1
|
Huttelmaier MT, Fischer TH. [Cardiac channelopathies in the context of hereditary arrhythmia syndromes]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:787-797. [PMID: 38977442 PMCID: PMC11269359 DOI: 10.1007/s00108-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.
Collapse
MESH Headings
- Humans
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/physiopathology
- Channelopathies/genetics
- Channelopathies/diagnosis
- Channelopathies/therapy
- Brugada Syndrome/genetics
- Brugada Syndrome/diagnosis
- Brugada Syndrome/physiopathology
- Brugada Syndrome/therapy
- Tachycardia, Ventricular/genetics
- Tachycardia, Ventricular/therapy
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/physiopathology
- Adolescent
- Child
- Long QT Syndrome/genetics
- Long QT Syndrome/diagnosis
- Long QT Syndrome/therapy
- Long QT Syndrome/physiopathology
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/etiology
- Adult
- Defibrillators, Implantable
- Electrocardiography
Collapse
Affiliation(s)
- Moritz T Huttelmaier
- Medizinische Klinik 1, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland
| | - Thomas H Fischer
- Medizinische Klinik 1, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland.
| |
Collapse
|
2
|
Morita H, Nagase S. The Mechanism of Brugada Syndrome: Is it Induced Only by Conduction Disturbance? JACC Clin Electrophysiol 2023; 9:2356. [PMID: 38030334 DOI: 10.1016/j.jacep.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Nagase
- Department of Advanced Arrhythmia and Translational Medical Science, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
3
|
Kawada S, Morita H, Miyamoto M, Asada S, Nakagawa K, Nishii N. Ventricular arrhythmias induced by phase 2 reentry in a patient with J-wave syndrome. HeartRhythm Case Rep 2023; 9:629-633. [PMID: 37746567 PMCID: PMC10511901 DOI: 10.1016/j.hrcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Affiliation(s)
- Satoshi Kawada
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakazu Miyamoto
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Saori Asada
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Nakagawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiro Nishii
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Zeng B, Zhang X, Schimpf R, Powers A, Glikson M, Antzelevitch C, Hu D, Barajas-Martinez H. Functional identification of hot-spot mutations in cardiac calcium channel genes associated with the J wave syndromes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220286. [PMID: 37122210 PMCID: PMC10150203 DOI: 10.1098/rstb.2022.0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
J wave syndrome (JWS) is an inherited cardiac channelopathy associated with malignant ventricular arrhythmias and sudden cardiac death (SCD), which comprises early repolarization syndrome and Brugada syndrome. Here, we explore the association between variants in the L-type calcium channel gene subunits, α1C (CACNA1C) and β2b (CACNB2b), and the JWS phenotype. Using next-generation genetic sequencing of 402 JWS probands and their family members, we identified a CACNA1C-G37R (p.Gly37Arg) mutation in five individuals in four families, two of which had a family history of SCD as well as a CACNB2b-S143F (p.Ser143Phe) mutation in seven individuals in three families, two of which had a family history of SCD. The variants were located in exon 2 in CACNA1C and exon 5 in CACNB2b; both were in highly conserved amino acid residues. Whole-cell patch-clamp results showed that compared with the wild-type group, calcium current density of CACNB2b-S143F and CACNA1C-G37R were significantly lower displaying a dominant-negative effect. Our findings provide further support for the hypothesis that variants in CACNA1C and CACNB2b are associated with JWS. The results suggest that mutations in these two genes lead to loss-of-function of the cardiac calcium channel current warranting their inclusion in genetic screening protocols. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiang Zhang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Rainer Schimpf
- Cardiology Practice Clinic, Ludwig-Guttmann-Str. 11, Ludwigshafen, Ludwigshafen-Neustadt, 67071, Germany
| | - Andrew Powers
- Department of Biology, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Hebrew University Faculty of Medicine, Jerusalem, 91031, Israel
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
5
|
Antzelevitch C, Di Diego JM. J wave syndromes: What's new? Trends Cardiovasc Med 2022; 32:350-363. [PMID: 34256120 PMCID: PMC8743304 DOI: 10.1016/j.tcm.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Among the inherited ion channelopathies associated with potentially life-threatening ventricular arrhythmia syndromes in nominally structurally normal hearts are the J wave syndromes, which include the Brugada (BrS) and early repolarization (ERS) syndromes. These ion channelopathies are responsible for sudden cardiac death (SCD), most often in young adults in the third and fourth decade of life. Our principal goal in this review is to briefly outline the clinical characteristics, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these primary electrical diseases that have challenged the cardiology community over the past two decades. In addition, we discuss our recently developed whole-heart experimental model of BrS, providing compelling evidence in support of the repolarization hypothesis for the BrS phenotype as well as novel findings demonstrating that voltage-gated sodium and transient outward current channels can modulate each other's function via trafficking and gating mechanisms with implications for improved understanding of the genetics of both cardiac and neuronal syndromes.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Distinguished Professor Emeritus and Executive Director, Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; Lankenau Institute for Medical Research, Wynnwoddm PA USA; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA, USA.
