1
|
Pichard V, Guilbaud M, Devaux M, Jaulin N, Journou M, Cospolite M, Garcia A, Ferry N, Michalak-Provost S, Gernoux G, Adjali O. Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer. Gene Ther 2025; 32:287-298. [PMID: 39838066 DOI: 10.1038/s41434-025-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The liver is a unique organ where immunity can be biased toward ineffective response notably in the context of viral infections. Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. In the case of recombinant Adeno-Associated-Virus, used for therapeutic gene transfer, conflicting reports describe tolerance induction to different transgene products while other studies have shown conventional cytotoxic CD8+ T cell responses with a rapid loss of transgene expression. We performed a 1 year follow up of 6 non-human primates after all animals received an rAAV8 vector carrying the GFP transgene at doses of 7×1012 vg/kg. We report that despite anti-GFP peripheral cellular response and loss of hepatic transgene expression, we were still able to detect persisting viral genomes in the liver until 1-year post-injection. These viral genomes were associated with liver inflammation, fibrosis and signs of CD8 T cell exhaustion, including high expression of PD-1. Our study shows that AAV8-mediated gene transfer can results to loss of transgene expression in liver and chronic inflammation several months after gene transfer.
Collapse
Affiliation(s)
- Virginie Pichard
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| | - Mickaël Guilbaud
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Marie Devaux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Nicolas Jaulin
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Malo Journou
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Magalie Cospolite
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Alexandra Garcia
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Nicolas Ferry
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Sophie Michalak-Provost
- HIFIH Laboratory, UPRES 3859, SFR 4208, Angers University, Angers, France
- Pathology Department, Angers University Hospital, Angers, France
| | - Gwladys Gernoux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| |
Collapse
|
2
|
Ferri Grazzi E, Becker T, Brandt S, Duport G, Garcia Diego DA, Lupi A, McKeown W, Morgan D, Camp C, Hawes C, Blenkiron T, O'Hara J, Burke T. Clinical and Humanistic Burden of Non-inhibitor Haemophilia A in Five European Countries: Insights from the CHESS II Study. Adv Ther 2024; 41:3888-3904. [PMID: 39153051 DOI: 10.1007/s12325-024-02956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Haemophilia A (HA) is a congenital bleeding disorder caused by a deficiency/absence of factor VIII (FVIII) and characterised by frequent, acute and prolonged spontaneous or traumatic bleeding events, often leading to haemophilic arthropathy and progressive joint deterioration. HA severity is characterized by endogenous FVIII activity: mild (> 5-40%), moderate (1-5%), or severe (< 1%). HA poses a substantial clinical and socioeconomic burden on people with HA (PWHA), their caregivers, and society. This analysis evaluates clinical and patient-centric outcomes of a cohort of individuals with non-inhibitor HA sampled from France, Germany, Italy, Spain, and the UK in the 'Cost of Haemophilia in Europe: A Socioeconomic Survey II' (CHESS II) study. METHODS CHESS II was a cross-sectional burden-of-illness study collecting clinical and socioeconomic data on adult (≥ 18 years) individuals with haemophilia A or B of any severity with or without inhibitors from eight European countries. Descriptive analyses were conducted examining physician-reported demographics, clinical and health resource utilisation information. PWHA-reported health-related quality of life (HRQoL) using the EQ-5D-5L and Work Productivity and Activity Impairment (WPAI) were also examined. Outcomes were stratified by HA severity and reported at country level. RESULTS Demographics and clinical characteristics of the cohort (N = 880) were generally consistent across countries. Individuals with severe HA experienced more frequent bleeding events and joint disease despite broad use of factor replacement therapy long-term prophylaxis. A minority of those with mild or moderate HA also experienced such challenges. HRQoL and workforce participation diminished, and chronic pain increased, with increasing HA severity. CONCLUSION This analysis provides up-to-date insights on the impact of HA across five European countries. Increasing HA severity was generally associated with worse clinical outcomes, HRQoL and workforce participation. These findings suggest a place for continued evidence-based tailored treatment and clinical management approaches in addressing the residual burden of HA.
Collapse
Affiliation(s)
| | - Tobias Becker
- Interessengemeinschaft Hämophiler e.V., Rottenburg, Germany
| | | | - Gaetan Duport
- Association Française des Hémophiles (AFH), Paris, France
| | | | - Angelo Lupi
- Federazione delle Associazioni Emofilici (FedEmo), Rome, Italy
| | | | | | | | | | - Tom Blenkiron
- HCD Economics, Brook St, Cheshire, Knutsford, WA16 8GP, UK.
| | - Jamie O'Hara
- HCD Economics, Brook St, Cheshire, Knutsford, WA16 8GP, UK
- University of Chester, Chester, UK
| | - Tom Burke
- HCD Economics, Brook St, Cheshire, Knutsford, WA16 8GP, UK
- University of Chester, Chester, UK
| |
Collapse
|
3
|
Baas L, van der Graaf R, Meijer K. Can hemophilia be cured? It depends on the definition. Res Pract Thromb Haemost 2024; 8:102559. [PMID: 39391560 PMCID: PMC11466600 DOI: 10.1016/j.rpth.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
Over the years, the palette of treatment options for hemophilia has grown extensively, leading to an increased life expectancy and quality of life for people living with hemophilia. Nonetheless, it is frequently emphasized that none of the current treatment modalities provides a "cure." It is therefore hoped that innovative treatments such as gene therapy may bridge this void. However, the precise definition of a "cure" for hemophilia remains unclear. In this review, we show how the concept of cure is currently used in the field of hemophilia. We then relate the discussion on cure to debates surrounding the classification of hemophilia and philosophical debates on the concepts of health and disease.
