1
|
Panse J. Paroxysmal nocturnal hemoglobinuria: Where we stand. Am J Hematol 2023; 98 Suppl 4:S20-S32. [PMID: 36594182 DOI: 10.1002/ajh.26832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
For the last 20 years, therapy of paroxysmal nocturnal hemoglobinuria (PNH) relied-up until recently-on antibody based terminal complement inhibitionon. PNH pathophysiology-a mutational defect leading to partial or complete absence of complement-regulatory proteins on blood cells-leads to intravascular hemolysis and consequences such as thrombosis and other sequelae. A plethora of new drugs interfering with the proximal and terminal complement cascade are under recent development and the first "proof-of-pinciple" proximal complement inhibitor targeting C3 has been approved in 2021. "PNH: where we stand" will try to give a brief account on where we came from and where we stand focusing on approved therapeutic options. The associated improvements as well as potential consequences of actual and future treatments as well as their impact on the disease will continue to necessitate academic and scientific focus on improving treatment options as well as on side effects and outcomes relevant to individual patient lives and circumstances in order to develop effective, safe, and available treatment for all hemolytic PNH patients globally.
Collapse
Affiliation(s)
- Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen Bonn Cologne Düsseldorf (ABCD), Aachen, Germany
| |
Collapse
|
2
|
Risitano AM, Frieri C, Urciuoli E, Marano L. The complement alternative pathway in paroxysmal nocturnal hemoglobinuria: From a pathogenic mechanism to a therapeutic target. Immunol Rev 2023; 313:262-278. [PMID: 36110036 PMCID: PMC10087358 DOI: 10.1111/imr.13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal, not malignant, hematological disease characterized by intravascular hemolysis, thrombophilia and bone marrow failure. While this latter presentation is due to a T-cell mediated auto-immune disorder resembling acquired aplastic anemia, the first two clinical presentations are largely driven by the complement pathway. Indeed, PNH is characterized by a broad impairment of complement regulation on affected cells, which is due to the lack of the complement regulators CD55 and CD59. The deficiency of these two proteins from PNH blood cells is due to the somatic mutation in the phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene causing the disease, which impairs the surface expression of all proteins linked via the glycosylphosphatidylinositol anchor. The lack of the complement regulators CD55 and CD59 on PNH erythrocytes accounts for the hallmark of PNH, which is the chronic, complement-mediated intravascular hemolysis. This hemolysis results from the impaired regulation of the alternative pathway upstream in the complement cascade, as well as of the downstream terminal pathway. PNH represented the first indication for the development of anti-complement agents, and the therapeutic interception of the complement cascade at the level of C5 led to remarkable changes in the natural history of the disease. Nevertheless, the clinical use of an inhibitor of the terminal pathway highlighted the broader derangement of complement regulation in PNH, shedding light on the pivotal role of the complement alternative pathway. Here we review the current understanding of the role of the alternative pathway in PNH, including the emergence of C3-mediated extravascular hemolysis in PNH patients on anti-C5 therapies. These observations provide the rationale for the development of novel complement inhibitors for the treatment of PNH. Recent preclinical and clinical data on proximal complement inhibitors intercepting the alternative pathway with the aim of improving the treatment of PNH are discussed, together with their clinical implications which are animating a lively debate in the scientific community.
Collapse
Affiliation(s)
- Antonio M Risitano
- AORN San Giuseppe Moscati, Avellino, Italy.,Federico II University of Naples, Naples, Italy.,Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | | | | | | |
Collapse
|
3
|
Risitano AM, Peffault de Latour R, Marano L, Frieri C. Discovering C3 targeting therapies for paroxysmal nocturnal hemoglobinuria: Achievements and pitfalls. Semin Immunol 2022; 59:101618. [PMID: 35764467 DOI: 10.1016/j.smim.2022.101618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 01/15/2023]
Abstract
The treatment of paroxysmal nocturnal hemoglobinuria (PNH) was revolutionized by the introduction of the anti-C5 agent eculizumab, which resulted in sustained control of intravascular hemolysis, leading to transfusion avoidance and hemoglobin stabilization in at least half of all patients. Nevertheless, extravascular hemolysis mediated by C3 has emerged as inescapable phenomenon in PNH patients on anti-C5 treatment, frequently limiting its hematological benefit. More than 10 years ago we postulated that therapeutic interception of the complement cascade at the level of C3 should improve the clinical response in PNH. Compstatin is a 13-residue disulfide-bridged peptide binding to both human C3 and C3b, eventually disabling the formation of C3 convertases and thereby preventing complement activation via all three of its activating pathways. Several generations of compstatin analogs have been tested in vitro, and their clinical evaluation has begun in PNH and other complement-mediated diseases. Pegcetacoplan, a pegylated form of the compstatin analog POT-4, has been investigated in two phase I/II and one phase III study in PNH patients. In the phase III study, PNH patients with residual anemia already on eculizumab were randomized to receive either pegcetacoplan or eculizumab in a head-to-head comparison. At week 16, pegcetacoplan was superior to eculizumab in terms of hemoglobin change from baseline (the primary endpoint), as well as in other secondary endpoints tracking intravascular and extravascular hemolysis. Pegcetacoplan showed a good safety profile, even though breakthrough hemolysis emerged as a possible risk requiring additional attention. Here we review all the available data regarding this innovative treatment that has recently been approved for the treatment of PNH.
