1
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
2
|
Philip D, Hodgkiss R, Radhakrishnan SK, Sinha A, Acharjee A. Deciphering microbial and metabolic influences in gastrointestinal diseases-unveiling their roles in gastric cancer, colorectal cancer, and inflammatory bowel disease. J Transl Med 2025; 23:549. [PMID: 40380167 DOI: 10.1186/s12967-025-06552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025] Open
Abstract
INTRODUCTION Gastrointestinal disorders (GIDs) affect nearly 40% of the global population, with gut microbiome-metabolome interactions playing a crucial role in gastric cancer (GC), colorectal cancer (CRC), and inflammatory bowel disease (IBD). This study aims to investigate how microbial and metabolic alterations contribute to disease development and assess whether biomarkers identified in one disease could potentially be used to predict another, highlighting cross-disease applicability. METHODS Microbiome and metabolome datasets from Erawijantari et al. (GC: n = 42, Healthy: n = 54), Franzosa et al. (IBD: n = 164, Healthy: n = 56), and Yachida et al. (CRC: n = 150, Healthy: n = 127) were subjected to three machine learning algorithms, eXtreme gradient boosting (XGBoost), Random Forest, and Least Absolute Shrinkage and Selection Operator (LASSO). Feature selection identified microbial and metabolite biomarkers unique to each disease and shared across conditions. A microbial community (MICOM) model simulated gut microbial growth and metabolite fluxes, revealing metabolic differences between healthy and diseased states. Finally, network analysis uncovered metabolite clusters associated with disease traits. RESULTS Combined machine learning models demonstrated strong predictive performance, with Random Forest achieving the highest Area Under the Curve(AUC) scores for GC(0.94[0.83-1.00]), CRC (0.75[0.62-0.86]), and IBD (0.93[0.86-0.98]). These models were then employed for cross-disease analysis, revealing that models trained on GC data successfully predicted IBD biomarkers, while CRC models predicted GC biomarkers with optimal performance scores. CONCLUSION These findings emphasize the potential of microbial and metabolic profiling in cross-disease characterization particularly for GIDs, advancing biomarker discovery for improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Daryll Philip
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai, UAE
| | - Rebecca Hodgkiss
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Akshat Sinha
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai, UAE.
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- Centre for Health Data Research, University of Birmingham, Birmingham, UK.
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham, UK.
| |
Collapse
|
3
|
Zhou K, Yu Y, Li W, Zhu M. Clostridium butyricum Regulates the Inflammatory and Immunoregulatory Pathway Through NFKB1 in Colorectal Cancer Treatment. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10547-w. [PMID: 40279041 DOI: 10.1007/s12602-025-10547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Colorectal cancer (CRC) ranks among the top three most prevalent malignancies globally and is a leading cause of cancer-related mortality. Traditional therapeutic approaches usually cause significant adverse effects, highlighting the urgent demand for alternative, more effective treatments. Probiotics have gained attentions as potential cancer therapy due to their beneficial impacts on host health. Clostridium butyricum (Cl. butyricum) has shown anticancer properties in recent studies, though the underlying mechanisms remain inadequately understood. This study presents an integrative analysis of network pharmacology and proteomics to elucidate the key targets of Cl. butyricum in CRC treatment. The network pharmacology analysis identified 72 overlapping genes, and functional analysis of these genes indicated that most pathways were related to pathways in cancer and inflammation, and butyrate emerging as the pivotal product of Cl. butyricum due to its strong associations with the identified hub genes. In parallel, proteomics analysis revealed 168 differential expressed proteins (DEPs) in Cl. butyricum-treated HCT-116 cells, comprising 78 upregulated and 90 downregulated proteins. These DEPs were primarily enriched in apoptosis and inflammatory pathways. PPI analysis further highlighted NFKB1 as key contributors to the anticancer effects of Cl. butyricum. The integrative analysis revealed a significant convergence of pathways enrichment patterns, particularly in inflammatory and immune-related pathways. Computational and experimental validation identified NFKB1 as a pivotal molecular target in CRC intervention. These collective findings elucidate the mechanistic basis of the antitumor properties of Cl. butyricum, highlighting its regulatory effects on NFKB1 through both inflammatory and, to a lesser extent, immunoregulatory pathways.
Collapse
Affiliation(s)
- Kun Zhou
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China
| | - Yue Yu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China
| | - Wei Li
- College of Medicine, Translational Medicine Research Institute, Yangzhou University, Yangzhou, 225001, China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China.