Collapse
Affiliation(s)
- Lieke Baas
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rieke van der Graaf
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karina Meijer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
5
|
Burke T, Shaikh A, Ali TM, Li N, Konkle BA, Noone D, O'Mahony B, Pipe S, O'Hara J. Association of factor expression levels with annual bleeding rate in people with haemophilia B. Haemophilia 2023; 29:115-122. [PMID: 36331904 PMCID: PMC10099781 DOI: 10.1111/hae.14675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Gene therapy clinical trials measure steady-state clotting factor expression levels (FELs) to evaluate the modulation of the bleeding phenotype, aiming to offer consistent protection against breakthrough bleeding events. The link between FELs and bleeding risk in people with haemophilia B (PwHB) is not well understood. AIM We evaluated the association between FEL and ABR in PwHB. METHODS This cross-sectional study extended the CHESS burden of illness studies in Europe and the United States. Recruitment of additional adult males with haemophilia B supplemented the existing CHESS sample size of PwHB and FELs. PwHB receiving prophylaxis were excluded, as fluctuating FELs may have confounded the analysis. Demographic and clinical characteristics were reported descriptively. Any recorded baseline FEL was reported by the haemophilia-treating physicians according to the medical records. Generalised linear models with log link explored the association between changes in FEL and ABR. RESULTS The study included 407 PwHB and no inhibitors receiving on-demand treatment. Mean age was 36.7 years; 56% from the EU, 44% from the United States. Mean baseline FEL was 9.95 IU/dl (SD, 10.47); mean ABR was 2.4 bleeds/year (SD, 2.64). After adjusting for covariates, the model showed that for every 1% increase in FEL the average ABR decreased by .08 (p < .001). Predicted number of bleeding events according to FEL showed a significant non-linear relationship between FEL and ABR (p < .05). CONCLUSION This analysis showed a significant relationship between FEL and ABR, where increases in FEL were associated with decreases in ABR among men with HB in Europe and the US.
Collapse
Affiliation(s)
- Tom Burke
- HCD Economics, Daresbury, Cheshire, UK.,Faculty of Health and Social Care, University of Chester, Chester, Cheshire, UK
| | | | | | - Nanxin Li
- uniQure Inc., Lexington, Massachusetts, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Declan Noone
- European Haemophilia Consortium, Brussels, Belgium
| | - Brian O'Mahony
- Irish Haemophilia Society, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | - Steven Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jamie O'Hara
- HCD Economics, Daresbury, Cheshire, UK.,Faculty of Health and Social Care, University of Chester, Chester, Cheshire, UK
| |
Collapse
|
6
|
Co-administration of FVIII with IVIG reduces immune response to FVIII in hemophilia A mice. Sci Rep 2022; 12:20074. [PMID: 36418333 PMCID: PMC9684572 DOI: 10.1038/s41598-022-19392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hemophilia A is an X-linked recessive congenital bleeding disorder. Exogenous infusion of FVIII is the treatment of choice, and the development of immunoglobulins against FVIII (inhibitors) remains the major challenge in clinical management of the disease. Here, we investigated the effect of co-administration of FVIII with intravenous immunoglobulin (IVIG) on the development of inhibitors in previously untreated hemophilia A mice. A group of hemophilia A mice (C57BL/6FVIII-/-) received weekly injections of recombinant human FVIII (rFVIII) for twelve consecutive weeks while a second group received co-injections of rFVIII + IVIG. An in-house enzyme-linked immunosorbent assay (ELISA) was designed to detect antibodies to rFVIII. Every mouse in the first group developed antibodies to rFVIII. In contrast, mice treated with rFVIII + IVIG showed significantly lower antibody titers. Interestingly, when co-administration of IVIG was discontinued after 12 weeks in some mice (rFVIII continued), these mice experienced an increase in antibody titer. In contrast, mice that continued to receive rFVIII + IVIG retained significantly lower titers. In conclusion, prophylactic rFVIII co-administration with IVIG modulated the immune response to FVIII and resulted in decreased anti-FVIII antibody titer. These findings suggest that co-injection therapy with IVIG could potentially be effective in the management of hemophilia A patients at risk of inhibitor development.
Collapse
|
7
|
Mazurkiewicz Ł, Czernikiewicz K, Rupa-Matysek J, Gil L. Emicizumab: a novel drug in hemophilia A prophylaxis - a narrative review. Expert Rev Hematol 2022; 15:933-942. [PMID: 36191306 DOI: 10.1080/17474086.2022.2131526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hemophilia A is a genetically conditioned disease leading to hemostatic disorders due to factor VIII (FVIII) deficiency. The treatment of hemophilia has evolved throughout the past years and has significantly changed. One of the newest drugs for prophylactic treatment is the humanized bispecific IgG antibody - emicizumab, which binds with factor IXa and factor X, bridging those factors and thus mimicking the activity of factor VIII. AREAS COVERED The literature search was made via PubMed database, with the emphasis on clinical trials and case reports, describing the off-label emicizumab use. This review presents an extensive summary and considers advantages and disadvantages (side-effects) of emicizumab, describing additional clinical situations, where emicizumab has been successfully used. In our review we cover information about the mechanisms of action, indications, efficacy and discuss some chosen case reports about off-label emicizumab use. EXPERT OPINION Its convenient administration method (subcutaneous) and frequency of injections (from once a week to once a month) makes it a more comfortable treatment, limiting injection-site reactions, hospital stays, costs of prophylaxis, and significantly increasing patients' quality of life. Adverse effects are scarce and rarely serious - the most common ones are reactions at the injection-site and upper respiratory tract infections.