Collapse
Affiliation(s)
- Antonio M Risitano
- AORN San Giuseppe Moscati Avellino, Italy; Federico II University of Naples, Naples, Italy; Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Regis Peffault de Latour
- Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands; French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint-Louis Hospital and Université de Paris, Paris, France
| | | | - Camilla Frieri
- AORN San Giuseppe Moscati Avellino, Italy; Federico II University of Naples, Naples, Italy; French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint-Louis Hospital and Université de Paris, Paris, France
| |
Collapse
|
4
|
Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood 2021; 139:3571-3582. [PMID: 34482398 DOI: 10.1182/blood.2021012860] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Complement is an elaborate system of the innate immunity. Genetic variants and autoantibodies leading to excessive complement activation are implicated in a variety of human diseases. Among them, the hematologic disease paroxysmal nocturnal hemoglobinuria (PNH) remains the prototype model of complement activation and inhibition. Eculizumab, the first-in-class complement inhibitor, was approved for PNH in 2007. Addressing some of the unmet needs, a long-acting C5 inhibitor, ravulizumab, and a C3 inhibitor, pegcetacoplan have been also now approved with PNH. Novel agents, such as factor B and factor D inhibitors, are under study with very promising results. In this era of several approved targeted complement therapeutics, selection of the proper drug needs to be based on a personalized approach. Beyond PNH, complement inhibition has also shown efficacy and safety in cold agglutinin disease (CAD), primarily with the C1s inhibitor of the classical complement pathway, sutimlimab, but also with pegcetacoplan. Furthermore, C5 inhibition with eculizumab and ravulizumab, as well as inhibition of the lectin pathway with narsoplimab, are investigated in transplant-associated thrombotic microangiopathy (TA-TMA). With this revolution of next-generation complement therapeutics, additional hematologic entities, such as delayed hemolytic transfusion reaction (DHTR) or immune thrombocytopenia (ITP), might also benefit from complement inhibitors. Therefore, this review aims to describe state-of-the-art knowledge of targeting complement in hematologic diseases focusing on: a) complement biology for the clinician, b) complement activation and therapeutic inhibition in prototypical complement-mediated hematologic diseases, c) hematologic entities under investigation for complement inhibition, and d) other complement-related disorders of potential interest to hematologists.
Collapse
|
5
|
Gabizon A, Szebeni J. Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines. ACS NANO 2020; 14:7682-7688. [PMID: 32643376 DOI: 10.1021/acsnano.0c03648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this issue of ACS Nano, Chen et al. provide in vitro and in vivo evidence for monoclonal anti-poly(ethylene glycol) (anti-PEG) antibody-triggered, complement terminal complex-mediated damage to PEGylated liposomal doxorubicin, entailing the release of the encapsulated drug from the vesicles. These results reveal a new dimension of the potential damage of anti-PEG antibody-mediated complement activation on PEGylated nanomedicines in addition to previous observations on infusion hypersensitivity reactions and the accelerated blood clearance effect. The possibility of a destructive attack of the complement system on the liposome drug carrier may have safety implications in patients displaying high levels of preformed anti-PEG antibodies. In this Perspective, we summarize the experimental and clinical data highlighting the relationships among the above adverse immune phenomena and the options available for reducing the risk of immune damage caused by PEGylated nanomedicines.
