1
|
Picard A, Bayart S, Deparis M, De Maricourt CD, Haro S, Jourdain A, Mallebranche C, Rialland F, Luque Paz D, Pastoret C, Gandemer V, Cousin E. Polycythemia vera and essential thrombocythemia in children, still a challenge for pediatricians. Eur J Pediatr 2025; 184:173. [PMID: 39903357 PMCID: PMC11794414 DOI: 10.1007/s00431-025-05993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are rare myeloproliferative neoplasms (MPN) in children, adolescents and young adults. No recommendations are available concerning these patients' management. Transposing to children the knowledge established in adult patients is not acceptable. For a better understanding of difficulties encountered by pediatricians and adult hematologists, we conducted a national practice analysis concerning follow-up of patients under 18 diagnosed with ET or PV, in France. Then, we present data from a multicentric, descriptive, retrospective study, including 17 patients with ET or PV, diagnosed under 18, coming from 7 hematopediatric departments in France. Interviewed physicians reported a lack of expertise and theoretical training in the hematological field to diagnose and follow children with MPNs. Data from 17 patients (15 ET, 2 PV) confirmed a high proportion of asymptomatic patients at the time of diagnosis (41%). Proportion of "triple-negative" patients (59%) was higher than in adult cohorts. 60% of patients underwent a bone marrow biopsy and 31% of cases were discussed during a multi-disciplinary staff meeting. 76.5% patients were treated, with a high frequency of antithrombotic and cytoreductive drugs. No complications were observed during the 45 months of median follow-up. CONCLUSION Physicians insisted on the need for training. Only the accumulation of descriptions of MPNs in children will lead to a better management of these diseases. Considering the small proportion of pediatric patients with complications after diagnosis, rapid therapeutic de-escalation seems essential to consider during the follow-up in a close collaboration with adult hematologists. WHAT IS KNOWN • Myeloproliferativ neoplams are rare and chronic deseases, most of the time affecting adults but also found in few pediatric patients. • There are no recommendations for the diagnosis, therapeutic management or follow-up of children with polycythemia vera or essential thrombocythemia. WHAT IS NEW • Find out how adult haematologists and paediatricians feel about the management and follow-up of paediatric patients with myeloproliferative syndrome through a national practice analysis. • Description of the "real life" follow-up of children with polycythemia vera or essential thrombocythemia in France.
Collapse
Affiliation(s)
- Agathe Picard
- Pediatric Oncohematology Department, Rennes University Hospital, Rennes, France.
| | - Sophie Bayart
- Pediatric Oncohematology Department, Rennes University Hospital, Rennes, France
| | - Marianna Deparis
- Pediatric Oncohematology Department, Caen-Normandie University Hospital, Caen, France
| | | | - Sophie Haro
- Pediatric Oncohematology Department, Brest University Hospital, Brest, France
| | - Anne Jourdain
- Pediatric Oncohematology Department, Tours University Hospital, Tours, France
| | - Coralie Mallebranche
- Pediatric Oncohematology Department, Angers University Hospital, INSERM, CRCI2NA, SFR ICAT, Angers, Nantes University, Nantes, France
| | - Fanny Rialland
- Pediatric Oncohematology Department, Nantes University Hospital, Nantes, France
| | - Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, F-49000, Angers, France
| | - Cedric Pastoret
- Laboratory of Hematology Department, Rennes University Hospital, Rennes, France
| | - Virginie Gandemer
- Pediatric Oncohematology Department, Rennes University Hospital, Rennes, France
| | - Elie Cousin
- Pediatric Oncohematology Department, Rennes University Hospital, Rennes, France
| |
Collapse
|
2
|
Lixi F, Giannaccare G, Salerno G, Gagliardi V, Pellegrino A, Vitiello L. Side Effects of Novel Anticancer Drugs on the Posterior Segment of the Eye: A Review of the Literature. J Pers Med 2024; 14:1160. [PMID: 39728071 DOI: 10.3390/jpm14121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Currently, common treatment approaches for neoplastic diseases include surgery, radiation, and/or anticancer drugs (chemotherapy, hormone medications, and targeted therapies). In particular, anticancer medicines destroy cancerous cells by blocking certain pathways that aid in the disease's initiation and progression. These pharmaceutical drugs' capacity to inhibit malignant cells has made them indispensable in the treatment of neoplastic disorders. Nonetheless, considering their cyto- and neurotoxicity, as well as their inflammatory responses, these medications may also have unfavorable systemic and ocular side effects. In fact, it is well known that ocular posterior segment side effects, including retinal and vascular complications, have a negative influence on the patient's eyesight and quality of life. However, the underlying mechanisms contributing to the development of these side effects remain incompletely recognized, especially in the case of newly available anticancer drugs. The purpose of this literature review is to analyze the possible side effects of new anticancer drugs on the posterior segment of the eye, trying to better understand the involved pharmacological mechanisms and offer helpful guidance on their appropriate management.