Collapse
Affiliation(s)
- Łukasz Mazurkiewicz
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Krystian Czernikiewicz
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Kavaklı K, Antmen B, Okan V, Şahin F, Aytaç S, Balkan C, Berber E, Kaya Z, Küpesiz A, Zülfikar B. Gene therapy in haemophilia: literature review and regional perspectives for Turkey. Ther Adv Hematol 2022; 13:20406207221104591. [PMID: 35898436 PMCID: PMC9310332 DOI: 10.1177/20406207221104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 01/19/2023] Open
Abstract
Haemophilia is an X-linked lifelong congenital bleeding disorder that is caused by insufficient levels of factor VIII (FVIII; haemophilia A) or factor IX (FIX; haemophilia B) and characterized by spontaneous and trauma-related bleeding episodes. The cornerstone of the treatment, factor replacement, constitutes several difficulties, including frequent injections due to the short half-life of recombinant factors, intravenous administration and the risk of inhibitor development. While extended half-life factors and subcutaneous novel molecules enhanced the quality of life, initial successes with gene therapy offer a significant hope for cure. Although adeno-associated viral (AAV)-based gene therapy is one of the most emerging approaches for treatment of haemophilia, there are still challenges in vector immunogenicity, potency and efficacy, genotoxicity and persistence. As the approval for the first gene therapy product is coming closer, eligibility criteria for patient selection, multidisciplinary approach for optimal delivery and follow-up and development of new pricing policies and reimbursement models should be concerned. Therefore, this review addresses the unmet needs of current haemophilia treatment and explains the rationale and principles of gene therapy. Limitations and challenges are discussed from a global and national perspective and recommendations are provided to adopt the gene therapies faster and more sufficient for the haemophilia patients in developing countries like Turkey.
Collapse
Affiliation(s)
- Kaan Kavaklı
- Division of Hematology, Department of Pediatrics, Ege University Faculty of Medicine, Bornova, 35100 İzmir, Turkey
| | - Bülent Antmen
- Division of Hematology, Department of Pediatrics, Acıbadem Adana Hospital, Adana, Turkey
| | - Vahap Okan
- Division of Hematology, Department of Internal Diseases, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Fahri Şahin
- Division of Hematology, Department of Internal Diseases, Ege Adult Hemophilia and Thrombosis Center, Ege University Faculty of Medicine, İzmir, Turkey
| | - Selin Aytaç
- Division of Hematology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Balkan
- Division of Hematology, Department of Pediatrics, Ege University Faculty of Medicine, İzmir, Turkey
| | - Ergül Berber
- Department of Molecular Biology and Genetics, İstanbul Arel University, İstanbul, Turkey
| | - Zühre Kaya
- Division of Hematology, Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Alphan Küpesiz
- Division of Hematology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Bülent Zülfikar
- Division of Hematology, Department of Pediatrics, İstanbul University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
9
|
Hart DP, Matino D, Astermark J, Dolan G, d’Oiron R, Hermans C, Jiménez-Yuste V, Linares A, Matsushita T, McRae S, Ozelo MC, Platton S, Stafford D, Sidonio RF, Tiede A. International consensus recommendations on the management of people with haemophilia B. Ther Adv Hematol 2022; 13:20406207221085202. [PMID: 35392437 PMCID: PMC8980430 DOI: 10.1177/20406207221085202] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Haemophilia B is a rare X-linked genetic deficiency of coagulation factor IX (FIX) that, if untreated, can cause recurrent and disabling bleeding, potentially leading to severe arthropathy and/or life-threatening haemorrhage. Recent decades have brought significant improvements in haemophilia B management, including the advent of recombinant FIX and extended half-life FIX. This therapeutic landscape continues to evolve with several non-factor replacement therapies and gene therapies under investigation. Given the rarity of haemophilia B, the evidence base and clinical experience on which to establish clinical guidelines are relatively sparse and are further challenged by features that are distinct from haemophilia A, precluding extrapolation of existing haemophilia A guidelines. Due to the paucity of formal haemophilia B-specific clinical guidance, an international Author Group was convened to develop a clinical practice framework. The group comprised 15 haematology specialists from Europe, Australia, Japan, Latin America and North America, covering adult and paediatric haematology, laboratory medicine and biomedical science. A hybrid approach combining a systematic review of haemophilia B literature with discussion of clinical experience utilized a modified Delphi format to develop a comprehensive set of clinical recommendations. This approach resulted in 29 recommendations for the clinical management of haemophilia B across five topics, including product treatment choice, therapeutic agent laboratory monitoring, pharmacokinetics considerations, inhibitor management and preparing for gene therapy. It is anticipated that this clinical practice framework will complement existing guidelines in the management of people with haemophilia B in routine clinical practice and could be adapted and applied across different regions and countries.
