1
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
2
|
Wang G, Chen S, Xie Z, Shen S, Xu W, Chen W, Li X, Wu Y, Li L, Liu B, Ding X, Qin A, Fan S. TGFβ attenuates cartilage extracellular matrix degradation via enhancing FBXO6-mediated MMP14 ubiquitination. Ann Rheum Dis 2020; 79:1111-1120. [PMID: 32409323 PMCID: PMC7392491 DOI: 10.1136/annrheumdis-2019-216911] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES FBXO6, a component of the ubiquitin E3 ligases, has been shown to bind high mannose N-linked glycoproteins and act as ubiquitin ligase subunits. Most proteins in the secretory pathway, such as matrix metalloproteinases, are modified with N-glycans and play important roles in the development of osteoarthritis (OA). However, whether FBXO6 exerts regulatory effects on the pathogenesis of OA remains undefined. METHODS The expression of FBXO6 was examined in the cartilage of human and multiple mouse OA models. The role of FBXO6 in cartilage degeneration was analysed with global FBXO6-/- mice, transgenic Col2a1-CreERT2;FBXO6f/f mice. The FBXO6 interacting partner MMP14 and its regulatory transcriptional factor SMAD2/3 were identified and validated in different pathological models as well as SMAD2-/- mice. RESULTS The expression of FBXO6 decreased in the cartilage from human OA samples, anterior cruciate ligament transaction (ACLT) -induced OA samples, spontaneous OA STR/ort samples and aged mice samples. Global knockout or conditional knockout of FBXO6 in cartilage promoted experimental OA process. The molecular mechanism study revealed that FBXO6 decreased MMP14 by ubiquitination and degradation, leading to inhibited proteolytic activation of MMP13. Interestingly, FBXO6 expression is regulated by transforming growth factor β (TGFβ)-SMAD2/3 signalling pathway. Therefore, the overexpression of FBXO6 protected mice from post-injury OA development. CONCLUSIONS TGFβ-SMAD2/3 signalling pathway suppressed MMP13 activation by upregulating of FBXO6 transcription and consequently promoting MMP14 proteasomal degradation. Inducement of FBXO6 expression in OA cartilage might provide a promising OA therapeutic strategy.
Collapse
Affiliation(s)
- Gangliang Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuai Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenxiang Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yizheng Wu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liangping Li
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bin Liu
- Key Laboratory of Protein Modification and Tumor, Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Xianjun Ding
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xiao Y, Huang S, Qiu F, Ding X, Sun Y, Wei C, Hu X, Wei K, Long S, Xie L, Xun Y, Chen W, Zhang Z, Liu N, Xiang S. Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma. EBioMedicine 2020; 51:102603. [PMID: 31901862 PMCID: PMC6950786 DOI: 10.1016/j.ebiom.2019.102603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumor necrosis factor α-induced protein 1 (TNFAIP1) is frequently downregulated in cancer cell lines and promotes cancer cell apoptosis. However, its role, clinical significance and molecular mechanisms in hepatocellular carcinoma (HCC) are unknown. Methods The expression of TNFAIP1 in HCC tumor tissues and cell lines was measured by Western blot and immunohistochemistry. The effects of TNFAIP1 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation were evaluated by Cell Counting Kit-8 (CCK8), Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL), transwell, tube formation assay in vitro and nude mice experiments in vivo. The interaction between TNFAIP1 and CSNK2B was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), Co-immunoprecipitation and Western blot. The mechanism of how TNFAIP1 regulated nuclear factor-kappaB (NF-κB) pathway was analyzed by dual-luciferase reporter, immunofluorescence, quantitative Real-time polymerase chain reaction (RT-qPCR) and Western blot. Findings The TNFAIP1 expression is significantly decreased in HCC tissues and cell lines, and negatively correlated with the increased HCC histological grade. Overexpression of TNFAIP1 inhibits HCC cell proliferation, metastasis, angiogenesis and promotes cancer cell apoptosis both in vitro and in vivo, whereas the knockdown of TNFAIP1 in HCC cell displays opposite effects. Mechanistically, TNFAIP1 interacts with CSNK2B and promotes its ubiquitin-mediated degradation