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China.
| |
Collapse
|
4
|
Zhang C, Wang Y, Cheng L, Cao X, Liu C. Gut microbiota in colorectal cancer: a review of its influence on tumor immune surveillance and therapeutic response. Front Oncol 2025; 15:1557959. [PMID: 40110192 PMCID: PMC11919680 DOI: 10.3389/fonc.2025.1557959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant global health burden, with gut microbiota emerging as a crucial modulator of CRC pathogenesis and therapeutic outcomes. This review synthesizes current evidence on the influence of gut microbiota on tumor immune surveillance and responses to immunotherapies and chemotherapy in CRC. We highlight the role of specific microbial taxa in promoting or inhibiting tumor growth and the potential of microbiota-based biomarkers for predicting treatment efficacy. The review also discusses the implications of microbiota modulation strategies, including diet, probiotics, and fecal microbiota transplantation, for personalized CRC management. By critically evaluating the literature, we aim to provide a comprehensive understanding of the gut microbiota's dual role in CRC and to inform future research directions in this field.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Lei Cheng
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiansheng Cao
- Department of Gastrointestinal Surgery, Hernia and Abdominal Wall Surgery I, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunyuan Liu
- Department of Colorectal and Anus Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
El Leithy AA, Youssef ASED, Nassar A, Aziz RK, Khaled NM, Mahrous MT, Farahat GN, Mohamed AH, Bakr YM. Long-read 16S rRNA amplicon sequencing reveals microbial characteristics in patients with colorectal adenomas and carcinoma lesions in Egypt. Gut Pathog 2025; 17:8. [PMID: 39894814 PMCID: PMC11789410 DOI: 10.1186/s13099-025-00681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is among the five leading causes of cancer incidence and mortality. During the past decade, the role of the gut microbiota and its dysbiosis in colorectal tumorigenesis has been emphasized. Metagenomics and amplicon-based microbiome profiling provided insights into the potential role of microbial dysbiosis in the development of CRC. AIM To address the scarcity of information on differential microbiome composition of tumor tissue in comparison to adenomas and the lack of such data from Egyptian patients with CRC. MATERIALS AND METHODS Long-read nanopore sequencing of 16S rRNA amplicons was used to profile the colonic microbiota from fresh colonoscopic biopsy samples of Egyptian patients with CRC and patients with colonic polyps. RESULTS Species richness of CRC lesions was significantly higher than that in colonic polyps (p-value = 0.0078), while evenness of the CRC group was significantly lower than the colonic polyps group (p-value = 0.0055). Both species richness and Shannon diversity index of the late onset CRC samples were significantly higher than those of the early onset ones. The Firmicutes-to-Bacteroidetes (F/B) ratio was significantly higher in the CRC group than in the colonic polyps group (p-value = 0.0054), and significantly higher in samples from early-onset CRC. The Enterococcus spp. were significantly overabundant in patients with rectal cancer and early-onset CRC, while Staphylococcus spp. were significantly higher in patients with sigmoid cancer and late-onset CRC. In addition, the relative abundance of Fusobacterium nucleatum was significantly higher in CRC patients. CONCLUSION Differentiating trends were identified at phylum, genus, and species levels, despite the inter-individual differences. In summary, this study addressed the microbial dysbiosis associated with CRC and colonic polyps groups, paving the way for a better understanding of the pathogenesis of early and late-onset CRC in Egyptian patients.
Collapse
Affiliation(s)
- Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Amira Salah El-Din Youssef
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al-Aini st., Fom El-Khaleeg, Cairo, 11976, Egypt.
| | - Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al-Aini st., Fom El-Khaleeg, Cairo, 11976, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Nadin M Khaled
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mina T Mahrous
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Ghobrial N Farahat
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Aya H Mohamed
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Yasser Mabrouk Bakr
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Mkuye R, Yang C, Masanja F, Ibrahim S, Yang X, Mwemi H, Mrope P, Salman M, Alfatat A, Deng Y. Omics insights in responses of bivalves exposed to plastic pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107224. [PMID: 39799760 DOI: 10.1016/j.aquatox.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies. Through an examination of omics data, this review sheds light on how bivalves react to plastic pollution, informing strategies for conservation and food safety. Furthermore, theoretical pathways have been formulated to decipher how bivalves respond to environmental stressors from microplastics or nanoplastics through the integration of diverse biological fields. In this review, we report that microplastics and nanoplastics in marine ecosystems primarily stem from human activities on land and in marine domains. Bivalves are negatively influenced by plastic contamination, impacting their health and economic worth. Exposure to plastic particles disrupts bivalve behavior, metabolism, and reproduction, precipitating health concerns. Integration of omics data is instrumental in unraveling molecular interactions and devising biomarkers for monitoring purposes. Ingestion of plastics by bivalves poses risks to human health. Additionally, mitigation tactics involve bans, levies, and advocating for biodegradable alternatives to curtail plastic pollution. The amalgamation of omics findings aids in the comprehension of bivalve responses and effectively addressing plastic pollution. Moreover, addressing plastic pollution necessitates a multidisciplinary approach encompassing scientific inquiry, regulatory frameworks, and collaboration with stakeholders. These strategies are paramount in safeguarding bivalves, marine ecosystems, food safety, and human health.
