germany
| | | | - G Balmus
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Z Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - J C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - A D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - M P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - I Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - S Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Garcia-Segura ME, Pluchino S, Peruzzotti-Jametti L. Metabolic Control of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:607-622. [PMID: 39207716 DOI: 10.1007/978-3-031-55529-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, immune sentinels of the central nervous system (CNS), play a critical role in maintaining its health and integrity. This chapter delves into the concept of immunometabolism, exploring how microglial metabolism shapes their diverse immune functions. It examines the impact of cell metabolism on microglia during various CNS states, including homeostasis, development, aging, and inflammation. Particularly in CNS inflammation, the chapter discusses how metabolic rewiring in microglia can initiate, resolve, or perpetuate inflammatory responses. The potential of targeting microglial metabolism as a therapeutic strategy for chronic CNS disorders with prominent innate immune cell activation is also explored.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|