with Cul3, causing attenuation of CSNK2B-dependent NF-κB trans-activation in HCC cell. Moreover, the enforced expression of CSNK2B counteracts the inhibitory effects of TNFAIP1 on HCC cell proliferation, migration, and angiogenesis in vitro and in vivo. Interpretation Our results support that TNFAIP1 can act as a tumor suppressor of HCC by modulating TNFAIP1/CSNK2B/NF-κB pathway, implying that TNFAIP1 may represent a potential marker and a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Ye Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Shulan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feng Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yi Sun
- Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ke Wei
- Medical school, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Shengwen Long
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lina Xie
- Department of Stomatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wen Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhijian Zhang
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Ning Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Huang B, Pei HZ, Chang HW, Baek SH. The E3 ubiquitin ligase Trim13 regulates Nur77 stability via casein kinase 2α. Sci Rep 2018; 8:13895. [PMID: 30224829 PMCID: PMC6141542 DOI: 10.1038/s41598-018-32391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
Nur77 is a member of the NR4A subfamily of nuclear receptors and has been shown to regulate various biological processes such as apoptosis and inflammation. Here, we show that Nur77 ubiquitination is mediated by the tripartite motif 13 (Trim13), a RING-type E3 ubiquitin ligase. The interaction between Nur77 and Trim13 was confirmed by co-immunoprecipitation. Moreover, we found that Lys539 in Nur77 ubiquitination is targeted for Trim13, which leads to Nur77 degradation. The Trim13-mediated ubiquitination of Nur77 was optimal in the presence of the E2 enzyme UbcH5. Importantly, in addition to Trim13-mediated ubiquitination, the stability of Nur77 was also regulated by casein kinase 2α (CK2α). Pharmacological inhibition of CK2 markedly increased Nur77 levels, whereas overexpression of CK2α, but not its inactive mutant, dramatically decreased Nur77 levels by promoting Nur77 ubiquitination. CK2α phosphorylated Ser154 in Nur77 and thereby regulated Nur77 protein levels by promoting its ubiquitin-mediated degradation. Importantly, we also show that degradation of Nur77 is involved in TNFα-mediated IL-6 production via CK2α and Trim13. Taken together, these results suggest that the sequential phosphorylation and ubiquitination of Nur77 controls its degradation, and provide a therapeutic approach for regulating Nur77 activity through the CK2α-Trim13 axis as a mechanism to control the inflammatory response.
Collapse
Affiliation(s)
- Bin Huang
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Han Zhong Pei
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea.
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea.
| |
Collapse
|
5
|
Morris MK, Clarke DC, Osimiri LC, Lauffenburger DA. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks. CPT Pharmacometrics Syst Pharmacol 2016; 5:544-553. [PMID: 27567007 PMCID: PMC5080650 DOI: 10.1002/psp4.12104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/07/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
A major challenge in developing anticancer therapies is determining the efficacies of drugs and their combinations in physiologically relevant microenvironments. We describe here our application of "constrained fuzzy logic" (CFL) ensemble modeling of the intracellular signaling network for predicting inhibitor treatments that reduce the phospho-levels of key transcription factors downstream of growth factors and inflammatory cytokines representative of hepatocellular carcinoma (HCC) microenvironments. We observed that the CFL models successfully predicted the effects of several kinase inhibitor combinations. Furthermore, the ensemble predictions revealed ambiguous predictions that could be traced to a specific structural feature of these models, which we resolved with dedicated experiments, finding that IL-1α activates downstream signals through TAK1 and not MEKK1 in HepG2 cells. We conclude that CFL-Q2LM (Querying Quantitative Logic Models) is a promising approach for predicting effective anticancer drug combinations in cancer-relevant microenvironments.