| | | |
Collapse
|
6
|
Mareddy C, ScM MT, McDaniel G, Monfredi O. Exercise in the Genetic Arrhythmia Syndromes - A Review. Clin Sports Med 2022; 41:485-510. [PMID: 35710274 DOI: 10.1016/j.csm.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Provide a brief summary of your article (100-150 words; no references or figures/tables). The synopsis appears only in the table of contents and is often used by indexing services such as PubMed. Genetic arrhythmia syndromes are rare, yet harbor the potential for highly consequential, often unpredictable arrhythmias or sudden death events. There has been historical uncertainty regarding the correct advice to offer to affected patients who are reasonably wanting to participate in sporting and athletic endeavors. In some cases, this had led to abundantly cautious disqualifications, depriving individuals from participation unnecessarily. Societal guidance and expert opinion has evolved significantly over the last decade or 2, along with our understanding of the genetics and natural history of these conditions, and the emphasis has switched toward shared decision making with respect to the decision to participate or not, with patients and families becoming better informed, and willing participants in the decision making process. This review aims to give a brief update of the salient issues for the busy physician concerning these syndromes and to provide a framework for approaching their management in the otherwise aspirational or keen sports participant.
Collapse
Affiliation(s)
- Chinmaya Mareddy
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA
| | - Matthew Thomas ScM
- Department of Pediatrics, P.O. Box 800386, Charlottesville, VA 22908, USA
| | - George McDaniel
- Department of Pediatric Cardiology, Battle Building 6th Floor, 1204 W. Main St, Charlottesville, VA 22903, USA
| | - Oliver Monfredi
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Fractionated Epicardial Electrograms: Implication for Mechanism of the Brugada Pattern. JACC Clin Electrophysiol 2021; 7:258-270. [PMID: 33602410 DOI: 10.1016/j.jacep.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
|
8
|
Behr ER, Ben-Haim Y, Ackerman MJ, Krahn AD, Wilde AAM. Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway? Eur Heart J 2021; 42:1073-1081. [PMID: 33421051 DOI: 10.1093/eurheartj/ehaa1051] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) was first described as a primary electrical disorder predisposing to the risk of sudden cardiac death and characterized by right precordial lead ST elevation. Early description of right ventricular structural abnormalities and of right ventricular outflow tract (RVOT) conduction delay in BrS patients set the stage for the current controversy over the pathophysiology underlying the syndrome: channelopathy or cardiomyopathy; repolarization or depolarization. This review examines the current understanding of the BrS substrate, its genetic and non-genetic basis, theories of pathophysiology, and the clinical implications thereof. We propose that the final common pathway for BrS could be viewed as a disease of 'reduced RVOT conduction reserve'.
Collapse
Affiliation(s)
- Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA
| | - Yael Ben-Haim
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu)
| | - Michael J Ackerman
- Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA.,Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
9
|
Abstract
The main inherited cardiac arrhythmias are long QT syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome. These rare diseases are often the underlying cause of sudden cardiac death in young individuals and result from mutations in several genes encoding ion channels or proteins involved in their regulation. The genetic defects lead to alterations in the ionic currents that determine the morphology and duration of the cardiac action potential, and individuals with these disorders often present with syncope or a life-threatening arrhythmic episode. The diagnosis is based on clinical presentation and history, the characteristics of the electrocardiographic recording at rest and during exercise and genetic analyses. Management relies on pharmacological therapy, mostly β-adrenergic receptor blockers (specifically, propranolol and nadolol) and sodium and transient outward current blockers (such as quinidine), or surgical interventions, including left cardiac sympathetic denervation and implantation of a cardioverter-defibrillator. All these arrhythmias are potentially life-threatening and have substantial negative effects on the quality of life of patients. Future research should focus on the identification of genes associated with the diseases and other risk factors, improved risk stratification and, in particular for Brugada syndrome, effective therapies.
