1
|
Cerva C, de Lima FM, Varela APM, Breyer GM, Vicenzi JM, Bertagnolli AC, Klain VF, Siqueira FM, Mayer FQ. Gut bacterial diversity in bovines infected with Mycobacterium tuberculosis var. bovis: insights on tuberculosis pathogenesis. Tuberculosis (Edinb) 2025; 153:102652. [PMID: 40449474 DOI: 10.1016/j.tube.2025.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/11/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Bovine tuberculosis susceptibility and pathogenesis are influenced by host immunity, which may be modulated by the host microbiota. While intestinal microbiota composition affects pulmonary diseases in humans, its role in bovine tuberculosis remains unclear. This study explores the intestinal microbiota of cattle and its association with tuberculosis to better understand disease pathophysiology. A case-control study was conducted using small intestine content samples from cattle with and without tuberculosis, slaughtered in Rio Grande do Sul, Brazil. DNA extraction, 16S rRNA (V4) sequencing, and bioinformatics analyses assessed alpha and beta diversity, taxa characterization, differential abundance, and metabolic pathways. No significant differences in alpha and beta diversities between the groups were detected. However, the Bacillota/Bacteroidota ratio suggested dysbiosis associated with bovine tuberculosis. Differential abundance analysis showed that microorganisms belonging to the Bacillota phylum, the Eubacterium cellulosolvens group, Colidextribacter and Coprococcus genera were enriched in healthy cattle. Conversely, animals with tuberculosis showed higher abundances of Verrucomicrobiota phylum, Sphingomonadaceae and Eubacteriaceae families, and Solobacterium and Clostridia-UCG-014 genera. Moreover, metabolic pathways related to carbohydrate degradation were enriched in healthy animals, and biosynthetic pathways related to disease were enriched in tuberculosis animals. This study highlights associations between intestinal microbiota and bovine tuberculosis, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabio Marcelo de Lima
- Laboratório Federal de Defesa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Gabriela Merker Breyer
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jerônimo Miguel Vicenzi
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Angélica Cavalheiro Bertagnolli
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Vinícius Freitas Klain
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária, Produção Sustentável e Irrigação, Eldorado do Sul, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Miyauchi-Tavares TM, Silva EN, dos Santos JA, Sousa PV, Braga MFT, Carminatti CM, Lanza VB, Fagundes BC, Novaes RD, de Almeida LA, Corsetti PP. Amoxicillin-induced bacterial gut dysbiosis decreases IL-1β and IL-6 expression but exacerbate lung inflammatory response against Mycobacterium bovis-Bacille Calmette-Guérin (BCG). PLoS One 2025; 20:e0319382. [PMID: 40009606 PMCID: PMC11864530 DOI: 10.1371/journal.pone.0319382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Tuberculosis is one of the leading causes of global mortality, and the standard, prolonged, and intensive treatment can affect intestinal homeostasis. This study investigated amoxicillin-induced bacterial gut dysbiosis and its impact on the immune response of C57BL/6 mice to pulmonary infection by Mycobacterium bovis-BCG. It was observed that amoxicillin treatment resulted in bacterial gut dysbiosis, characterized by an increase in the phylum Proteobacteria and a reduction in Bacteroidetes and Firmicutes. This alteration was associated with a decrease in the animals' body weight and a reduction in the expression of pro-inflammatory cytokines such as IL-1β and IL-6, suggesting a compromised immune response. Additionally, microstructural analysis revealed significant alterations in the caecum and pulmonary structure of the mice, indicating tissue damage associated with intestinal dysbiosis. The results indicate that amoxicillin-induced bacterial gut dysbiosis may negatively affect pulmonary immunity and exacerbate M. bovis-BCG infection, highlighting the need to consider the impacts of intestinal microbiota on the development and control of tuberculosis. This study contributes to the understanding of the interaction between intestinal microbiota, antibiotic treatment, and immunity in pulmonary infections.
Collapse
Affiliation(s)
| | - Evandro Neves Silva
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Joyce Alves dos Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Priscila V. Sousa
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Marcos F. Teodoro Braga
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Caroline M. Carminatti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Victoria B. Lanza
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Bruna C. Fagundes
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | | | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas (UNIFAL), Brazil
| |
Collapse
|
3
|
Sawaswong V, Chanchaem P, Klomkliew P, Rotcheewaphan S, Meesawat S, Kemthong T, Kaewparuehaschai M, Noradechanon K, Ekatat M, Kanitpun R, Srilohasin P, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Full-length 16S rDNA sequencing based on Oxford Nanopore Technologies revealed the association between gut-pharyngeal microbiota and tuberculosis in cynomolgus macaques. Sci Rep 2024; 14:3404. [PMID: 38337025 PMCID: PMC10858278 DOI: 10.1038/s41598-024-53880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Prangwalai Chanchaem
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mutchamon Kaewparuehaschai
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Kirana Noradechanon
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Monya Ekatat
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Prapaporn Srilohasin
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|