Collapse
Affiliation(s)
- M K Morris
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - D C Clarke
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - L C Osimiri
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - D A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Williams AEG, Choi K, Chan AL, Lee YJ, Reeves WH, Bubb MR, Stewart CM, Cha S. Sjögren's syndrome-associated microRNAs in CD14(+) monocytes unveils targeted TGFβ signaling. Arthritis Res Ther 2016; 18:95. [PMID: 27142093 PMCID: PMC4855899 DOI: 10.1186/s13075-016-0987-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/05/2016] [Indexed: 12/30/2022] Open
Abstract
Background Sjögren’s syndrome (SjS) monocytes have a pro-inflammatory phenotype, which may influence SjS pathogenesis. MicroRNAs (miRNAs) are small endogenously expressed molecules that can inhibit protein expression of their targeted genes and have important functions in regulating cell signaling responses. We profiled miRNAs in SjS monocytes to identify a SjS-specific miRNA profile and determine the potential roles of miRNAs in SjS pathogenesis. Methods Total RNA was extracted from healthy control (HC, n = 10), SjS (n = 18), systemic lupus erythematosus (SLE, n = 10), and rheumatoid arthritis (RA, n = 10) peripheral blood CD14+ monocytes for miRNA microarray analysis. To validate select miRNAs from the microarray analysis, the original cohort and a new cohort of monocyte RNA samples from HC (n = 9), SjS (n = 12), SLE (n = 8), and RA (n = 9) patients were evaluated by quantitative reverse transcription (RT)-PCR. Functional predictions of differentially expressed miRNAs were determined through miRNA target prediction database analyses. Statistical analyses performed included one-way analysis of variance with Bonferroni post tests, linear regression, and receiver operating characteristic curve analyses. Results MiRNAs were predominantly upregulated in SjS monocytes in comparison with controls. Quantitative RT-PCR confirmations supported co-regulation of miR-34b-3p, miR-4701-5p, miR-609, miR-300, miR-3162-3p, and miR-877-3p in SjS monocytes (13/30, 43.3 %) in comparison with SLE (1/17, 5.8 %) and RA (1/18, 5.6 %). MiRNA-target pathway predictions identified SjS-associated miRNAs appear to preferentially target the canonical TGFβ signaling pathway as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFkB pathways. Conclusions Our results underscore a novel underlying molecular mechanism where SjS-associated miRNAs may collectively suppress TGFβ signaling as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFκB pathways in SjS pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0987-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrienne E G Williams
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Kevin Choi
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Annie L Chan
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Yun Jong Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Westley H Reeves
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Michael R Bubb
- Department of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Carol M Stewart
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA
| | - Seunghee Cha
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, P.O. Box 100414, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Yang H, Cao C, Wu C, Yuan C, Gu Q, Shi Q, Zou J. TGF-βl Suppresses Inflammation in Cell Therapy for Intervertebral Disc Degeneration. Sci Rep 2015; 5:13254. [PMID: 26289964 PMCID: PMC4542522 DOI: 10.1038/srep13254] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies suggest that cell therapy may be an effective way to repair intervertebral disc degeneration. As a strong immune suppressor, TGF-β1 has been shown to inhibit inflammation respond effectively. The objective of this study was to explore the effects of TGF-β1 during bone marrow mesenchymal stem cells-based therapy for disc degeneration. In vitro assays demonstrated that co-culturing of nucleus pulposus cells with bone marrow mesenchymal stem cells resulted in significantly higher levels of TGF-βl secretion. This increase inhibited IκB phosphorylation and NF-κB activation, detected by western blot analysis. Meanwhile, in a rabbit model, MRI analysis revealed significant recovery of signal intensity in the degenerative discs of rabbits receiving cells transplantation, than receiving cells treated with a TGF-β1 inhibitor or saline. These findings indicated that enhanced TGF-β1 production recovered the degeneration of intervertebral disc. And also immunohistochemical staining detected enhanced collagen II expression in the rabbits treated with cell transplantation. However, the NF-κB positive cells were significantly less than other two control groups. Thus, cell therapy promoted TGF-β1 expression in nucleus pulposus, leading to anti-inflammatory effects via the inhibition of NF-κB, and the amelioration of disc degradation due to increased expression of collagen II and aggrecan in degenerative intervertebral disc.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cheng Cao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chunshen Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chenxi Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
8
|
Rosso N, Chavez-Tapia NC, Tiribelli C, Bellentani S. Translational approaches: From fatty liver to non-alcoholic steatohepatitis. World J Gastroenterol 2014; 20:9038-9049. [PMID: 25083077 PMCID: PMC4112858 DOI: 10.3748/wjg.v20.i27.9038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/04/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, non-alcoholic fatty liver disease (NAFLD) has become one, if not the most common, cause of chronic liver disease affecting both adults and children. The increasing number of cases at an early age is the most worrying aspect of this pathology, since it provides more time for its evolution. The spectrum of this disease ranges from liver steatosis to steatohepatitis, fibrosis and in some cases, hepatocellular carcinoma. NAFLD may not always be considered a benign disease and hepatologists must be cautious in the presence of fatty liver. This should prompt the use of the available experimental models to understand better the pathogenesis and to develop a rational treatment of a disease that is dangerously increasing. In spite of the growing efforts, the pathogenesis of NAFLD is still poorly understood. In the present article we review the most relevant hypotheses and evidence that account for the progression of NAFLD to non-alcoholic steatohepatitis (NASH) and fibrosis. The available in vitro and in vivo experimental models of NASH are discussed and revised in terms of their validity in translational studies. These studies must be aimed at the discovery of the still unknown triggers or mediators that induce the progression of hepatic inflammation, apoptosis and fibrosis.