Collapse
Affiliation(s)
- Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| | - Giulio Salerno
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Vincenzo Gagliardi
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Alfonso Pellegrino
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Livio Vitiello
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| |
Collapse
|
3
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
4
|
Diao Y, Liu D, Ge H, Zhang R, Jiang K, Bao R, Zhu X, Bi H, Liao W, Chen Z, Zhang K, Wang R, Zhu L, Zhao Z, Hu Q, Li H. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Nat Commun 2023; 14:4552. [PMID: 37507402 PMCID: PMC10382584 DOI: 10.1038/s41467-023-40219-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in macrocycles as potential therapeutic agents has increased rapidly. Macrocyclization of bioactive acyclic molecules provides a potential avenue to yield novel chemical scaffolds, which can contribute to the improvement of the biological activity and physicochemical properties of these molecules. In this study, we propose a computational macrocyclization method based on Transformer architecture (which we name Macformer). Leveraging deep learning, Macformer explores the vast chemical space of macrocyclic analogues of a given acyclic molecule by adding diverse linkers compatible with the acyclic molecule. Macformer can efficiently learn the implicit relationships between acyclic and macrocyclic structures represented as SMILES strings and generate plenty of macrocycles with chemical diversity and structural novelty. In data augmentation scenarios using both internal ChEMBL and external ZINC test datasets, Macformer display excellent performance and generalisability. We showcase the utility of Macformer when combined with molecular docking simulations and wet lab based experimental validation, by applying it to the prospective design of macrocyclic JAK2 inhibitors.
Collapse
Affiliation(s)
- Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dandan Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Ge
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Rongrong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kexin Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Runhui Bao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoqian Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongjie Bi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenjie Liao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziqi Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kai Zhang
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Qiaoyu Hu
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
5
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
6
|
Sherapura A, Malojirao VH, Thirusangu P, Sharath BS, Kandagalla S, Vigneshwaran V, Novak J, Ranganatha L, Ramachandra YL, Baliga SM, Khanum SA, Prabhakar BT. Anti-neoplastic pharmacophore benzophenone-1 coumarin (BP-1C) targets JAK2 to induce apoptosis in lung cancer. Apoptosis 2021; 27:49-69. [PMID: 34837562 DOI: 10.1007/s10495-021-01699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Reigning of the abnormal gene activation associated with survival signalling in lung cancer leads to the anomalous growth and therapeutic failure. Targeting specific cell survival signalling like JAK2/STAT3 nexus has become a major focus of investigation to establish a target specific treatment. The 2-bromobenzoyl-4-methylphenoxy-acetyl hydra acetyl Coumarin (BP-1C), is new anti-neoplastic agent with apoptosis inducing capacity. The current study was aimed to develop antitumor phramacophore, BP-1C as JAK2 specific inhibitor against lung neoplastic progression. The study validates and identifies the molecular targets of BP-1C induced cell death. Cell based screening against multiple cancer cell lines identified, lung adenocarcinoma as its specific target through promotion of apoptosis. The BP-1C is able to induce, specific hall marks of apoptosis and there by conferring anti-neoplastic activity. Validation of its molecular mechanism, identified, BP-1C specifically targets JAK2Tyr1007/1008 phosphorylation, and inhibits its downstream STAT3Tyr705 signalling pathway to induce cell death. As a consequence, modulation in Akt/Src survival signal and altered expression of interwoven apoptotic genes were evident. The results were reproducible in an in-vivo LLC tumor model and in-ovo xenograft studies. The computational approaches viz, drug finger printing confers, BP-1C as novel class JAK2 inhibitor and molecular simulations studies assures its efficiency in binding with JAK2. Overall, BP-1C is a novel JAK2 inhibitor with experimental evidence and could be effectively developed into a promising drug for lung cancer treatment.
