1
|
Deng C, Chen D, Yang L, Zhang Y, Jin C, Li Y, Lin Q, Luo M, Zheng R, Huang B, Liu S. The role of cGAS-STING pathway ubiquitination in innate immunity and multiple diseases. Front Immunol 2025; 16:1522200. [PMID: 40028324 PMCID: PMC11868049 DOI: 10.3389/fimmu.2025.1522200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
The cGAS-STING pathway is essential in innate immunity, especially in antiviral responses and cellular stress management. cGAS acts as a cytoplasmic DNA sensor by initiating the synthesis of the second messenger cyclic GMP-AMP synthase (cGAMP), which subsequently activates the STING pathway, leading to the production of type I interferons and other cytokines, as well as the activation of inflammatory mediators. Recent studies have demonstrated that ubiquitination changes closely regulate the function of the cGAS-STING pathway. Ubiquitination modifications influence the stability and activity of cGAS and STING, while also influencing the accuracy of the immune response by adjusting their degradation and signal intensity. E3 ubiquitin ligase specifically facilitates the degradation or modulates the signaling of cGAS-STING-associated proteins via ubiquitination alterations. Furthermore, the ubiquitination of the cGAS-STING pathway serves distinct functions in various cell types and engages with NF-κB, IRF3/7, autophagy, and endoplasmic reticulum stress. This ubiquitin-mediated regulation is crucial for sustaining the balance of innate immunity, while excessive or inadequate ubiquitination can result in autoimmune disorders, cancers, and viral infections. An extensive examination of the ubiquitination process within the cGAS-STING pathway elucidates its specific regulatory mechanisms in innate immunity and identifies novel targets for the intervention of associated diseases.
Collapse
Affiliation(s)
- Chunyan Deng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Dongyan Chen
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Liang Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Yue Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qihong Lin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Mingjing Luo
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Ruihao Zheng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Baozhen Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Liu C, Tang L, Yang W, Gu Y, Xu W, Liang Z, Jiang J. cGAS/STING pathway and gastrointestinal cancer: Mechanisms and diagnostic and therapeutic targets (Review). Oncol Rep 2025; 53:15. [PMID: 39611480 PMCID: PMC11632663 DOI: 10.3892/or.2024.8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
The health of individuals is seriously threatened by intestinal cancer, which includes pancreatic, colorectal, esophageal, gastric and gallbladder cancer. Most gastrointestinal cancers do not have typical and specific early symptoms, and lack specific and effective diagnostic markers and treatment methods. It is critical to understand the etiology of gastrointestinal cancer and develop more efficient methods of diagnosis and treatment. The cyclic GMP‑AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway serves a crucial role in the occurrence, progression and treatment of gastrointestinal cancer. The present review focuses on the latest progress regarding the role and mechanism of the cGAS/STING pathway in gastrointestinal cancer, and discusses treatment approaches and related applications based on the cGAS/STING signaling pathway. In order to improve the knowledge of the connection between the cGAS/STING pathway and gastrointestinal cancer, aid the diagnosis and treatment of gastrointestinal cancer, and lessen the burden on patients and society, the present review also discusses future research directions and existing challenges regarding cGAS/STING in the study of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chang Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuning Gu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
3
|
Wang J, Ying L, Xiong H, Zhou DR, Wang YX, Che HL, Zhong ZF, Wu GS, Ge YJ. Comprehensive analysis of stearoyl-coenzyme A desaturase in prostate adenocarcinoma: insights into gene expression, immune microenvironment and tumor progression. Front Immunol 2024; 15:1460915. [PMID: 39351232 PMCID: PMC11439642 DOI: 10.3389/fimmu.2024.1460915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate adenocarcinoma (PRAD) is a prevalent global malignancy which depends more on lipid metabolism for tumor progression compared to other cancer types. Although Stearoyl-coenzyme A desaturase (SCD) is documented to regulate lipid metabolism in multiple cancers, landscape analysis of its implications in PRAD are still missing at present. Here, we conducted an analysis of diverse cancer datasets revealing elevated SCD expression in the PRAD cohort at both mRNA and protein levels. Interestingly, the elevated expression was associated with SCD promoter hypermethylation and genetic alterations, notably the L134V mutation. Integration of comprehensive tumor immunological and genomic data revealed a robust positive correlation between SCD expression levels and the abundance of CD8+ T cells and macrophages. Further analyses identified significant associations between SCD expression