Collapse
|
9
|
Shiou SR, Yu Y, Guo Y, Westerhoff M, Lu L, Petrof EO, Sun J, Claud EC. Oral administration of transforming growth factor-β1 (TGF-β1) protects the immature gut from injury via Smad protein-dependent suppression of epithelial nuclear factor κB (NF-κB) signaling and proinflammatory cytokine production. J Biol Chem 2013; 288:34757-66. [PMID: 24129565 DOI: 10.1074/jbc.m113.503946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory immune responses play an important role in mucosal homeostasis and gut diseases. Nuclear factor κB (NF-κB), central to the proinflammatory cascade, is activated in necrotizing enterocolitis (NEC), a devastating condition of intestinal injury with extensive inflammation in premature infants. TGF-β is a strong immune suppressor and a factor in breast milk, which has been shown to be protective against NEC. In an NEC animal model, oral administration of the isoform TGF-β1 activated the downstream effector Smad2 in intestine and significantly reduced NEC incidence. In addition, TGF-β1 suppressed NF-κB activation, maintained levels of the NF-κB inhibitor IκBα in the intestinal epithelium, and systemically decreased serum levels of IL-6 and IFN-γ. The immature human fetal intestinal epithelial cell line H4 was used as a reductionistic model of the immature enterocyte to investigate mechanism. TGF-β1 pretreatment inhibited the TNF-α-induced IκBα phosphorylation that targets the IκBα protein for degradation and inhibited NF-κB activation. Chromatin immunoprecipitation (ChIP) assays demonstrated decreased NF-κB binding to the promoters of IL-6, IL-8, and IκBα in response to TNF-α with TGF-β1 pretreatment. These TGF-β1 effects appear to be mediated through the canonical Smad pathway as silencing of the TGF-β central mediator Smad4 resulted in loss of the TGF-β1 effects. Thus, TGF-β1 is capable of eliciting anti-inflammatory effects by inhibiting NF-κB specifically in the intestinal epithelium as well as by decreasing systemic IL-6 and IFN-γ levels. Oral administration of TGF-β1 therefore can potentially be used to protect against gastrointestinal diseases.
Collapse
Affiliation(s)
- Sheng-Ru Shiou
- From the Department of Pediatrics, Section of Neonatology, and
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dominguez I, Degano IR, Chea K, Cha J, Toselli P, Seldin DC. CK2α is essential for embryonic morphogenesis. Mol Cell Biochem 2011; 356:209-16. [PMID: 21761203 DOI: 10.1007/s11010-011-0961-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 12/11/2022]
Abstract
CK2 is a highly conserved serine-threonine kinase involved in biological processes such as embryonic development, circadian rhythms, inflammation, and cancer. Biochemical experiments have implicated CK2 in the control of several cellular processes and in the regulation of signal transduction pathways. Our laboratory is interested in characterizing the cellular, signaling, and molecular mechanisms regulated by CK2 during early embryonic development. For this purpose, animal models, including mice deficient in CK2 genes, are indispensable tools. Using CK2α gene-deficient mice, we have recently shown that CK2α is a critical regulator of mid-gestational morphogenetic processes, as CK2α deficiency results in defects in heart, brain, pharyngeal arch, tail bud, limb bud, and somite formation. Morphogenetic processes depend upon the precise coordination of essential cellular processes in which CK2 has been implicated, such as proliferation and survival. Here, we summarize the overall phenotype found in CK2α (-/- ) mice and describe our initial analysis aimed to identify the cellular processes affected in CK2α mutants.
Collapse
Affiliation(s)
- Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Chao CC, Ma YL, Lee EHY. Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol 2011; 21:150-62. [PMID: 20731656 DOI: 10.1111/j.1750-3639.2010.00431.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) was shown to produce its neuroprotective effect through extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase (PI3-K) signaling. But whether other pathways also mediate the neuroprotective effect of BDNF is less known. In this study, we found that direct administration of BDNF to rat hippocampal CA1 area dose-dependently increased the mRNA and protein levels of Bcl-xL. BDNF also increased protein kinase casein kinase II (CK2) activity and NF-κB phosphorylation at Ser529 dose-dependently. Further, transfection of the wild-type CK2α DNA to CA1 neurons increased nuclear factor kappa B (NF-κB) phosphorylation and Bcl-xL mRNA expression, whereas transfection of CK2α156A, the catalytically inactive mutant of CK2α, decreased these measures. Moreover, transfection of CK2α small interfering RNA (siRNA) blocked the enhancing effect of BDNF on NF-κB phosphorylation and Bcl-xL expression. These results were further confirmed by treatment of 4,5,6,7-tetrabromobenzotriazole (TBB), a specific CK2 inhibitor. Transfection of NF-κBS529A, the dominant negative mutant of NF-κB, prevented the enhancing effect of BDNF on Bcl-xL expression. More importantly, BDNF activation of CK2 is not affected by co-administration of the ERK1/2 inhibitor, PD98059, and the PI3-K inhibitor, LY294002. These results demonstrate a novel BDNF signaling pathway and provide an alternative therapeutic strategy for the protective effect of BDNF on hippocampal neurons in vivo.