Collapse
Affiliation(s)
- Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India.,Division for DNA Repair Research, Department of Neurosurgery, Centre for Neuroregeneration, Houston Methodist, Fannin Street, Houston, TX, USA
| | - Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India.,Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - B S Sharath
- School of System Biomedical Science and Department of Bioinformatics and Lifescience, Soongsil University, Seoul, South Korea
| | - Shivananda Kandagalla
- Laboratory of Computational Modelling of Drugs, Higher Medical and Biological School, South Ural State University, Chaikovskogo 20A, Chelyabinsk, Russia, 454008
| | - V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India.,Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, 60612, USA
| | - Jurica Novak
- Laboratory of Computational Modelling of Drugs, Higher Medical and Biological School, South Ural State University, Chaikovskogo 20A, Chelyabinsk, Russia, 454008
| | - Lakshmi Ranganatha
- Department of Chemistry, The National Institute of Engineering, Mysuru, Karnataka, 570008, India
| | - Y L Ramachandra
- Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, India
| | - Shrinath M Baliga
- Department of Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka, 575 002, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570 005, India.
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India.
| |
Collapse
|
7
|
Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy. Leukemia 2021; 35:2875-2884. [PMID: 34480104 PMCID: PMC8478661 DOI: 10.1038/s41375-021-01391-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.
Collapse
|
8
|
Melikyan AL, Subortseva IN, Gilyazitdinova EA, Koloshejnova TI, Egorova EK, Pustovaya EI, Sudarikov AB, Abdullaev AO, Gorgidze LA, Chebotarev DI. [The prognostic value of ASXL1 mutation in primary myelofibrosis. Literature review and clinical case description]. TERAPEVT ARKH 2020; 92:95-99. [PMID: 33346451 DOI: 10.26442/00403660.2020.07.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 11/22/2022]
Abstract
Primary myelofibrosis is a myeloproliferative neoplasm that occurs de novo, characterized by clonal proliferation of stem cells, abnormal expression of cytokines, bone marrow fibrosis, hepatosplenomegaly as a result of extramedullary hematopoiesis, symptoms of tumor intoxication, cachexemia, peripheral blood leukoerythroblastosis, leukemic progression and low survival. Primary myelofibrosis is a chronic incurable disease. The aims of therapy: preventing progression, increasing overall survival, improving quality of life. The choice of therapeutic tactics is limited. Allogenic hematopoietic stem cell transplantation is the only method that gives a chance for a cure. The role of mutations in a number of genes in the early identification of candidates for allogeneic hematopoietic stem cell transplantation is being actively studied. The article describes the clinical case of the detection ofASXL1gene mutations in a patient with prefibrous primary myelofibrosis. The diagnosis was established on the basis of WHO criteria 2016. The examination revealed a mutation ofASXL1. Interferon alfa therapy is carried out, against the background of which clinico-hematological remission has been achieved. Despite the identified mutation, the patient is not a candidate for allogeneic hematopoietic stem cell transplantation. Given the unfavorable prognostic value of theASXL1mutation, the patient is subject to active dynamic observation and aggressive therapeutic tactics when signs of disease progression appear.
Collapse
|
9
|
Allain-Maillet S, Bosseboeuf A, Mennesson N, Bostoën M, Dufeu L, Choi EH, Cleyrat C, Mansier O, Lippert E, Le Bris Y, Gombert JM, Girodon F, Pettazzoni M, Bigot-Corbel E, Hermouet S. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092446. [PMID: 32872203 PMCID: PMC7564615 DOI: 10.3390/cancers12092446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and report that in patients as well as in UT-7 cell lines, interleukin-1β and interferon-induced protein 10 (IP-10) were the main inflammatory molecules found to be induced by JAK2V617F, the most frequent driving mutation in MPNs. All other inflammatory cytokines were not linked to JAK2V617F, which implies that inflammation likely precedes MPN development at least in subsets of MPN patients. Consistently, a possible cause of early, chronic inflammation may be auto-immunity against glucolipids: we report that 20% of MPN patients presented with anti-glucosylsphingoside auto-antibodies. Since existing treatments can reduce glucosylsphingoside, this lysosphingolipid could become a new therapeutic target for subsets of MPN patients, in addition to JAK2V617F and inflammation. Abstract Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1β, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1β, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1β and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.