Collapse
Affiliation(s)
- Daniel P. Hart
- The Royal London Hospital Haemophilia Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel Road, London E1 2AD, UK
| | - Davide Matino
- Department of Medicine, McMaster University and The Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Jan Astermark
- Institution of Translational Medicine and Department of Hematology, Oncology and Radiation Physics, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Gerard Dolan
- Centre for Haemostasis and Thrombosis, St Thomas’ Hospital, London, UK
| | - Roseline d’Oiron
- Centre for Haemophilia and Constitutional Bleeding Disorders, Hôpital Bicêtre AP-HP Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cédric Hermans
- Haemostasis and Thrombosis Unit, Division of Haematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Adriana Linares
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia, Bogotá, Colombia
- Programa de Hemofilia, Clínica Infantil Colsubsidio, Bogotá, Colombia
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Simon McRae
- Launceston General Hospital, Launceston, TAS, Australia
| | | | - Sean Platton
- The Royal London Hospital Haemophilia Centre, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Darrel Stafford
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert F. Sidonio
- Aflac Cancer and Blood Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
The most common disease-causing mutation of factor XIII deficiency is corrected by CRISPR/CAS9 gene editing system. Blood Coagul Fibrinolysis 2022; 33:153-158. [PMID: 35221320 DOI: 10.1097/mbc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Factor XIII (FXIII) deficiency is one of the most severe congenital bleeding disorders, with an estimated incidence of one person per one million. Patients with severe FXIII deficiency present a wide range of clinical manifestations, including umbilical cord bleeding, intracranial haemorrhage and recurrent miscarriages. Due to the high rate of life-threatening bleeding, primary prophylaxis is mandatory from the time of diagnosis. Although replacement therapy is the most common therapeutic choice, gene therapy remains the only curative option. In the present study, we assessed the efficacy of the clustered regularly interspaced short palindromic repeats - CRISPR-associated protein 9 (CRISPR/Cas9) system in the correction of the most common FXIII disease-causing mutation (c.562 T > C). A dermal fibroblast was harvested from the human skin biopsy of a young patient with FXIII deficiency. Sanger sequencing was used to confirm the presence of c.562 T>C mutation in the patient and in the harvested fibroblasts. PX459 vector was digested with BbsI restriction enzyme, and after annealing and ligation of two 20-bp guide-RNAs (g-RNAs) close to the PAM (NGG) sequence, the constructed vectors were amplified in Escherichia coli Top 10. Transfection was performed by a nucleofector device, and DNA extraction was performed after puromycin selection and serial dilution from potentially transfected colonies. A 50-bp template oligonucleotide was used to aid homologous repair for correction of the underlying mutation and synonymous mutation as an internal control. The synonymous mutation (AAT to ACT) near the mutation site was used as internal control. Sanger sequencing was done in order to check the gene correction. The c.562 T > C mutation was detected in homozygote state in the primary fibroblasts of the patient and wild-type alleles were confirmed in the normal individual. Colony PCR and sequencing revealed successful cloning of the designed gRNAs. The detected mutation was corrected from a homozygote mutant state (c.562 T > C) to a homozygote wild type in transfected dermal fibroblasts of the patient. The control mutation, as an internal control, was also corrected in the same fibroblasts in the heterozygote manner. The result of the study shows that the CRISPR/CAS9 gene editing system is an effective tool for correction of point mutations in transfected fibroblasts of patients with congenital FXIII deficiency and represents a new, potentially curative, option.
Collapse
|
11
|
Mao J, Wang Y, Zhang W, Shen Y, Zhang G, Xi W, Wang Q, Ruan Z, Wang J, Xi X. Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Front Med 2022; 16:584-595. [PMID: 35038106 DOI: 10.1007/s11684-021-0844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022]
Abstract
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC + rLC protein had a higher activity than the hHC + hLC protein at comparable expression levels. The specific activity of hHC + rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC + rLC treatment exhibited a visibly higher activity than those treated with hHC + hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC + rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
Collapse
Affiliation(s)
- Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guowei Zhang
- The School of Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Mattar CNZ, Labude MK, Lee TN, Lai PS. Ethical considerations of preconception and prenatal gene modification in the embryo and fetus. Hum Reprod 2021; 36:3018-3027. [PMID: 34665851 DOI: 10.1093/humrep/deab222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclinical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns surrounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clinical translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clinical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further discussions on HHGE implementation.
Collapse
Affiliation(s)
- Citra Nurfarah Zaini Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Health System, Singapore, Singapore
| | - Markus Klaus Labude
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Nicholas Lee
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Edelblute C, Mangiamele C, Heller R. Moderate Heat-Assisted Gene Electrotransfer as a Potential Delivery Approach for Protein Replacement Therapy through the Skin. Pharmaceutics 2021; 13:pharmaceutics13111908. [PMID: 34834323 PMCID: PMC8624362 DOI: 10.3390/pharmaceutics13111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022] Open
Abstract
Gene-based approaches for protein replacement therapies have the potential to reduce the number of administrations. Our previous work demonstrated that expression could be enhanced and/or the applied voltage reduced by preheating the tissue prior to pulse administration. In the current study, we utilized our 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, between each set of four electrodes to heat the tissue to 43 °C. For proof of principle, a guinea pig model was used to test delivery of reporter genes. We observed that when the skin was preheated, it was possible to achieve the same expression levels as gene electrotransfer without preheating, but with a 23% reduction of applied voltage or a 50% reduction of pulse number. With respect to expression distribution, preheating allowed for delivery to the deep dermis and muscle. This suggested that this cutaneous delivery approach has the potential to achieve expression in the systemic circulation, thus this protocol was repeated using a plasmid encoding Human Factor IX. Elevated Factor IX serum protein levels were detected by ELISA up to 100 days post gene delivery. Further work will involve optimizing protein levels and scalability in an effort to reduce application frequency.
Collapse
Affiliation(s)
- Chelsea Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
- Department of Biomedical Sciences, Graduate School, Old Dominion University, Norfolk, VA 23508, USA
| | - Cathryn Mangiamele
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, USA; (C.E.); (C.M.)