Collapse
Affiliation(s)
- Chih C Chao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
12
|
Reactive oxygen species and NADPH oxidase 4 induced by transforming growth factor β1 are the therapeutic targets of polyenylphosphatidylcholine in the suppression of human hepatic stellate cell activation. Inflamm Res 2011; 60:597-604. [PMID: 21318733 DOI: 10.1007/s00011-011-0309-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/06/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE AND DESIGN To clarify the molecular mechanism of polyenylphosphatidylcholine (PPC), we examined the involvement of reactive oxygen species (ROS) and NADPH oxidase 4 (Nox4) in human hepatic stellate cells (HSCs). MATERIAL Using human LX-2 HSC cells, we examined the effects of PPC on expression of α-smooth muscle actin (α-SMA) and collagen 1, generation of ROS, Nox4 expression, p38 activation and cell proliferation, induced by transforming growth factor β1 (TGFβ1). RESULTS PPC suppressed ROS which are induced by TGFβ1, phosphorylation of p38MAPK, and expression levels of α-SMA and collagen 1 in a dose-dependent manner. Higher concentrations of PPC also suppressed Nox4 levels. CONCLUSION These results suggest that ROS and Nox4 induced by TGFβ1 are the therapeutic targets of PPC in the suppression of human hepatic stellate cell activation.
Collapse
|
13
|
Lee YH, Schiemann WP. Fibromodulin suppresses nuclear factor-kappaB activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem 2010; 286:6414-22. [PMID: 21156791 DOI: 10.1074/jbc.m110.168682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibulin-5 (FBLN5) belongs to the Fibulin family of secreted extracellular matrix proteins, and our laboratory first established FBLN5 as a novel target for TGF-β in fibroblasts and endothelial cells. To better understand the pathophysiology of FBLN5, we carried out microarray analysis to identify fibroblast genes whose expressions were regulated by FBLN5 and TGF-β. In doing so, we identified fibromodulin (Fmod) as a novel target gene of FBLN5, and we validated the differential expression of Fmod and 12 other FBLN5-regulated genes by semi-quantitative real time PCR. Fmod belongs to the small leucine-rich family of proteoglycans, which are important constituents of mammalian extracellular matrices. Interestingly, parental 3T3-L1 fibroblasts displayed high levels of nuclear factor-κB (NF-κB) activity, although those engineered to express Fmod constitutively exhibited significantly reduced NF-κB activity, suggesting that Fmod functions to inhibit NF-κB signaling. By monitoring alterations in the activation of NF-κB and the degradation of its inhibitor, IκBα, we demonstrate for the first time that Fmod contributes to the constitutive degradation of IκBα protein in 3T3-L1 fibroblasts. Mechanistically, we observed Fmod to delay the degradation of IκBα by promoting the following: (i) activation of c-Jun N-terminal kinase; (ii) inhibition of calpain and casein kinase 2 activity; and (iii) induction of fibroblast apoptosis. Taken together, our study identified a novel function for Fmod in directing extracellular signaling, particularly the regulation of NF-κB activity and cell survival.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
14
|
Miura N, Osaki Y, Nagashima M, Kohno M, Yorozu K, Shomori K, Kanbe T, Oyama K, Kishimoto Y, Maruyama S, Noma E, Horie Y, Kudo M, Sakaguchi S, Hirooka Y, Ito H, Kawasaki H, Hasegawa J, Shiota G. A novel biomarker TERTmRNA is applicable for early detection of hepatoma. BMC Gastroenterol 2010; 10:46. [PMID: 20482774 PMCID: PMC2881114 DOI: 10.1186/1471-230x-10-46] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/18/2010] [Indexed: 12/28/2022] Open
Abstract
Backgrounds We previously reported a highly sensitive method for serum human telomerase reverse transcriptase (hTERT) mRNA for hepatocellular carcinoma (HCC). α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) are good markers for HCC. In this study, we verified the significance of hTERTmRNA in a large scale multi-centered trial, collating quantified values with clinical course. Methods In 638 subjects including 303 patients with HCC, 89 with chronic hepatitis (CH), 45 with liver cirrhosis (LC) and 201 healthy individuals, we quantified serum hTERTmRNA using the real-time RT-PCR. We examined its sensitivity and specificity in HCC diagnosis, clinical significance, ROC curve analysis in comparison with other tumor markers, and its correlations with the clinical parameters using Pearson relative test and multivariate analyses. Furthermore, we performed a prospective and comparative study to observe the change of biomarkers, including hTERTmRNA in HCC patients receiving anti-cancer therapies. Results hTERTmRNA was demonstrated to be independently correlated with clinical parameters; tumor size and tumor differentiation (P < 0.001, each). The sensitivity/specificity of hTERTmRNA in HCC diagnosis showed 90.2%/85.4% for hTERT. hTERTmRNA proved to be superior to AFP, AFP-L3, and DCP in the diagnosis and underwent an indisputable change in response to therapy. The detection rate of small HCC by hTERTmRNA was superior to the other markers. Conclusions hTERTmRNA is superior to conventional tumor markers in the diagnosis and recurrence of HCC at an early stage.