Collapse
Affiliation(s)
- Alberto Gabizon
- Nano-oncology Research Center, Shaare Zedek Medical Center and The Hebrew University-Faculty of Medicine, Jerusalem 9103102, Israel
- Lipomedix Pharmaceuticals Ltd., Jerusalem 9139102, Israel
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc 3515, Hungary
- SeroScience Ltd., Budapest 1125, Hungary
| |
Collapse
|
6
|
Wen Q, Jin X, Lu Y, Chen DF. Anticomplement ent-labdane diterpenoids from the aerial parts of Andrographis paniculata. Fitoterapia 2020; 142:104528. [PMID: 32114038 DOI: 10.1016/j.fitote.2020.104528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/23/2023]
Abstract
Bioactivity-guided fractionation resulted in the isolation of two new ent-labdane diterpenoids (1-2), along with eighteen known congeners (3-20) from the aerial parts of Andrographis paniculata. Except andrographolide (3) and isoandrographolide (4), eighteen diterpenoids (1-2, 5-20) exhibited potent anticomplement activity with the CH50 and AP50 values of 23.1-638.3 μg/mL and 54.2-603.9 μg/mL, respectively. The structure-activity relationships of the isolates showed that 14-dehydroxylation, glycosidation and the opening of lactone were essential for anticomplement activity. Although inactive, andrographolide (3) was successfully transformed to anticomplement compounds (5 and 10) in vitro by human fecal bacteria, indicating that this major ent-labdane diterpenoid of A. paniculata might also exhibit anticomplement activity in vivo through their potential active metabolites. The targets of several bioactive ent-labdane diterpenoids in complement activation cascade were identified as well.
Collapse
Affiliation(s)
- Quan Wen
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, PR China; Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xin Jin
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, PR China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, PR China.
| | - Dao-Feng Chen
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Sepah YJ, Velez G, Tang PH, Yang J, Chemudupati T, Li AS, Nguyen QD, Bassuk AG, Mahajan VB. Proteomic analysis of intermediate uveitis suggests myeloid cell recruitment and implicates IL-23 as a therapeutic target. Am J Ophthalmol Case Rep 2020; 18:100646. [PMID: 32274442 PMCID: PMC7132169 DOI: 10.1016/j.ajoc.2020.100646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/07/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose To profile vitreous protein expression of intermediate uveitis (IU) patients. Observations We identified a mean of 363 ± 41 unique proteins (mean ± SD) in IU vitreous and 393 ± 69 unique proteins in control samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of liquid vitreous biopsies collected during pars plana vitrectomy. A total of 233 proteins were differentially expressed among control and IU samples, suggesting a protein signature that could distinguish the two groups. Pathway analysis identified 22 inflammatory mediators of the interleukin-12 (IL-12) signaling pathway in IU vitreous. Upstream regulator analysis identified downstream mediators of IL-23 and myeloid differentiation primary response protein (MYD88), both of which are involved in the recruitment and differentiation of myeloid cells. Taken together, our results suggest the recruitment of myeloid cells as an upstream pathway in the pathogenesis of IU. Conclusions This study provides insights into proteins that will serve as biomarkers and therapeutic targets for IU. These biomarkers will help design future clinical trials using rational molecular therapeutics.
Collapse
Affiliation(s)
- Yasir J Sepah
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Peter H Tang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jing Yang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Teja Chemudupati
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Angela S Li
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan D Nguyen
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
8
|
Risitano AM, Marotta S, Ricci P, Marano L, Frieri C, Cacace F, Sica M, Kulasekararaj A, Calado RT, Scheinberg P, Notaro R, Peffault de Latour R. Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: Time for Proximal Complement Inhibition? A Position Paper From the SAAWP of the EBMT. Front Immunol 2019; 10:1157. [PMID: 31258525 PMCID: PMC6587878 DOI: 10.3389/fimmu.2019.01157] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of paroxysmal nocturnal hemoglobinuria has been revolutionized by the introduction of the anti-C5 agent eculizumab; however, eculizumab is not the cure for Paroxysmal nocturnal hemoglobinuria (PNH), and room for improvement remains. Indeed, the hematological benefit during eculizumab treatment for PNH is very heterogeneous among patients, and different response categories can be identified. Complete normalization of hemoglobin (complete and major hematological response), is seen in no more than one third of patients, while the remaining continue to experience some degree of anemia (good and partial hematological responses), in some cases requiring regular red blood cell transfusions (minor hematological response). Different factors contribute to residual anemia during eculizumab treatment: underlying bone marrow dysfunction, residual intravascular hemolysis and the emergence of C3-mediated extravascular hemolysis. These two latter pathogenic mechanisms are the target of novel strategies of anti-complement treatments, which can be split into terminal and proximal complement inhibitors. Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially paralleling the efficacy and safety profile of eculizumab. Possible advantages over eculizumab are long-lasting activity and subcutaneous self-administration. However, novel anti-C5 agents do not improve hematological response to eculizumab, even if some seem associated with a lower risk of breakthrough hemolysis caused by pharmacokinetic reasons (it remains unclear whether more effective inhibition of C5 is possible and clinically beneficial). Indeed, proximal inhibitors are designed to interfere with early phases of complement activation, eventually preventing C3-mediated extravascular hemolysis in addition to intravascular hemolysis. At the moment there are three strategies of proximal complement inhibition: anti-C3 agents, anti-factor D agents and anti-factor B agents. These agents are available either subcutaneously or orally, and have been investigated in monotherapy or in association with eculizumab in PNH patients. Preliminary data clearly demonstrate that proximal complement inhibition is pharmacologically feasible and apparently safe, and may drastically improve the hematological response to complement inhibition in PNH. Indeed, we envision a new scenario of therapeutic complement inhibition, where proximal inhibitors (either anti-C3, anti-FD or anti-FB) may prove effective for the treatment of PNH, either in monotherapy or in combination with anti-C5 agents, eventually leading to drastic improvement of hematological response.
Collapse
Affiliation(s)
- Antonio M. Risitano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Serena Marotta
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Luana Marano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Camilla Frieri
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Fabiana Cacace
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Michela Sica
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Austin Kulasekararaj
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Department of Haematological Medicine, King's College Hospital, National Institute of Health Research/Wellcome King's Clinical Research Facility, London, United Kingdom
| | - Rodrigo T. Calado
- Department of Hematology and Oncology, University of São Paulo at Ribeirão Preto School of Medicine, São Paulo, Brazil
| | - Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| | - Rosario Notaro
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Regis Peffault de Latour
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint Louis Hospital and University Paris Diderot, Paris, France
| |
Collapse
|
9
|
Berentsen S, Röth A, Randen U, Jilma B, Tjønnfjord GE. Cold agglutinin disease: current challenges and future prospects. J Blood Med 2019; 10:93-103. [PMID: 31114413 PMCID: PMC6497508 DOI: 10.2147/jbm.s177621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Cold agglutinin disease (CAD) is a complement-dependent, classical pathway-mediated immune hemolytic disease, accounting for 15–25% of autoimmune hemolytic anemia, and at the same time, a distinct clonal B-cell lymphoproliferative disorder of the bone marrow. The disease burden is often high, but not all patients require pharmacological treatment. Several therapies directed at the pathogenic B-cells are now available. Rituximab plus bendamustine or rituximab monotherapy should be considered first-line treatment, depending on individual patient characteristics. Novel treatment options that target the classical complement pathway are under development and appear very promising, and the C1s inhibitor sutimlimab is currently being investigated in two clinical Phase II and III trials. These achievements have raised new challenges and further prospects, which are discussed. Patients with CAD requiring therapy should be considered for clinical trials.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Haugesund, Norway
| | - Alexander Röth
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulla Randen
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,KG Jebsen's Center for B-cell Malignancies, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Chiorean RM, Baican A, Mustafa MB, Lischka A, Leucuta DC, Feldrihan V, Hertl M, Sitaru C. Complement-Activating Capacity of Autoantibodies Correlates With Disease Activity in Bullous Pemphigoid Patients. Front Immunol 2018; 9:2687. [PMID: 30524436 PMCID: PMC6257046 DOI: 10.3389/fimmu.2018.02687] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Bullous pemphigoid is a subepidermal blistering skin disease, associated with autoantibodies to hemidesmosomal proteins, complement activation at the dermal-epidermal junction, and dermal granulocyte infiltration. Clinical and experimental laboratory findings support conflicting hypotheses regarding the role of complement activation for the skin blistering induced by pemphigoid autoantibodies. In-depth studies on the pathogenic relevance of autoimmune complement activation in patients are largely lacking. Therefore, the aim of this study was to investigate the pathogenic relevance of complement activation in patients with bullous pemphigoid. Complement activation by autoantibodies in vivo as measured by the intensity of complement C3 deposits in the patients' skin and ex vivo by the complement-fixation assay in serum was correlated with the clinical disease activity, evaluated by Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Bullous Pemphigoid Disease Area Index (BPDAI), as well as, with further immunopathological findings in patients with bullous pemphigoid. Results: Complement-activation capacity of autoantibodies ex vivo, but not deposition of complement in the perilesional skin of patients, correlates with the extent of skin disease (measured by ABSIS and BPDAI) and with levels of autoantibodies. Conclusions: Our study provides for the first time evidence in patients for a pathogenic role of complement activation in bullous pemphigoid and should greatly facilitate the development of novel diagnostic tools and of more specific therapies for complement-dependent autoimmune injury.