| | - Richard Heller
- Department of Medical Engineering, Colleges of Medicine and Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
14
|
Bakeer N, Dover S, Babyn P, Feldman BM, von Drygalski A, Doria AS, Ignas DM, Abad A, Bailey C, Beggs I, Chang EY, Dunn A, Funk S, Gibikote S, Goddard N, Hilliard P, Keshava SN, Kruse-Jarres R, Li Y, Lobet S, Manco-Johnson M, Martinoli C, O'Donnell JS, Papakonstantinou O, Pergantou H, Poonnoose P, Querol F, Srivastava A, Steiner B, Strike K, Timmer M, Tyrrell PN, Vidarsson L, Blanchette VS. Musculoskeletal ultrasound in hemophilia: Results and recommendations from a global survey and consensus meeting. Res Pract Thromb Haemost 2021; 5:e12531. [PMID: 34268464 PMCID: PMC8271584 DOI: 10.1002/rth2.12531] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/24/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction For persons with hemophilia, optimization of joint outcomes is an important unmet need. The aim of this initiative was to determine use of ultrasound in evaluating arthropathy in persons with hemophilia, and to move toward consensus among hemophilia care providers regarding the preferred ultrasound protocols for global adaptation. Methods A global survey of hemophilia treatment centers was conducted that focused on understanding how and why ultrasound was being used and endeavored to move toward consensus definitions of both point‐of‐care musculoskeletal ultrasound (POC‐MSKUS) and full diagnostic ultrasound, terminology to describe structures being assessed by ultrasound, and how these assessments should be interpreted. Next, an in‐person meeting of an international group of hemophilia health care professionals and patient representatives was held, with the objective of achieving consensus regarding the acquisition and interpretation of POC‐MSKUS and full diagnostic ultrasound for use in the assessment of musculoskeletal (MSK) pathologies in persons with hemophilia. Results The recommendations were that clear definitions of the types of ultrasound examinations should be adopted and that a standardized ultrasound scoring/measurement system should be developed, tested, and implemented. The scoring/measurement system should be tiered to allow for a range of complexity yet maintain the ability for comparison across levels. Conclusion Ultrasound is an evolving technology increasingly used for the assessment of MSK outcomes in persons with hemophilia. As adoption increases globally for clinical care and research, it will become increasingly important to establish clear guidelines for image acquisition, interpretation, and reporting to ensure accuracy, consistency, and comparability across groups.
Collapse
Affiliation(s)
- Nihal Bakeer
- Indiana Hemophilia & Thrombosis Center Indianapolis IN USA
| | - Saunya Dover
- Child Health Evaluative Sciences, Research Institute The Hospital for Sick Children Toronto ON Canada
| | - Paul Babyn
- Department of Medical Imaging University of Saskatchewan and Saskatchewan Health Authority Saskatoon City Hospital SK Canada
| | - Brian M Feldman
- Child Health Evaluative Sciences, Research Institute The Hospital for Sick Children Toronto ON Canada.,Department of Pediatrics Faculty of Medicine University of Toronto Toronto ON Canada.,Institute of Health Policy, Management and Evaluation The Dalla Lana School of Public Health University of Toronto Toronto ON Canada.,Division of Rheumatology The Hospital for Sick Children Toronto ON Canada
| | | | - Andrea S Doria
- Department of Medical Imaging University of Toronto The Hospital for Sick Children Toronto ON Canada
| | - Danial M Ignas
- Child Health Evaluative Sciences, Research Institute The Hospital for Sick Children Toronto ON Canada
| | - Audrey Abad
- Child Health Evaluative Sciences, Research Institute The Hospital for Sick Children Toronto ON Canada
| | - Cindy Bailey
- Los Angeles Orthopaedic Treatment Centre Los Angeles CA USA
| | - Ian Beggs
- Department of Radiology Royal Infirmary of Edinburgh NHS Lothian Edinburgh UK
| | - Eric Y Chang
- University of California San Diego Medical Center San Diego CA USA
| | - Amy Dunn
- Division of Pediatric Hematology, Oncology & Marrow Transplant Department of Pediatrics Nationwide Children's Hospital The Ohio State University College of Medicine Columbus OH USA
| | - Sharon Funk
- Hemophilia and Thrombosis Center University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Sridhar Gibikote
- Division of Clinical Radiology Christian Medical College Vellore India
| | - Nicholas Goddard
- Katherine Dormandy Haemophilia Centre Royal Free Hospital London UK
| | - Pamela Hilliard
- Child Health Evaluative Sciences, Research Institute The Hospital for Sick Children Toronto ON Canada
| | | | - Rebecca Kruse-Jarres
- University of Washington and Washington Center for Bleeding Disorders Seattle WA USA
| | - Yingjia Li
- Ultrasound Department Manfang Hospital Guangzhou China
| | - Sébastien Lobet
- Haemostasis and Thrombosis Unit Division of Haematology Cliniques Universitaires Saint-Luc Brussels Belgium
| | - Marilyn Manco-Johnson
- Hemophilia & Thrombosis Center Department of Pediatrics University of Colorado Anschutz Medical Center Aurora CO USA
| | - Carlo Martinoli
- Department of Health Sciences (DISSAL) Università di Genova IRCCS Ospedale Policlinico San Martino Genova Italy
| | - James S O'Donnell
- Irish Centre for Vascular Biology Royal College of Surgeons in Ireland Dublin Ireland
| | | | - Helen Pergantou
- Pediatric Hemophilia Centre/Haemostatis and Thrombosis Unit Aghia Sophia Children's Hospital Athens Greece
| | - Pradeep Poonnoose
- Department of Orthopedics Unit 2 Christian Medical College Vellore India
| | - Felipe Querol
- Haemostasis and Thrombosis Unit Hospital LA FE Universidad de Valencia Valencia Spain
| | - Alok Srivastava
- Department of Hematology Christian Medical College Vellore India
| | - Bruno Steiner
- Department of Rehabilitation Medicine Physical Therapy and MSKUS Program Washington Center for Bleeding Disorders University of Washington Seattle WA USA
| | - Karen Strike
- School of Rehabilitation Science Faculty of Health Science Hamilton Niagara Regional Hemophilia Program Hamilton Health Sciences McMaster University Hamilton ON Canada
| | - Merel Timmer
- van Creveldkliniek University Medical Center Utrecht Utrecht The Netherlands
| | - Pascal N Tyrrell
- Department of Medical Imaging Institute of Medical Science Toronto ON Canada.,Department of Statistical Sciences University of Toronto Toronto ON Canada
| | - Logi Vidarsson
- Diagnostic Imaging The Hospital for Sick Children Toronto ON Canada
| | - Victor S Blanchette
- Department of Pediatrics Division of Hematology/Oncology University of Toronto The Hospital for Sick Children Toronto ON Canada
| |
Collapse
|
15
|
Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. J Clin Med 2021; 10:jcm10112471. [PMID: 34199563 PMCID: PMC8199697 DOI: 10.3390/jcm10112471] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated viral (AAV) vector gene therapy has shown promise as a possible cure for hemophilia. However, immune responses directed against AAV vectors remain a hurdle to the broader use of this gene transfer platform. Both innate and adaptive immune responses can affect the safety and efficacy of AAV vector-mediated gene transfer in humans. These immune responses may be triggered by the viral capsid, the vector's nucleic acid payload, or other vector contaminants or excipients, or by the transgene product encoded by the vector itself. Various preclinical and clinical strategies have been explored to overcome the issues of AAV vector immunogenicity and transgene-related immune responses. Although results of these strategies are encouraging, more efficient approaches are needed to deliver safe, predictable, and durable outcomes for people with hemophilia. In addition to durability, long-term follow-up of gene therapy trial participants will allow us to address potential safety concerns related to vector integration. Herein, we describe the challenges with current methodologies to deliver optimal outcomes for people with hemophilia who choose to undergo AAV vector gene therapy and the potential opportunities to improve on the results.