and various immune markers in tumor microenvironment. Single-cell transcriptomic profiling unveiled differential SCD expression patterns across distinct cell types within the prostate tumor microenvironment. The Gene Ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that SCD enriched pathways were primarily related to lipid biosynthesis, cholesterol biosynthesis, endoplasmic reticulum membrane functions, and various metabolic pathways. Gene Set Enrichment Analysis highlighted the involvement of elevated SCD expression in crucial cellular processes, including the cell cycle and biosynthesis of cofactors pathways. In functional studies, SCD overexpression promoted the proliferation, metastasis and invasion of prostate cancer cells, whereas downregulation inhibits these processes. This study provides comprehensive insights into the multifaceted roles of SCD in PRAD pathogenesis, underscoring its potential as both a therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Ying
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - He Xiong
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Duan-Rui Zhou
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Xuan Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Lian Che
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Guo-Sheng Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yun-Jun Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Barace S, Santamaría E, Infante S, Arcelus S, De La Fuente J, Goñi E, Tamayo I, Ochoa I, Sogbe M, Sangro B, Hernaez M, Avila MA, Argemi J. Application of Graph Models to the Identification of Transcriptomic Oncometabolic Pathways in Human Hepatocellular Carcinoma. Biomolecules 2024; 14:653. [PMID: 38927057 PMCID: PMC11201933 DOI: 10.3390/biom14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Whole-tissue transcriptomic analyses have been helpful to characterize molecular subtypes of hepatocellular carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet whether these different metabolic classes are clinically relevant or derive in actionable cancer vulnerabilities is still an unanswered question. Publicly available gene sets or gene signatures have been used to infer functional changes through gene set enrichment methods. However, metabolism-related gene signatures are poorly co-expressed when applied to a biological context. Here, we apply a simple method to infer highly consistent signatures using graph-based statistics. Using the Cancer Genome Atlas Liver Hepatocellular cohort (LIHC), we describe the main metabolic clusters and their relationship with commonly used molecular classes, and with the presence of TP53 or CTNNB1 driver mutations. We find similar results in our validation cohort, the LIRI-JP cohort. We describe how previously described metabolic subtypes could not have therapeutic relevance due to their overall downregulation when compared to non-tumoral liver, and identify N-glycan, mevalonate and sphingolipid biosynthetic pathways as the hallmark of the oncogenic shift of the use of acetyl-coenzyme A in HCC metabolism. Finally, using DepMap data, we demonstrate metabolic vulnerabilities in HCC cell lines.
Collapse
Affiliation(s)
- Sergio Barace
- DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain; (S.B.); (E.S.); (S.I.); (S.A.)
| | - Eva Santamaría
- DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain; (S.B.); (E.S.); (S.I.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain (M.A.A.)
| | - Stefany Infante
- DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain; (S.B.); (E.S.); (S.I.); (S.A.)
- Facultad de Medicina Humana, Universidad de Piura, Lima 15074, Peru
| | - Sara Arcelus
- DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain; (S.B.); (E.S.); (S.I.); (S.A.)
| | - Jesus De La Fuente
- Bioinformatics Platform, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain (M.H.)
| | - Enrique Goñi
- Bioinformatics Platform, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain (M.H.)
| | - Ibon Tamayo
- Bioinformatics Platform, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain (M.H.)
| | - Idoia Ochoa
- Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain;
| | - Miguel Sogbe
- Liver Unit, Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain;
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain (M.A.A.)
- Liver Unit, Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdisNA), 31008 Pamplona, Spain
| | - Mikel Hernaez
- Bioinformatics Platform, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain (M.H.)
- Instituto de Investigación Sanitaria de Navarra (IdisNA), 31008 Pamplona, Spain
| | - Matias A. Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain (M.A.A.)
- Instituto de Investigación Sanitaria de Navarra (IdisNA), 31008 Pamplona, Spain
- Solid Tumor Program, Hepatology Laboratory, Applied Medical Research Center (CIMA), University of Navarre, C. de Irunlarrea, 3, 31008 Pamplona, Spain
| | - Josepmaria Argemi
- DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre, 31008 Pamplona, Spain; (S.B.); (E.S.); (S.I.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain (M.A.A.)
- Liver Unit, Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdisNA), 31008 Pamplona, Spain
- Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|