Collapse
Affiliation(s)
- Roxana M Chiorean
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Dermatology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Mayson B Mustafa
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Annette Lischka
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Vasile Feldrihan
- Department of Immunology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Centre for Biological Signaling Studies(BIOSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Leicht HB, Weinig E, Mayer B, Viebahn J, Geier A, Rau M. Ceftriaxone-induced hemolytic anemia with severe renal failure: a case report and review of literature. BMC Pharmacol Toxicol 2018; 19:67. [PMID: 30359322 PMCID: PMC6203207 DOI: 10.1186/s40360-018-0257-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
Background Drug induced immune hemolytic anemia (DIIHA) is a rare complication and often underdiagnosed. DIIHA is frequently associated with a bad outcome, including organ failure and even death. For the last decades, ceftriaxone has been one of the most common drugs causing DIIHA, and ceftriaxone-induced immune hemolytic anemia (IHA) has especially been reported to cause severe complications and fatal outcomes. Case presentation A 76-year-old male patient was treated with ceftriaxone for cholangitis. Short time after antibiotic exposure the patient was referred to intensive care unit due to cardiopulmonary instability. Hemolysis was observed on laboratory testing and the patient developed severe renal failure with a need for hemodialysis for 2 weeks. Medical history revealed that the patient had been previously exposed to ceftriaxone less than 3 weeks before with subsequent hemolytic reaction. Further causes for hemolytic anemia were excluded and drug-induced immune hemolytic (DIIHA) anemia to ceftriaxone could be confirmed. Conclusions The case demonstrates the severity of ceftriaxone-induced immune hemolytic anemia, a rare, but immediately life-threatening condition of a frequently used antibiotic in clinical practice. Early and correct diagnosis of DIIHA is crucial, as immediate withdrawal of the causative drug is essential for the patient prognosis. Thus, awareness for this complication must be raised among treating physicians.
Collapse
Affiliation(s)
- Hans Benno Leicht
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Elke Weinig
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Beate Mayer
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Viebahn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Monika Rau
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany.
| |
Collapse
|
12
|
Risitano AM. Therapeutic complement modulation for hematological diseases: Where we stand and where we are going. Semin Hematol 2018; 55:113-117. [PMID: 30032746 DOI: 10.1053/j.seminhematol.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio M Risitano
- Hematology, Department of Clinical Medicine and Surgery; Federico II University, Naples, Italy.
| |
Collapse
|
13
|
Berentsen S. Complement Activation and Inhibition in Autoimmune Hemolytic Anemia: Focus on Cold Agglutinin Disease. Semin Hematol 2018; 55:141-149. [PMID: 30032751 DOI: 10.1053/j.seminhematol.2018.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022]
Abstract
The classical complement pathway and, to some extent, the terminal pathway, are involved in the immune pathogenesis of autoimmune hemolytic anemia (AIHA). In primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, the hemolytic process is entirely complement dependent. Complement activation also plays an important pathogenetic role in some warm-antibody AIHAs, especially when immunoglobulin M is involved. This review describes the complement-mediated hemolysis in AIHA with a major focus on CAD, in which activation of the classical pathway is essential and particularly relevant for complement-directed therapy. Several complement inhibitors are candidate therapeutic agents in CAD and other AIHAs, and some of these drugs seem very promising. The relevant in vitro findings, early clinical data and future perspectives are reviewed.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna HF, Haugesund, Norway.