Collapse
Affiliation(s)
- Norimasa Miura
- Department of Pathophysiological and Therapeutic Science, Tottori University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu D, Hensel J, Hilgraf R, Abbasian M, Pornillos O, Deyanat-Yazdi G, Hua XH, Cox S. Inhibition of protein kinase CK2 expression and activity blocks tumor cell growth. Mol Cell Biochem 2009; 333:159-67. [PMID: 19629644 DOI: 10.1007/s11010-009-0216-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/07/2009] [Indexed: 11/28/2022]
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous serine/threonine kinase. It is a multifunctional and pleiotropic protein kinase implicated in the regulation of cell proliferation, survival, and differentiation. Deregulation of CK2 is observed in a wide variety of tumors. It has been the focus of intensive research efforts to establish the cause-effect relationship between CK2 and neoplastic growth. Here, we further validate the role of CK2 in cancer cell growth using siRNA approach. We also screened a library of more than 200,000 compounds and identified several molecules, which inhibit CK2 with IC(50) < 1 microM. The binding mode of a representative compound with maize CK2 was determined. In addition, the cellular activity of the compounds was demonstrated by their inhibition of phosphorylation of PTEN Ser370 in HCT116 cells. Treatment of a variety of cancer cell lines with the newly identified CK2 inhibitor significantly blocked cell growth with IC(50)s as low as 300 nM.
Collapse
Affiliation(s)
- Dan Zhu
- Celgene Corporation, 4550 Towne Centre Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Oh NS, Park JS, Jeon YJ, Oh JH, Jeong SY, Yang JO, Park YW, Yoo HS, Kim NS. Generation of expression clone set for functional proteomics of human gastric and liver cancers. Exp Biol Med (Maywood) 2009; 234:1220-9. [PMID: 19596826 DOI: 10.3181/0812-rm-371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two thousand sixty-eight multi-purpose expression clones for the 326 candidate genes related to gastric or liver cancers were constructed using the Gateway system. These clones can be expressed as His, Glutathione-S-transferase (GST) or Enhanced version of the green fluorescent protein (EGFP) fusion proteins in E. coli, insect cells or mammalian cells. For the 246 E. coli expression clones, the GST fusion proteins had greater expression efficiency and solubility than the His fusion proteins. Approximately 20% of the expressed proteins had unexpected molecular weights. A detailed sequence analysis of these clones revealed frameshift mutations resulting from insertion, deletion or substitution of nucleotides. The results indicate that these changes in the candidate genes may affect the occurrence of gastric or liver cancers. In addition, when 105 proteins, which were expressed in E. coli at very low or undetectable levels, were expressed in insect cells, 76% of the proteins were expressed very well and most were soluble. We also found that most of the 30 proteins prepared using EGFP mammalian expression clones were localized to cellular compartments expected by Gene ontology (GO) and this localization was unaffected if the EGFP-fusion was at the N-terminal or C-terminal region of the protein. Antibody production and subcellular localization analysis of the candidate genes as well as a screen of genes involved in carcinogenesis pathways are currently in progress using these expression clones. These studies provide a valuable resource for developing a better understanding of the molecular mechanism of carcinogenesis in both gastric and liver cancer and would be very helpful in diagnosis and therapeutic predictions.