Collapse
Affiliation(s)
- Sophie Allain-Maillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Adrien Bosseboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Nicolas Mennesson
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Mégane Bostoën
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Laura Dufeu
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Eun Ho Choi
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Cédric Cleyrat
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Olivier Mansier
- Laboratoire d’Hématologie, CHU de Bordeaux, 33600 Pessac, France;
- INSERM U1034, Université de Bordeaux, UFR Sciences de la Vie et de la Santé, 33000 Bordeaux, France
| | - Eric Lippert
- Laboratoire d’Hématologie, CHU de Brest, 29200 Brest, France;
- INSERM, Etablissement Français du Sang (EFS), UMR 1078, GGB, Université de Brest, 29200 Brest, France
| | - Yannick Le Bris
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
| | | | - François Girodon
- Laboratoire d’Hématologie, CHU Dijon, 21034 Dijon, France;
- INSERM, UMR 1231, University of Bourgogne Franche-Comté, 21078 Dijon, France
| | - Magali Pettazzoni
- LBMMS, Service de Biochimie et Biologie Moléculaire Grand Est, UF des Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, 69677 Bron CEDEX, France;
| | - Edith Bigot-Corbel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire de Biochimie, CHU de Nantes, 44093 Nantes, France
| | - Sylvie Hermouet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
- Correspondence: ; Tel.: +33-228080355
| |
Collapse
|
10
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
11
|
Hu G, Phillips JL, Dasari S, Jacobs HK, Luchtel RA, Oishi N, Hundal T, Ahmed NH, Satou A, Epstein AL, Bennani NN, Nowakowski GS, Murray JA, Feldman AL. Targetability of STAT3-JAK2 fusions: implications for T-cell lymphoproliferative disorders of the gastrointestinal tract. Leukemia 2019; 34:1467-1471. [PMID: 31836854 DOI: 10.1038/s41375-019-0678-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangzhen Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Phillips
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hailey K Jacobs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rebecca A Luchtel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Naoki Oishi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tanya Hundal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nada H Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Akira Satou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | - Grzegorz S Nowakowski
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Sant'Antonio E, Bonifacio M, Breccia M, Rumi E. A journey through infectious risk associated with ruxolitinib. Br J Haematol 2019; 187:286-295. [PMID: 31468506 DOI: 10.1111/bjh.16174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruxolitinib has proved to be effective for the treatment of patients with myelofibrosis (either primary or secondary) and polycythaemia vera, and its approval led to a significant change in the current treatment algorithm. Despite its efficacy and beyond its well described haematological toxicity, a peculiar immunosuppressive effect emerged as our clinical experience grew, both within and outside of a clinical trial setting. Definite and negative interactions with multiple pathways of the immune system of patients have been reported so far, involving both adaptive and innate immune responses. These pathophysiological mechanisms may contribute to the increased risk of reactivation of silent infections (e.g., tuberculosis, hepatitis B virus and varicella zoster virus) that have been associated with the drug. Even though such infectious events may be fatal or may lead to significant impairment of organ function, compromising the eligibility of patients for an allotransplant procedure, there are no dedicated guidelines that may help us in assessing and managing the risk of developing serious infections. On this basis, our aim for the present work was to review the current knowledge on the pathophysiological mechanisms through which ruxolitinib may exert its immunosuppressive effect, and to illustrate our personal approach to the management of three peculiar clinical scenarios, for which a risk-based algorithm is suggested.