| |
Collapse
|
14
|
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation; Haugesund Hospital; Haugesund Norway
| |
Collapse
|
15
|
Magnetic bead based assays for complement component C5. J Immunol Methods 2017; 450:50-57. [DOI: 10.1016/j.jim.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
|
16
|
Khameneh HJ, Ho AWS, Laudisi F, Derks H, Kandasamy M, Sivasankar B, Teng GG, Mortellaro A. C5a Regulates IL-1β Production and Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-Induced Peritonitis. Front Pharmacol 2017; 8:10. [PMID: 28167912 PMCID: PMC5253373 DOI: 10.3389/fphar.2017.00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gouty arthritis results from the generation of monosodium urate (MSU) crystals within joints. These MSU crystals elicit acute inflammation characterized by massive infiltration of neutrophils and monocytes that are mobilized by the pro-inflammatory cytokine IL-1β. MSU crystals also activate the complement system, which regulates the inflammatory response; however, it is unclear whether or how MSU-mediated complement activation is linked to IL-1β release in vivo, and the various roles that might be played by individual components of the complement cascade. Here we show that exposure to MSU crystals in vivo triggers the complement cascade, leading to the generation of the biologically active complement proteins C3a and C5a. C5a, but not C3a, potentiated IL-1β and IL-1α release from LPS–primed MSU-exposed peritoneal macrophages and human monocytic cells in vitro; while in vivo MSU–induced C5a mediated murine neutrophil recruitment as well as IL-1β production at the site of inflammation. These effects were significantly ameliorated by treatment of mice with a C5a receptor antagonist. Mechanistic studies revealed that C5a most likely increased NLRP3 inflammasome activation via production of reactive oxygen species (ROS), and not through increased transcription of inflammasome components. Therefore we conclude that C5a generated upon MSU-induced complement activation increases neutrophil recruitment in vivo by promoting IL-1 production via the generation of ROS, which activate the NLRP3 inflammasome. Identification of the C5a receptor as a key determinant of IL-1-mediated recruitment of inflammatory cells provides a novel potential target for therapeutic intervention to mitigate gouty arthritis.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Adrian W S Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Federica Laudisi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Heidi Derks
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Matheswaran Kandasamy
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Baalasubramanian Sivasankar
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| | - Gim Gee Teng
- Division of Rheumatology, University Medicine Cluster, National University Health System (NUHS)Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS) and National University Health System (NUHS)Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) Singapore, Singapore
| |
Collapse
|
17
|
Abstract
Primary chronic cold agglutinin disease (CAD) is a well-defined clinicopathologic entity in which a specific, clonal lymphoproliferative B-cell bone marrow disorder results in autoimmune hemolytic anemia. The immune hemolysis is entirely complement-dependent, predominantly mediated by activation of the classical pathway and phagocytosis of erythrocytes opsonized with complement protein C3b. Typical clinical features in CAD have diagnostic and therapeutic implications. Pharmacologic treatment should be offered to patients with symptom-producing anemia or disabling circulatory symptoms. CAD should not be treated with corticosteroids. Based on an individualized approach, rituximab monotherapy or rituximab-fludarabine in combination is recommended as first-line therapy. Rituximab-bendamustine is still an investigational therapy. Although complement-modulating agents are still to be considered experimental in CAD, therapy with the anti-C1s monoclonal antibody TNT009 seems promising.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna, Haugesund, Norway
| |
Collapse
|
18
|
Yin X, Lu Y, Cheng ZH, Chen DF. Anti-Complementary Components of Helicteres angustifolia. Molecules 2016; 21:molecules21111506. [PMID: 27834928 PMCID: PMC6273495 DOI: 10.3390/molecules21111506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 01/10/2023] Open
Abstract
A first phenalenon derivative with an acetyl side chain at C-8, 8-acetyl-9-hydroxy-3-methoxy-7-methyl-1-phenalenon (compound 1), and a pair of new sesquilignan epimers at C-7″ of hedyotol C and hedyotol D analogs, hedyotol C 7″-O-β-d-glucopyranoside (compound 2) and hedyotol D 7″-O-β-d-glucopyranoside (compound 3) were isolated from the aerial parts of Helicteres angustifolia together with nine known compounds (4–12). Their structures were elucidated on the basis of spectroscopic methods, including mass spectroscopy, and 1D and 2D nuclear magnetic resonance. Eleven isolates exhibited anti-complementary activity. In particular, compounds 4 and 5 exhibited potent anti-complementary activities against the classical and alternative pathways with CH50 values of 0.040 ± 0.009 and 0.009 ± 0.002 mM, and AP50 values of 0.105 ± 0.015 and 0.021 ± 0.003 mM, respectively. The targets of compounds 4 and 5 in the complement activation cascade were also identified. In conclusion, the anti-complementary components of H. angustifolia possessed chemical diversity and consisted mostly of flavonoids and lignans in this study.