Collapse
Affiliation(s)
- Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | | | - Salifu Ibrahim
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiuyan Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Happiness Mwemi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peter Mrope
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Muhammed Salman
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Alma Alfatat
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Zhong Y, Chen G, Chen M, Cui J, Tan Q, Xiao Z. Gene prediction of immune cells association between gut microbiota and colorectal cancer: a Mendelian randomization study. Front Immunol 2025; 16:1460936. [PMID: 39958359 PMCID: PMC11825486 DOI: 10.3389/fimmu.2025.1460936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Background An increasing number of studies have revealed that gut microbiota influences the development and progression of Colorectal cancer (CRC). However, whether a causal relationship exists between the two remains unclear, and the role of immune cells in this context is not well understood. Objective To elucidate the causal relationship between gut microbiota and CRC and to explore the potential mediating role of circulating immune cells. Materials and methods To analyze the causal relationship between gut microbiota and CRC, we employed a univariable Mendelian randomization (UVMR) approach. Subsequently, a two-step multivariable Mendelian randomization (MVMR) to assess the potential mediating role of circulating immune cells. Primarily, applied the Inverse-Variance Weighted method to evaluate the causal relationship between exposure and outcome. To ensure the robustness of the results linking gut microbiota and CRC, we validated the findings using Robust Inverse-Variance Weighted, Penalized Inverse-Variance Weighted, and Penalized Robust Inverse-Variance Weighted methods. Additionally, we employed MR-Egger Intercept to mitigate the influence of horizontal pleiotropy. MR-PRESSO was used to detect and correct outliers by excluding anomalous instrumental variables. Finally, we supplemented our analysis with methods such as Bayesian Weighted Mendelian Randomization (BWMR), Maximum-Likelihood, Lasso, Debiased Inverse Variance Weighted, and Contamination Mixture to establish a robust and compelling causal relationship. Results After accounting for reverse causality, horizontal pleiotropy, and various methodological corrections, Bifidobacterium kashiwanohense, GCA-900066755 sp900066755, Geminocystis, and Saccharofermentanaceae exhibited strong and robust causal effects on CRC. Specifically, CD40 on monocytes (2.82%) and CD45 on CD33+HLA-DR+CD14- cells (12.87%) mediated the causal relationship between Bifidobacterium kashiwanohense and CRC risk. Furthermore, CD45 on CD33-HLA-DR+ (3.94%) mediated the causal relationship between GCA-900066755 sp900066755 and CRC risk. Additionally, terminally differentiated CD4+T cells (11.55%) mediated the causal relationship between Geminocystis and CRC risk. Lastly, CD40 on monocytes (2.35%), central memory CD4+T cells (5.76%), and CD28 on CD28+CD45RA+CD8+T cells (5.00%) mediated the causal relationship between Saccharofermentanaceae and CRC risk. Conclusion Our mediation MR analysis provides genetic evidence suggesting that circulating immune cells may mediate the causal relationship between gut microbiota and CRC. The identified associations and mediation effects offer new insights into potential therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Yan Zhong
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junsong Cui
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qianren Tan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhenghua Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Sharma D, Engen PA, Osman A, Adnan D, Shaikh M, Abdel-Reheem MK, Naqib A, Green SJ, Hamaker B, Forsyth CB, Cheng L, Keshavarzian A, Khazaie K, Bishehsari F. Light-dark shift promotes colon carcinogenesis through accelerated colon aging. iScience 2025; 28:111560. [PMID: 39811661 PMCID: PMC11731866 DOI: 10.1016/j.isci.2024.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with rising prevalence among younger adults. Several lifestyle factors, particularly disruptions in circadian rhythms by light-dark (LD) shifts, are known to increase CRC risk. Epidemiological studies previously showed LD-shifts are associated with increased risk of CRC. To explore the mechanisms and interactions between LD-shift and intestinal aging, we investigated how the combination of LD-shifts and aging impacts colon carcinogenesis development. Our data showed that LD-shifts and aging increased colon tumorigenesis. Notably, LD-shift accelerated intestinal aging by altering aging-related pathways, such as intestinal barrier damage, accompanied by dysbiotic changes in the intestinal microbiota that negatively impacts barrier stability. The increased carcinogenesis and intestinal aging were preceded by enrichment in host-microbiome features that are strongly regulated by the circadian clock. Overall, our results suggest that LD-shifts, increasingly prevalent among young adults, contribute to both intestinal aging and the development of colon carcinogenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Abu Osman