Collapse
Affiliation(s)
- Nang-Soo Oh
- Laboratory of Human Genomics, Genome Research Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cohen J, Chen Z, Lu SL, Yang XP, Arun P, Ehsanian R, Brown MS, Lu H, Yan B, Diallo O, Wang XJ, Van Waes C. Attenuated transforming growth factor beta signaling promotes nuclear factor-kappaB activation in head and neck cancer. Cancer Res 2009; 69:3415-24. [PMID: 19351843 DOI: 10.1158/0008-5472.can-08-3704] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although constitutively activated nuclear factor-kappaB (NF-kappaB), attenuated transforming growth factor beta (TGFbeta) signaling, and TP53 mutations frequently occur in human cancers, how these pathways interact and together contribute to malignancy remains uncertain. Here, we found an association between overexpression of NF-kappaB-related genes, reduced expression of TGFbeta receptor (TbetaR) subunits and downstream targets, and TP53 genotype in head and neck squamous cell carcinoma (HNSCC). In response to recombinant TGFbeta1, both growth inhibition and TGFbeta target gene modulation were attenuated or absent in a panel of human HNSCC lines. However, in HNSCC cells that retained residual TGFbeta signaling, TGFbeta1 inhibited both constitutive and tumor necrosis factor alpha-stimulated NF-kappaB activity. Furthermore, HNSCC lines overexpressing mutant (mt) TP53 and human tumor specimens with positive TP53 nuclear staining exhibited reduced TbetaRII and knocking down mtTP53 induced TbetaRII, increasing TGFbeta downstream gene expression while inhibiting proinflammatory NF-kappaB target gene expression. Transfection of ectopic TbetaRII directly restored TGFbeta signaling while inhibiting inhibitor kappaBalpha degradation and suppressing serine-536 phosphorylation of NF-kappaB p65 and NF-kappaB transcriptional activation, linking these alterations. Finally, experiments with TbetaRII conditional knockout mice show that abrogation of TGFbeta signaling promotes the sustained induction of NF-kappaB and its proinflammatory target genes during HNSCC tumorigenesis and progression. Together, these findings elucidate a regulatory framework in which attenuated TGFbeta signaling promotes NF-kappaB activation and squamous epithelial malignancy in the setting of altered TP53 status.
Collapse
Affiliation(s)
- Jonah Cohen
- Howard Hughes Medical Institute-NIH Research Scholars Program, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ng KT, Man K, Sun CK, Lee TK, Poon RT, Lo CM, Fan ST. Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. Br J Cancer 2006; 95:1050-5. [PMID: 17008870 PMCID: PMC2360701 DOI: 10.1038/sj.bjc.6603399] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 01/09/2023] Open
Abstract
Tumour recurrence and metastases of hepatocellular carcinoma (HCC) after hepatectomy are the major obstacles of long-term survival. The present study investigated the clinicopathological significance of a possible metastasis regulator Six1 in HCC patients who were undergone hepatectomy. Seventy-two pairs of RNA and 103 pairs of protein from tumour and adjacent nontumour liver tissues of HCC patients were examined. About 85 and 60% of HCC tumour tissues were found to overexpress Six1 mRNA and protein, respectively, compared with nontumour liver tissues. No Six1 protein was detected in HCC nontumour liver tissues and normal liver tissues. Increased Six1 protein expression in HCC patients was significantly correlated with pathologic tumour-node-metastasis (pTNM) stage (P=0.002), venous infiltration (P=0.004) and poor overall survival (P=0.0423). We concluded that Six1 is frequently overexpressed in HCC patients and elevated Six1 protein in HCC patients may be an indication of advanced stage and poor overall survival after hepatectomy.