Collapse
Affiliation(s)
- Emanuela Sant'Antonio
- Department of Oncology, Division of Haematology, Azienda USL Toscana Nord Ovest, Lucca, Italy
| | | | - Massimo Breccia
- Division of Cellular Biotechnologies and Haematology, University Sapienza, Roma, Italy
| | - Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Mughal TI, Pemmaraju N, Radich JP, Deininger MW, Kucine N, Kiladjian JJ, Bose P, Gotlib J, Valent P, Chen CC, Barbui T, Rampal R, Verstovsek S, Koschmieder S, Saglio G, Van Etten RA. Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematol Oncol 2019; 37:240-252. [PMID: 31013548 DOI: 10.1002/hon.2622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022]
Abstract
The 60th American Society of Hematology (ASH) held in San Diego in December 2018 was followed by the 13th Post-ASH chronic myeloproliferative neoplasms (MPNs) workshop on December 4 and 5, 2018. This closed annual workshop, first introduced in 2006 by Goldman and Mughal, was organized in collaboration with Alpine Oncology Foundation and allowed experts in preclinical and clinical research in the chronic MPNs to discuss the current scenario, including relevant presentations at ASH, and address pivotal open questions that impact translational research and clinical management. This review is based on the presentations and deliberations at this workshop, and rather than provide a resume of the proceedings, we have selected some of the important translational science and treatment issues that require clarity. We discuss the experimental and observational evidence to support the intimate interaction between aging, inflammation, and clonal evolution of MPNs, the clinical impact of the unfolding mutational landscape on the emerging targets and treatment of MPNs, new methods to detect clonal heterogeneity, the challenges in managing childhood and adolescent MPN, and reflect on the treatment of systemic mastocytosis (SM) following the licensing of midostaurin.
Collapse
Affiliation(s)
- Tariq I Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, Massachusetts
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jerald P Radich
- Fred Hutch Cancer Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Nicole Kucine
- Division of Pediatric Hematology, Weill Cornell Medicine, New York, New York
| | | | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford, California
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Chih-Cheng Chen
- Chang-Gung Memorial Hospital, Chiayi; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tiziano Barbui
- Foundation for Clinical Research (FROM), Papa Giovanni XXIIII Hospital, Bergamo, Italy
| | - Raajit Rampal
- Division of Hematology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steffen Koschmieder
- Department of Medicine IV, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Giuseppe Saglio
- Divison of Hematology, Orbassano University Hospital, Turin, Italy
| | - Richard A Van Etten
- Division of Hematology-Oncology, University of California Irvine, Irvine, California
| |
Collapse
|
14
|
Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, Dirnhofer S, Dettmer MS, Simillion C, Kaufmann BA, Chiu S, Keller M, Kleppe M, Hilpert M, Buser AS, Passweg JR, Radimerski T, Skoda RC, Levine RL, Meyer SC. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest 2019; 129:1596-1611. [PMID: 30730307 DOI: 10.1172/jci98785] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tamara Codilupi
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anne Baerenwaldt
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nilabh Ghosh
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Department of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Cedric Simillion
- Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Morgane Hilpert
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas S Buser
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Radek C Skoda
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Ciboddo M, Mullally A. JAK2 (and other genes) be nimble with MPN diagnosis, prognosis, and therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:110-117. [PMID: 30504299 PMCID: PMC6246021 DOI: 10.1182/asheducation-2018.1.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Now that the spectrum of somatic mutations that initiate, propagate, and drive the progression of myeloproliferative neoplasms (MPNs) has largely been defined, recent efforts have focused on integrating this information into clinical decision making. In this regard, the greatest progress has been made in myelofibrosis, in which high-molecular-risk mutations have been identified and incorporated into prognostic models to help guide treatment decisions. In this chapter, we focus on advances in 4 main areas: (1) What are the MPN phenotypic driver mutations? (2) What constitutes high molecular risk in MPN (focusing on ASXL1)? (3) How do we risk-stratify patients with MPN? And (4) What is the significance of molecular genetics for MPN treatment? Although substantial progress has been made, we still have an incomplete understanding of the molecular basis for phenotypic diversity in MPN, and few rationally designed therapeutic approaches to target high-risk mutations are available. Ongoing research efforts in these areas are critical to understanding the biological consequences of genetic heterogeneity in MPN and to improving outcomes for patients.
Collapse
Affiliation(s)
- Michele Ciboddo
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
16
|
Menghrajani K, Boonstra PS, Mercer JA, Perkins C, Gowin KL, Weber AA, Mesa R, Gotlib JR, Wang L, Singer JW, Talpaz M. Predictive models for splenic response to JAK-inhibitor therapy in patients with myelofibrosis. Leuk Lymphoma 2018; 60:1036-1042. [PMID: 30234400 DOI: 10.1080/10428194.2018.1509315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
JAK inhibitors for myelofibrosis (MF) reduce spleen size, control constitutional symptoms, and may improve survival. We studied the clinical characteristics of 548 MF patients treated with JAK inhibitors from 2008 to 2016 to better understand predictors of splenic response. Response was defined as a 50% decrease in spleen size at early (3-4 months on therapy) and late (5-12 months) timepoints after therapy initiation. Early response positively correlated with higher doses of JAK inhibitor, baseline spleen size 5-10 cm, and hemoglobin. Early response negatively correlated with baseline spleen size >20 cm and high WBC. The strongest predictor of late response was whether a patient had a response at the earlier timepoint (OR 8.88). Our response models suggest that clinical factors can be used to predict which patients are more likely to respond to JAK inhibitors, and those who do not achieve an early response, i.e. within 3-4 months, should consider alternative treatments.