- Departments of Immunology and Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN 60612, USA
| | - Christopher B. Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lin Cheng
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Khashayarsha Khazaie
- Departments of Immunology and Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Gastroenterology Research Center, Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhou Z, Kleis L, Depetris-Chauvin A, Jaskulski S, Damerell V, Michels KB, Gigic B, Nöthlings U, Panagiotou G. Beneficial microbiome and diet interplay in early-onset colorectal cancer. EMBO Mol Med 2025; 17:9-30. [PMID: 39653811 PMCID: PMC11730345 DOI: 10.1038/s44321-024-00177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Although the risk of developing CRC increases with age, approximately 10% of newly diagnosed cases occur in individuals under the age of 50. Significant changes in dietary habits in young adults since industrialization create a favorable microenvironment for colorectal carcinogenesis. We aim here to shed light on the complex interplay between diet and gut microbiome in the pathogenesis and prevention of early-onset CRC (EO-CRC). We provide an overview of dietary risk factors associated with EO-CRC and contrast them with the general trends for CRC. We delve into gut bacteria, fungi, and phages with potential benefits against CRC and discuss the underlying molecular mechanisms. Furthermore, based on recent findings from human studies, we offer insights into how dietary modifications could potentially enhance gut microbiome composition to mitigate CRC risk. All together, we outline the current research landscape in this area and propose directions for future investigations that could pave the way for novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Linda Kleis
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ana Depetris-Chauvin
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Stefanie Jaskulski
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Nöthlings
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
- Friedrich Schiller University, Jena University Hospital, Jena, Germany.
| |
Collapse
|
10
|
Wu YJ, Xiong JF, Zhan CN, Xu H. Gut microbiota alterations in colorectal adenoma-carcinoma sequence based on 16S rRNA gene sequencing: A systematic review and meta-analysis. Microb Pathog 2024; 195:106889. [PMID: 39197689 DOI: 10.1016/j.micpath.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.
Collapse
Affiliation(s)
- Yi-Jun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Fang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Cheng-Nan Zhan
- Medical Service Community, Hangzhou Xiaoshan Hospital of TCM, Hangzhou, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
11
|
Zhang J, Zhang P, Li S, Yu T, Lai X, He Y. Study on the effect and mechanism of Lacticaseibacillus rhamnosus AFY06 on inflammation-associated colorectal cancer induced by AOM/DSS in mice. Front Microbiol 2024; 15:1382781. [PMID: 38572238 PMCID: PMC10987852 DOI: 10.3389/fmicb.2024.1382781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Lacticaseibacillus rhamnosus AFY06 (LR-AFY06) is a microorganism isolated from naturally fermented yogurt in Xinjiang, China. Methods In this study, we investigated the effects and mechanisms of LR-AFY06 in a mouse model of inflammation-associated colon cancer. The mouse model was established by azoxymethane/dextran sulfate sodium (AOM/DSS) induction. The tumor number in intestinal tissues was counted, and the histopathological analysis was performed on colon tissues. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were performed to measure relevant protein levels in colon tissues. Results LR-AFY06 treatment alleviated weight loss, increased organ index, reduced intestinal tumor incidence, improved histopathological damage, decreased the levels of inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), nuclear factor κB (NF-κB), and inducible nitric oxide synthase (iNOS) in the serum and colon tissue, downregulated the mRNA expression of inhibitor of NF-κB beta (IκBβ), p65, p50, p52, B-cell lymphoma-2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) in colon tissues, and increased the mRNA expression of Bid and caspase-8. The high concentration of LR-AFY06 exerted a better effect than the low concentration; however, the effect was slightly inferior to that of aspirin. Moreover, LR-AFY06 mitigated the intestinal inflammatory process and inhibited intestinal tumor development by regulating the NF-κB and apoptosis pathways. Discussion The present study indicates the regulatory potential of LR-AFY06 in inflammation-associated colorectal cancer in mice, providing a valuable basis for further research.
Collapse
Affiliation(s)
- Jing Zhang
- Environmental and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Piyun Zhang
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Sijia Li
- Environmental and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Ting Yu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiangyu Lai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|