Collapse
|
16
|
O'Mahony B. Haemophilia care in Europe: Past progress and future promise. Haemophilia 2020; 26:752-758. [DOI: 10.1111/hae.14097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Brian O'Mahony
- Irish Haemophilia Society Ltd. and Trinity College Dublin Ireland
| |
Collapse
|
17
|
Valentino LA, Khair K. Prophylaxis for hemophilia A without inhibitors: treatment options and considerations. Expert Rev Hematol 2020; 13:731-743. [PMID: 32573295 DOI: 10.1080/17474086.2020.1775576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Hemophilia A is a bleeding disorder traditionally managed with standard half-life (SHL) factor (F) VIII concentrates. Extended half-life (EHL) FVIII products and emicizumab-kywh, a nonfactor therapy, are newer treatment options. Additional nonfactor agents and gene therapy are expected to reach the market in the near future. AREAS COVERED A PubMed (MEDLINE) search from 1962 to April 2020 related to hemophilia A, its management, and the products currently available for prophylaxis was performed to comprehensively review these topics and analyze the benefits and drawbacks of each therapeutic. EXPERT OPINION Prophylaxis with SHL FVIII concentrates remains the standard of care for patients with severe hemophilia A and may also be considered for selected individuals with moderate disease. Several years of real-world experience with EHL FVIII, emicizumab-kywh, and other agents in development will be necessary to determine their ultimate roles in the prevention of bleeding and its complications. Gene therapy may not provide a permanent cure for hemophilia A.
Collapse
Affiliation(s)
- Leonard A Valentino
- Rush University , Chicago, IL, USA.,National Hemophilia Foundation , New York, NY, USA
| | - Kate Khair
- Centre for Outcomes Research and Experience in Children's Health, Illness, and Disability, Great Ormond Street Hospital for Children, NHS Trust , London, UK
| |
Collapse
|
18
|
Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes (Basel) 2020; 11:genes11040457. [PMID: 32340130 PMCID: PMC7230449 DOI: 10.3390/genes11040457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gene doping, an activity which abuses and misuses gene therapy, is a major concern in sports and horseracing industries. Effective methods capable of detecting and monitoring gene doping are urgently needed. Although several PCR-based methods that detect transgenes have been developed, many of them focus only on a single transgene. However, numerous genes associated with athletic ability may be potential gene-doping material. Here, we developed a detection method that targets multiple transgenes. We targeted 12 genes that may be associated with athletic performance and designed two TaqMan probe/primer sets for each one. A panel of 24 assays was prepared and detected via a microfluidic quantitative PCR (MFQPCR) system using integrated fluidic circuits (IFCs). The limit of detection of the panel was 6.25 copy/μL. Amplification-specificity was validated using several concentrations of reference materials and animal genomic DNA, leading to specific detection. In addition, target-specific detection was successfully achieved in a horse administered 20 mg of the EPO transgene via MFQPCR. Therefore, MFQPCR may be considered a suitable method for multiple-target detection in gene-doping control. To our knowledge, this is the first application of microfluidic qPCR (MFQPCR) for gene-doping control in horseracing.
Collapse
|
19
|
Zhang F, Yan X, Li M, Hua B, Xiao X, Monahan PE, Sun J. Exploring the Potential Feasibility of Intra-Articular Adeno-Associated Virus-Mediated Gene Therapy for Hemophilia Arthropathy. Hum Gene Ther 2020; 31:448-458. [PMID: 32079420 DOI: 10.1089/hum.2019.355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hemophilia arthropathy (HA) represents the majority of morbidity in severe hemophilia patients, especially in resource-limited countries. Adeno-associated virus (AAV)-mediated gene therapy is showing promise for managing hemophilia. However, patients with neutralizing antibodies (NAbs) against AAV, and inhibitors to clotting factors, are excluded from such therapy. This study explored the feasibility of AAV-mediated local gene therapy for HA. Factor VIII knockout (FVIII-/-) mice, with or without a FVIII inhibitor, were subjected to hemarthrosis induction and treated with either intravenous (IV) or intraarticular (IA) recombinant human factor VIII (rhFVIII). To investigate whether rhFVIII carried the risk to develop a FVIII inhibitor, FVIII-/- mice were treated with three doses of IV or IA rhFVIII and inhibitor development was measured. In patients with established HA requiring synovial fluid aspiration, plasma, and synovial fluid were collected and measured for anti-AAV capsid IgG (serotypes 1-9 and 843) and NAbs for AAV843. IA rhFVIII provided better protection from synovitis compared with IV rhFVIII, with or without the FVIII inhibitor. While IV rhFVIII led to all FVIII-/- mice developing an FVIII inhibitor (n = 31, median 4.9 Bethesda units [BU]/mL), only 50% of the mice developed a FVIII inhibitor by IA administration, and at a lower titer (median 0.55 BU/mL). In hemophilia patients, total anti-AAV IgG was lowest for AAV4 and AAV5, both in plasma and synovial fluid. Anti-AAV IgGs in synovial fluid for most samples were lower or similar to the plasma levels. These results show that direct IA rhFVIII administration yields better protection against bleeding-induced joint damage, even in the presence of an inhibitor antibody. IA rhFVIII delivery carried a lower risk of FVIII inhibitor formation compared with IV FVIII. The anti-AAV antibody level in synovial fluid was similar or lower than the plasma level, supporting the feasibility of local gene therapy for managing HA.