Collapse
Affiliation(s)
- Kamal Menghrajani
- a Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Philip S Boonstra
- b Department of Biostatistics , University of Michigan , Ann Arbor , MI , USA
| | - Jessica A Mercer
- a Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Cecelia Perkins
- c Medicine/Hematology Stanford Cancer Institute , Stanford , CA , USA
| | - Krisstina L Gowin
- d Division of Hematology and Medical Oncology , Mayo Clinic Cancer Center , Scottsdale , AZ , USA
| | - Alissa A Weber
- a Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| | - Ruben Mesa
- d Division of Hematology and Medical Oncology , Mayo Clinic Cancer Center , Scottsdale , AZ , USA
| | - Jason R Gotlib
- c Medicine/Hematology Stanford Cancer Institute , Stanford , CA , USA
| | - Lixia Wang
- e CTI Biopharmaceuticals , Seattle , WA , USA
| | | | - Moshe Talpaz
- a Department of Internal Medicine , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
17
|
AKT activation is a feature of CALR mutant myeloproliferative neoplasms. Leukemia 2018; 33:271-274. [PMID: 30082822 DOI: 10.1038/s41375-018-0224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022]
|
18
|
Gadina M, Johnson C, Schwartz D, Bonelli M, Hasni S, Kanno Y, Changelian P, Laurence A, O'Shea JJ. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol 2018; 104:499-514. [PMID: 29999544 DOI: 10.1002/jlb.5ri0218-084r] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
In this era, it is axiomatic that cytokines have critical roles in cellular development and differentiation, immune homeostasis, and host defense. Equally, dysregulation of cytokines is known to contribute to diverse inflammatory and immune-mediated disorders. In fact, the past 20 years have witnessed the rapid translation of basic discoveries in cytokine biology to multiple successful biological agents (mAbs and recombinant fusion proteins) that target cytokines. These targeted therapies have not only fundamentally changed the face of multiple immune-mediated diseases but have also unequivocally established the role of specific cytokines in human disease; cytokine biologists have many times over provided remarkable basic advances with direct clinical benefit. Numerous cytokines rely on the JAK-STAT pathway for signaling, and new, safe, and effective small molecule inhibitors have been developed for a range of disorders. In this review, we will briefly summarize basic discoveries in cytokine signaling and briefly comment on some major unresolved issues. We will review clinical data pertaining to the first generation of JAK inhibitors and their clinical indications, discuss additional opportunities for targeting this pathway, and lay out some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Massimo Gadina
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Catrina Johnson
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella Schwartz
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bonelli
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Changelian
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Aynardi J, Manur R, Hess PR, Chekol S, Morrissette JJD, Babushok D, Hexner E, Rogers HJ, Hsi ED, Margolskee E, Orazi A, Hasserjian R, Bagg A. JAK2
V617F-positive acute myeloid leukaemia (AML): a comparison between de novo
AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group. Br J Haematol 2018; 182:78-85. [DOI: 10.1111/bjh.15276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jason Aynardi
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Rashmi Manur
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Paul R. Hess
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| | | | - Daria Babushok
- Department of Medicine; Division of Hematology and Oncology; University of Pennsylvania; Philadelphia PA USA
| | - Elizabeth Hexner
- Department of Medicine; Division of Hematology and Oncology; University of Pennsylvania; Philadelphia PA USA
| | - Heesun J. Rogers
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland OH USA
| | - Eric D. Hsi
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland OH USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Robert Hasserjian
- Department of Pathology; Massachusetts General Hospital; Boston MA USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
20
|
Haissaguerre M, Ferriere A, Clark S, Guzman-Quevedo O, Tabarin A, Cota D. NPV-BSK805, an Antineoplastic Jak2 Inhibitor Effective in Myeloproliferative Disorders, Causes Adiposity in Mice by Interfering With the Action of Leptin. Front Pharmacol 2018; 9:527. [PMID: 29867515 PMCID: PMC5962752 DOI: 10.3389/fphar.2018.00527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/02/2018] [Indexed: 11/23/2022] Open
Abstract