Collapse
Affiliation(s)
- K T Ng
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - K Man
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - C K Sun
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - T K Lee
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - R T Poon
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - C-M Lo
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - S-T Fan
- Centre for the Study of Liver Disease and Departments of Surgery, The University of Hong Kong, Queen Mary Hospital, L9-55, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
19
|
Yu M, Yeh J, Van Waes C. Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aberrant nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res 2006; 66:6722-31. [PMID: 16818647 PMCID: PMC1839920 DOI: 10.1158/0008-5472.can-05-3758] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed previously that the signal transcription factor nuclear factor-kappaB (NF-kappaB) is aberrantly activated and that inhibition of NF-kappaB induces cell death and inhibits tumorigenesis in head and neck squamous cell carcinomas (HNSCC). Thus, identification of specific kinases underlying the activation of NF-kappaB could provide targets for selective therapy. Inhibitor-kappaB (IkappaB) kinase (IKK) is known to activate NF-kappaB by inducing NH(2)-terminal phosphorylation and degradation of its endogenous inhibitor, IkappaB. Casein kinase 2 (CK2) was previously reported to be overexpressed in HNSCC cells and to be a COOH-terminal IKK, but its relationship to NF-kappaB activation in HNSCC cells is unknown. In this study, we examined the contribution of IKK and CK2 in the regulation of NF-kappaB in HNSCC in vitro. NF-kappaB activation was specifically inhibited by kinase-dead mutants of the IKK1 and IKK2 subunits or small interfering RNA targeting the beta subunit of CK2. CK2 and IKK kinase activity, as well as NF-kappaB transcriptional activity, was shown to be serum responsive, indicating that these kinases mediate aberrant activation of NF-kappaB in response to serum factor(s) in vitro. Recombinant CK2alpha was shown to phosphorylate recombinant IKK2 as well as to promote immunoprecipitated IKK complex from HNSCC to phosphorylate the NH(2)-terminal S32/S36 of IkappaBalpha. We conclude that the aberrant NF-kappaB activity in HNSCC cells in response to serum is partially through a novel mechanism involving CK2-mediated activation of IKK2, making these kinases candidates for selective therapy to target the NF-kappaB pathway in HNSCC.
Collapse
Affiliation(s)
- Ming Yu
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders/NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Dessauge F, Hilaly S, Baumgartner M, Blumen B, Werling D, Langsley G. c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene 2005; 24:1075-83. [PMID: 15580287 DOI: 10.1038/sj.onc.1208314] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Theileria parasites infect and transform bovine lymphocytes, but host cell immortalization is reversible, as upon parasite death the lymphocytes rapidly die of apoptosis. Infection leads to a marked augmentation in the levels of lymphocyte c-Myc, and the parasite achieves this by inducing increased c-myc transcription and by prolonging the half-life of the transcription factor. Reduction in c-Myc turnover can be ascribed to CK2-mediated phosphorylation of the transcription factor. A parasite-dependent GM-CSF autocrine loop activates a JAK2/STAT3 signalling pathway that contributes to heightened c-myc transcription, and inhibition of the pathway leads to caspase 9 activation and apoptosis that can be directly ascribed to a reduction in c-Myc. An antiapoptotic role for c-Myc was clearly demonstrated by specific inhibition of c-myc expression with antisense oligonucleotides, and this correlates with loss of the antiapoptotic protein Mcl-1, and, consistently, ectopic expression of c-Myc abrogates B-cell death induced upon JAK2 inhibition. Thus, Theileria parasites ensure the survival of their host lymphocytes via specific activation of c-Myc.
Collapse
Affiliation(s)
- Frédéric Dessauge
- Laboratoire de Signalisation Immunoparasitaire, CNRS URA CNRS 2581, Département de Parasitologie, Institut Pasteur, Batiment Elie Metchnikoff, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
21
|
Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 2005; 24:705-16. [PMID: 15692563 PMCID: PMC549624 DOI: 10.1038/sj.emboj.7600566] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/23/2004] [Indexed: 01/26/2023] Open
Abstract
The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin-2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin-2 functions as a calcium-permeable nonselective cation channel; however, it is disputed whether polycystin-2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin-2 are directed by phosphofurin acidic cluster sorting protein (PACS)-1 and PACS-2, two adaptor proteins that recognize an acidic cluster in the carboxy-terminal domain of polycystin-2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin-2 by the protein kinase casein kinase 2, required for the routing of polycystin-2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin-2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments.
Collapse
Affiliation(s)
- Michael Köttgen
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | - Thomas Benzing
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | - Thomas Simmen
- Vollum Institute, The Oregon Health Sciences University Portland, OR, USA
| | - Robert Tauber
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | - Björn Buchholz
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | | | - Tobias B Huber
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | | | | | - Katja Höpker
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | | | - Christoph Carl Tschucke
- Department of Organical Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany
| | | | - Emily Kim
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
| | - Gary Thomas
- Vollum Institute, The Oregon Health Sciences University Portland, OR, USA
- Vollum Institute, The Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 6955; Fax: +1 503 494 1218; E-mail:
| | - Gerd Walz
- Renal Division, University Hospital of Freiburg, Freiburg, Germany
- Renal Division, University Hospital of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Tel.: +49 761 270 3250; Fax: +49 761 270 3245; E-mail:
| |
Collapse
|