Collapse
Affiliation(s)
- Feixu Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaobo Yan
- Department of Hematology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Min Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baolai Hua
- Department of Hematology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiao Xiao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Harold R. Roberts Comprehensive Hemophilia Diagnosis and Treatment Center, University of North Carolina, Chapel Hill, North Carolina.,Spark Therapeutics, Philadelphia, Pennsylvania
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Betapudi V, Goswami R, Silayeva L, Doctor DM, Chilukuri N. Gene therapy delivering a paraoxonase 1 variant offers long-term prophylactic protection against nerve agents in mice. Sci Transl Med 2020; 12:12/527/eaay0356. [PMID: 31969483 DOI: 10.1126/scitranslmed.aay0356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 11/02/2022]
Abstract
Chemical warfare nerve agents are organophosphorus chemical compounds that induce cholinergic crisis, leaving little or no time for medical intervention to prevent death. The current chemical treatment regimen may prevent death but does not prevent postexposure complications such as brain damage and permanent behavioral abnormalities. In the present study, we have demonstrated an adeno-associated virus 8 (AAV8)-mediated paraoxonase 1 variant IF-11 (PON1-IF11) gene therapy that offers asymptomatic prophylactic protection to mice against multiple lethal doses of G-type chemical warfare nerve agents, namely, tabun, sarin, cyclosarin, and soman, for up to 5 months in mice. A single injection of liver-specific adeno-associated viral particles loaded with PON1-IF11 gene resulted in expression and secretion of recombinant PON1-IF11 in milligram quantities, which has the catalytic power to break down G-type chemical warfare nerve agents into biologically inactive products in vitro and in vivo in rodents. Mice containing milligram concentrations of recombinant PON1-IF11 in their blood displayed no clinical signs of toxicity, as judged by their hematological parameters and serum chemistry profiles. Our study unfolds avenues to develop a one-time application of gene therapy to express a near-natural and circulating therapeutic PON1-IF11 protein that can potentially protect humans against G-type chemical warfare nerve agents for several weeks to months.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Reena Goswami
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Liliya Silayeva
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Deborah M Doctor
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Nageswararao Chilukuri
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
21
|
Kohn DB. Gene therapy for blood diseases. Curr Opin Biotechnol 2019; 60:39-45. [DOI: 10.1016/j.copbio.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022]
|
22
|
Miesbach W, O'Mahony B, Key NS, Makris M. How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia 2019; 25:545-557. [PMID: 31115117 PMCID: PMC6852207 DOI: 10.1111/hae.13769] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/19/2023]
Abstract
Gene therapy has the potential to revolutionise treatment for patients with haemophilia and is close to entering clinical practice. While factor concentrates have improved outcomes, individuals still face a lifetime of injections, pain, progressive joint damage, the potential for inhibitor development and impaired quality of life. Recently published studies in adeno‐associated viral (AAV) vector‐mediated gene therapy have demonstrated improvement in endogenous factor levels over sustained periods, significant reduction in annualised bleed rates, lower exogenous factor usage and thus far a positive safety profile. In making the shared decision to proceed with gene therapy for haemophilia, physicians should make it clear that research is ongoing and that there are remaining evidence gaps, such as long‐term safety profiles and duration of treatment effect. The eligibility criteria for gene therapy trials mean that key patient groups may be excluded, eg children/adolescents, those with liver or kidney dysfunction and those with a prior history of factor inhibitors or pre‐existing neutralising AAV antibodies. Gene therapy offers a life‐changing opportunity for patients to reduce their bleeding risk while also reducing or abrogating the need for exogenous factor administration. Given the expanding evidence base, both physicians and patients will need sources of clear and reliable information to be able to discuss and judge the risks and benefits of treatment.
Collapse
Affiliation(s)
- Wolfgang Miesbach
- Department of Haemostaseology and Haemophilia Centre, Medical Clinic 2, Institute of Transfusion Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Brian O'Mahony
- Chief Executive, Irish Haemophilia Society, Dublin, Ireland.,Trinity College, Dublin, Ireland
| | - Nigel S Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mike Makris
- Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, UK.,Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Update on clinical gene therapy for hemophilia. Blood 2018; 133:407-414. [PMID: 30559260 DOI: 10.1182/blood-2018-07-820720] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.
Collapse
|
24
|
Chan JKY, Gil-Farina I, Johana N, Rosales C, Tan YW, Ceiler J, Mcintosh J, Ogden B, Waddington SN, Schmidt M, Biswas A, Choolani M, Nathwani AC, Mattar CNZ. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques. FASEB J 2018; 33:3954-3967. [PMID: 30517034 PMCID: PMC6404563 DOI: 10.1096/fj.201801391r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX (n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6–6.8% over 19–51 mo. The next cohort received 0.2–1 × 1013 vg boluses. AAV5-hFX animals (n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4–27.9% up to 42 mo. AAV8-hFIX recipients (n = 3; 2.56 × 1013 vg/kg) established 4.2–41.3% expression perinatally and 9.8–25.3% over 46 mo. Expression with AAV8-hFX (n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8–13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4–13.2% expression and demonstrating acquired tolerance. Linear amplification–mediated-PCR analysis demonstrated random integration of 57–88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.—Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector–mediated intrauterine gene transfer in early-gestation fetal macaques.