The pathophysiology of body weight gain that is observed in patients suffering from myeloproliferative neoplasms treated with inhibitors of the janus kinase (Jak) 1 and 2 pathway remains unknown. Here we hypothesized that this class of drugs interferes with the metabolic actions of leptin, as this hormone requires functional Jak2 signaling. To test this, C57BL/6J chow-fed mice received either chronic intraperitoneal (ip) or repeated intracerebroventricular (icv) administration of the selective Jak2 inhibitor NVP-BSK805, which was proven efficacious in treating polycythemia in rodents. Changes in food intake, body weight and body composition were recorded. Icv NVP-BSK805 was combined with ip leptin to evaluate ability to interfere with the action of this hormone on food intake and on induction of hypothalamic phosphorylation of signal transducer and activator of transcription 3 (STAT3). We found that chronic peripheral administration of NVP-BSK805 did not alter food intake, but increased fat mass and feed efficiency. The increase in fat mass was more pronounced during repeated icv administration of the compound, suggesting that metabolic effects were related to molecular interference in brain structures regulating energy balance. Accordingly, acute icv administration of NVP-BSK805 prevented the ability of leptin to decrease food intake and body weight by impeding STAT3 phosphorylation within the hypothalamus. Consequently, acute icv administration of NVP-BSK805 at higher dose induced hyperphagia and body weight gain. Our results provide evidence for a specific anabolic effect exerted by antineoplastic drugs targeting the Jak2 pathway, which is due to interference with the actions of leptin. Consequently, assessment of metabolic variables related to increased fat mass gain should be performed in patients treated with Jak2 inhibitors.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- Service d’Endocrinologie, Diabétologie et Nutrition, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Amandine Ferriere
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- Service d’Endocrinologie, Diabétologie et Nutrition, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- Facultad de Químico-Farmacobiología, Universidad Michoacána de San Nicolás de Hidalgo, Morelia, Mexico
| | - Antoine Tabarin
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- Service d’Endocrinologie, Diabétologie et Nutrition, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
- *Correspondence: Antoine Tabarin, Daniela Cota,
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- *Correspondence: Antoine Tabarin, Daniela Cota,
| |
Collapse
|
21
|
Azevedo AP, Silva SN, Reichert A, Lima F, Júnior E, Rueff J. Prevalence of the Janus kinase 2 V617F mutation in Philadelphia-negative myeloproliferative neoplasms in a Portuguese population. Biomed Rep 2017; 7:370-376. [PMID: 29085634 DOI: 10.3892/br.2017.977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) result from the malignant transformation of a hematopoietic stem-cell (HSC), leading to abnormal amplification and proliferation of myeloid lineages. Identification of the Janus kinase 2 (JAK2) V617F mutation developed the knowledge of Philadelphia-negative (PN)-MPNs, contributing to and influencing the definition of the phenotype and prognostic impact. Considering the lack of Portuguese epidemiological data, the present study intends to characterize the prevalence of the JAK2 mutation in a PN-MPN versus a control Portuguese population. Caucasian Portuguese PN-MPN patients (n=133) and 281 matched control subjects were investigated. No significant differences were identified between the case and control groups concerning age distribution or smoking habits. Pathology distribution was as follows: 60.2% with essential thrombocythemia (ET), 29.3% with polycythemia vera (PV) and 10.5% with primary myelofibrosis (PMF). A total of 75.0% of patients were positive for the presence of the JAK2 V617F mutation. In addition, the prevalence of PV was 87.2%, ET was 73.4% and PMF was 50.0%. The JAK2 V617F mutation is observed in various MPN phenotypes, and has an increased incidence in ET patients and a decreased incidence in PV patients. These data may contribute to improving the knowledge of the pathophysiology of these disorders, and to a more rational and efficient selection of therapeutic strategies to be adopted, notably because most of the patients are JAK2 V617F negative.
Collapse
Affiliation(s)
- Ana Paula Azevedo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal.,Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Susana N Silva
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Alice Reichert
- Department of Clinical Hematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Fernando Lima
- Department of Clinical Hematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Esmeraldina Júnior
- Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|