Collapse
Affiliation(s)
- Xiang Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhi-Hong Cheng
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Dao-Feng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
19
|
Kuhn N, Schmidt CQ, Schlapschy M, Skerra A. PASylated Coversin, a C5-Specific Complement Inhibitor with Extended Pharmacokinetics, Shows Enhanced Anti-Hemolytic Activity in Vitro. Bioconjug Chem 2016; 27:2359-2371. [PMID: 27598771 DOI: 10.1021/acs.bioconjchem.6b00369] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ornithodoros moubata Complement Inhibitor (OmCI) binds complement component 5 (C5) with high affinity and, thus, selectively prevents proteolytic activation of the terminal lytic complement pathway. A recombinant version of OmCI (also known as Coversin and rEV576) has proven efficacious in several animal models of complement-mediated diseases and successfully completed a phase Ia clinical trial. Coversin is a small 17 kDa lipocalin protein which has a very short plasma half-life if not bound to C5; therefore, the drug requires frequent dosing. We have improved the pharmacokinetics of Coversin by N-terminal translational conjugation with a 600 residue polypeptide composed of Pro, Ala, and Ser (PAS) residues. To this end, PAS-Coversin as well as the unmodified Coversin were functionally expressed in the cytoplasm of E. coli and purified to homogeneity. Both versions showed identical affinity to human C5, as determined by surface plasmon resonance measurements, and revealed similar complement inhibitory activity, as measured in ELISAs with human serum. In line with the PEG-like biophysical properties, PASylation dramatically prolonged the plasma half-life of uncomplexed Coversin by a factor ≥50 in mice. In a clinically relevant in vitro model of the complement-mediated disease paroxysmal nocturnal hemoglobinuria (PNH) both versions of Coversin effectively reduced erythrocyte lysis. Unexpectedly, while the IC50 values were comparable, PAS-Coversin reached a substantially lower plateau of residual lysis at saturating inhibitor concentrations. Taken together, our data demonstrate two clinically relevant improvements of PASylated Coversin: markedly increased plasma half-life and considerably reduced background hemolysis of erythrocytes with PNH-induced phenotype.
Collapse
Affiliation(s)
- Nadine Kuhn
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University , Helmholtzstrasse 20, 89081 Ulm, Germany
| | - Martin Schlapschy
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany.,XL-protein GmbH , Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München , Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany.,XL-protein GmbH , Lise-Meitner-Strasse 30, 85354 Freising, Germany
| |
Collapse
|
20
|
Gaggl M, Aigner C, Sunder-Plassmann G, Schmidt A. [Thrombotic microangiopathy : Relevant new aspects for intensive care physicians]. Med Klin Intensivmed Notfmed 2016; 111:434-9. [PMID: 27255224 PMCID: PMC7095971 DOI: 10.1007/s00063-016-0176-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/08/2016] [Indexed: 01/29/2023]
Abstract
Die thrombotische Mikroangiopathie (TMA) ist klinisch durch eine mechanische Hämolyse, eine geringradig bis stark ausgeprägte Thrombopenie und ein akutes Nierenversagen charakterisiert. Differenzialdiagnostisch kommen das atypische hämolytisch-urämische Syndrom (aHUS), die thrombotisch-thrombozytopenische Purpura (TTP), das Shiga-Toxin-assoziierte HUS (STEC-HUS, früher typisches HUS), und andere seltene Formen der TMA infrage. Ferner kann im Rahmen von diversen Autoimmunerkrankungen, maligner Hypertonie, Malignomen und Infektionen eine TMA als sekundäres Phänomen entstehen. Pathophysiologisch kommt es beim aHUS zu einer überschießenden Aktivierung des alternativen Wegs des Komplementsystems. Essenziell ist daher eine rasche Klärung der zugrunde liegenden Ursache der TMA und eine entsprechende Therapie der Grundkrankheit bei den wesentlich häufigeren sekundären TMA. Bei der TTP ist eine rasche Initiierung von Plasmainfusionen bzw. Plasmaaustausch unumgänglich. Für komplement-mediierte Formen bestehen als etablierte Therapie der Plasmaaustausch und als moderne sehr erfolgreiche Therapieoption Antikomplementtherapien.