Collapse
Affiliation(s)
- Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Irene Gil-Farina
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Nuryanti Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Cecilia Rosales
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jessika Ceiler
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Jenny Mcintosh
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Ogden
- SingHealth Experimental Medicine Centre, Singapore Health Services Pte, Singapore, Singapore
| | - Simon N Waddington
- Institute for Women's Health, University College London, London, United Kingdom.,Faculty of Health Sciences, Wits/South African Medical Research Council (SAMRC), Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Manfred Schmidt
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom.,GeneWerk, Heidelberg, Germany
| | - Arijit Biswas
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Mahesh Choolani
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amit C Nathwani
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Citra N Z Mattar
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Zhang W, Mao J, Shen Y, Zhang G, Shao Y, Ruan Z, Wang Y, Wu W, Wang X, Zhu J, Chen S, Xiao W, Xi X. Evaluation of the activity levels of rat FVIII and human FVIII delivered by adeno-associated viral vectors both in vitro and in vivo. Blood Cells Mol Dis 2018; 73:47-54. [PMID: 30249384 DOI: 10.1016/j.bcmd.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
The development of a novel coagulation factor VIII (FVIII) expression cassette with an enhanced activity for gene therapy of hemophilia A (HA) is essential. The biological properties of several non-human FVIII sequences, such as porcine and canine, have been evaluated. Here, we compared the activity level of rat FVIII (rFVIII) and human FVIII (hFVIII) by using single-chain and dual-chain strategies in 293 T cells and the HA mice. In both in vitro and hydrodynamic injection studies, the activity of rFVIII detected by the activated partial thromboplastin time assay was higher than that of hFVIII both by single-chain (~2.96-fold and ~1.72-fold, respectively) and dual-chain (~7.69-fold and ~2.35-fold, respectively). Moreover, the dual chain exerted a potentially higher delivery efficacy compared with the single chain (~4.96-fold and ~2.99-fold, respectively). The blood loss of HA mice administrated with rFVIII was less than those with hFVIII. AAV-delivered rFVIII and hFVIII also exerted long-term therapeutic effects on HA mice and caused a transient ALT elevation. These data might help to the development of novel, optimized FVIII expression cassettes based on the amino acid difference between rFVIII and hFVIII. These data indicate that the dual-chain strategy would likely enhance the delivery efficiency of the AAV-mediated FVIII gene therapy.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China.
| | - Yan Shen
- Research center for experimental medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guowei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yanyan Shao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenman Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weidong Xiao
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China.
| |
Collapse
|
26
|
Carcao M, Lambert T, Leissinger C, Escuriola-Ettingshausen C, Santagostino E, Aledort L. Prophylaxis re-visited: The potential impact of novel factor and non-factor therapies on prophylaxis. Haemophilia 2018; 24:845-848. [DOI: 10.1111/hae.13558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- M. Carcao
- Division of Haematology/Oncology; Department of Paediatrics; Child Health Evaluative Sciences; Research Institute; Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - T. Lambert
- Haemophilia Care Centre; Bicêtre APHP University Hospital; Le Kremlin-Bicêtre France
| | - C. Leissinger
- Tulane University School of Medicine; New Orleans LA USA
| | | | - E. Santagostino
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; University of Milan; Milan Italy
| | - L. Aledort
- Icahn School of Medicine; New York NY USA
| | | |
Collapse
|
27
|
Kim DH, Kim SK. Progress of Hemophilia A Therapeutics in Korea. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2018. [DOI: 10.15264/cpho.2018.25.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dong Hyun Kim
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
| | - Soon Ki Kim
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
28
|
Balkaransingh P, Young G. Novel therapies and current clinical progress in hemophilia A. Ther Adv Hematol 2018; 9:49-61. [PMID: 29387330 PMCID: PMC5768270 DOI: 10.1177/2040620717746312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
The evolution of hemophilia treatment and care is a fascinating one but has been fraught with many challenges at every turn. Over the last 50 years or so patients with hemophilia and providers have witnessed great advances in the treatment of this disease. With these advances, there has been a dramatic decrease in the mortality and morbidity associated with hemophilia. Even with the remarkable advancements in treatment, however, new and old challenges continue to plague the hemophilia community. The cost of factor replacement and the frequency of infusions, especially in patients with severe hemophilia on prophylaxis, remains a significant challenge for this population. Other challenges include obtaining reliable venous access, especially in younger patients, and the development of neutralizing alloantibodies (inhibitors). The development of extended half-life products, a bispecific antibody which mimics the coagulation function of factor VIII (FVIII) and inhibition of anticoagulation proteins such as antithrombin with antibodies, aptamers or RNA interference technology have offered novel therapeutic approaches to overcome some of these existing challenges. Additionally, ongoing gene therapy research offers a way to possibly cure hemophilia. These novel treatment tools in conjunction with the establishment of an increasing number of comprehensive hemophilia centers and worldwide advocacy efforts have continued to push the progress of hemophilia care to new frontiers. This review highlights and summarizes these novel therapeutic approaches and the current clinical progress of hemophilia A.
Collapse
Affiliation(s)
| | - Guy Young
- Children’s Hospital Los Angeles, 455 Sunset Boulevard, Mail Stop 54, Los Angeles, CA 90027, USA
| |
Collapse
|
29
|
Abstract
In recent decades, several improvements in hemophilia care have resulted in increased quality of life and life expectancy for those affected by this inherited hemorrhagic condition. Nowadays, individuals with hemophilia enjoy a life expectancy at birth close to that of males in the general population. As a consequence of the increasing age of the hemophilia population, a growing number of these patients develop age-related co-morbidities, such as cardiovascular disease and cancer, the management of which represents a new challenge for caregivers at hemophilia treatment centers. This narrative review focuses on the clinical problems arising in older people with hemophilia, with particular attention to the optimal therapeutic strategies.
Collapse
|