Collapse
Affiliation(s)
- M Gaggl
- Klinische Abteilung für Nephrologie und Dialyse, Universitätsklinik für Innere Medizin III, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - C Aigner
- Klinische Abteilung für Nephrologie und Dialyse, Universitätsklinik für Innere Medizin III, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - G Sunder-Plassmann
- Klinische Abteilung für Nephrologie und Dialyse, Universitätsklinik für Innere Medizin III, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - A Schmidt
- Klinische Abteilung für Nephrologie und Dialyse, Universitätsklinik für Innere Medizin III, Währinger Gürtel 18-20, 1090, Wien, Österreich
| |
Collapse
|
21
|
Risitano AM. Paroxysmal nocturnal hemoglobinuria in the era of complement inhibition. Am J Hematol 2016; 91:359-60. [PMID: 26852134 DOI: 10.1002/ajh.24323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 11/12/2022]
|
22
|
Hajishengallis G, Hajishengallis E, Kajikawa T, Wang B, Yancopoulou D, Ricklin D, Lambris JD. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin Immunol 2016; 28:285-91. [PMID: 27021500 DOI: 10.1016/j.smim.2016.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 02/08/2023]
Abstract
Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | - Evlambia Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, Philadelphia, PA 19104, USA
| | - Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | - Baomei Wang
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | | | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28:309-16. [PMID: 27009480 DOI: 10.1016/j.smim.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Several mAbs that have been approved for the treatment of cancer make use of complement-dependent cytotoxicity (CDC) to eliminate tumor cells. Comprehensive investigations, based on in vitro studies, mouse models and analyses of patient blood samples after mAb treatment have provided key insights into the details of individual steps in the CDC reaction. Based on the lessons learned from these studies, new and innovative approaches are now being developed to increase the clinical efficacy of next generation mAbs with respect to CDC. These improvements include engineering changes in the mAbs to enhance their ability to activate complement. In addition, mAb dosing paradigms are being developed that take into account the capacity as well as the limitations of the complement system to eliminate a substantial burden of mAb-opsonized cells. Over the next few years it is likely these approaches will lead to mAbs that are far more effective in the treatment of cancer.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
24
|
The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation. AUTOIMMUNITY HIGHLIGHTS 2016; 7:6. [PMID: 26935316 PMCID: PMC4775539 DOI: 10.1007/s13317-016-0078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one.
Collapse
|
25
|
Berglund MM, Strömberg P. The clinical potential of Affibody-based inhibitors of C5 for therapeutic complement disruption. Expert Rev Proteomics 2016; 13:241-3. [DOI: 10.1586/14789450.2016.1148604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Fattahi F, Ward PA. Anti-inflammatory interventions-what has worked, not worked, and what may work in the future. Transl Res 2016; 167:1-6. [PMID: 26323016 PMCID: PMC5062739 DOI: 10.1016/j.trsl.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
Our Introductory Commentary relates to many topics that are linked to inflammatory responses and how these responses are regulated in order to promote healing of damaged tissues and bring about effective clearance of infectious agents. In non-infectious situations, cells and tissues release products (danger associated molecular patterns) that can trigger damaging inflammatory responses. These products must be effectively dealt with in order to avoid serious tissue injury. We provide a perspective about many decades of research into the inflammatory response and describe strategies that have achieved success in restraining inflammatory responses, as well as many approaches that have not been clinically effective. With development of new technologies such as advanced genomic analysis, highly sensitive and sophisticated mass spectrometry and related approaches, as well as the ability to employ mutagenesis induction, we are beginning to define highly sophisticated molecular pathways that previously were opaque. This progress may well have clinical relevance, and we may be on the edge of a scientific revolution in the broad area of inflammation.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|
27
|
Hiemstra PS. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface. Mol Immunol 2015; 68:28-30. [DOI: 10.1016/j.molimm.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/28/2023]
|
28
|
Mastellos DC, Ricklin D, Hajishengallis E, Hajishengallis G, Lambris JD. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention. Mol Oral Microbiol 2015; 31:3-17. [PMID: 26332138 DOI: 10.1111/omi.12129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/13/2022]
Abstract
There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases.
Collapse
Affiliation(s)
- D C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Greece
| | - D Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Hajishengallis
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Goncalves MVM, Melo LH, Benedet CM, Ribas FD, Cabral NL, Fragoso YD. Eculizumab, Neuromyelitis Optica, and Tuberculosis: We Live An Era of Challenging Combinations. CNS Neurosci Ther 2015; 21:914-5. [PMID: 26404521 DOI: 10.1111/cns.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Luiz Henrique Melo
- Department of Infectious Diseases, Centro Hospitalar Unimed, Joinville, Brazil
| | | | | | | | | |
Collapse
|