Collapse
|
10
|
Antzelevitch C, Patocskai B. Ajmaline-Induced Slowing of Conduction in the Right Ventricular Outflow Tract Cannot Account for ST Elevation in Patients With Type I Brugada ECG. Circ Arrhythm Electrophysiol 2019; 10:CIRCEP.117.005775. [PMID: 29038108 DOI: 10.1161/circep.117.005775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Charles Antzelevitch
- From the Lankenau Institute for Medical Research (C.A.), and Lankenau Heart Institute, Main Line Health System (C.A.), Wynnewood, Philadelphia, PA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (C.A.); and Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Germany (B.P.).
| | - Bence Patocskai
- From the Lankenau Institute for Medical Research (C.A.), and Lankenau Heart Institute, Main Line Health System (C.A.), Wynnewood, Philadelphia, PA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (C.A.); and Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Germany (B.P.)
| |
Collapse
|
11
|
Wang X, Zhang L, Gao C, Wu S, Zhu J. ST-segment elevation and the Tpeak-Tend/QT ratio predict the occurrence of malignant arrhythmia events in patients with vasospastic angina. J Electrocardiol 2019; 53:52-56. [DOI: 10.1016/j.jelectrocard.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
|
12
|
Morita H. Gender difference in Brugada syndrome: Mirror images of long QT syndrome? Heart Rhythm 2019; 16:268-269. [DOI: 10.1016/j.hrthm.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 11/27/2022]
|
13
|
Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Heart Lung Circ 2019; 28:22-30. [DOI: 10.1016/j.hlc.2018.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
|
14
|
Sicouri S, Antzelevitch C. Mechanisms Underlying the Actions of Antidepressant and Antipsychotic Drugs That Cause Sudden Cardiac Arrest. Arrhythm Electrophysiol Rev 2018; 7:199-209. [PMID: 30416734 PMCID: PMC6141916 DOI: 10.15420/aer.2018.29.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
A number of antipsychotic and antidepressant drugs are known to increase the risk of ventricular arrhythmias and sudden cardiac death. Based largely on a concern over the development of life-threatening arrhythmias, a number of antipsychotic drugs have been temporarily or permanently withdrawn from the market or their use restricted. While many antidepressants and antipsychotics have been linked to QT prolongation and the development of torsade de pointes arrhythmias, some have been associated with a Brugada syndrome phenotype and the development of polymorphic ventricular arrhythmias. This article examines the arrhythmic liability of antipsychotic and antidepressant drugs capable of inducing long QT and/or Brugada syndrome phenotypes. The goal of this article is to provide an update on the ionic and cellular mechanisms thought to be involved in, and the genetic and environmental factors that predispose to, the development of cardiac arrhythmias and sudden cardiac death among patients taking antidepressant and antipsychotic drugs that are in clinical use.
Collapse
Affiliation(s)
- Serge Sicouri
- Lankenau Institute for Medical ResearchWynnewood, PA, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical ResearchWynnewood, PA, USA
- Lankenau Heart InstituteWynnewood, PA
- Sidney Kimmel Medical College of Thomas Jefferson UniversityPhiladelphia, PA, USA
| |
Collapse
|
15
|
Di Diego JM, Antzelevitch C. J wave syndromes as a cause of malignant cardiac arrhythmias. Pacing Clin Electrophysiol 2018; 41:684-699. [PMID: 29870068 PMCID: PMC6281786 DOI: 10.1111/pace.13408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
Abstract
The J wave syndromes, including the Brugada (BrS) and early repolarization (ERS) syndromes, are characterized by the manifestation of prominent J waves in the electrocardiogram appearing as an ST segment elevation and the development of life-threatening cardiac arrhythmias. BrS and ERS differ with respect to the magnitude and lead location of abnormal J waves and are thought to represent a continuous spectrum of phenotypic expression termed J wave syndromes. Despite over 25 years of intensive research, risk stratification and the approach to therapy of these two inherited cardiac arrhythmia syndromes are still rapidly evolving. Our objective in this review is to provide an integrated synopsis of the clinical characteristics, risk stratifiers, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these two syndromes that have captured the interest and attention of the cardiology community over the past two decades.
Collapse
Affiliation(s)
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood PA
- Lankenau Heart Institute, Wynnewood, PA
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
16
|
Levy D, Bigham C, Tomlinson D. Anaesthesia for patients with hereditary arrhythmias part I: Brugada syndrome. BJA Educ 2018; 18:159-165. [PMID: 33456827 DOI: 10.1016/j.bjae.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- D Levy
- Torbay Hospital, Torquay, UK
| | - C Bigham
- Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
17
|
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by ST-segment elevation in right precordial ECG leads and associated with sudden cardiac death in young adults. The ECG manifestations of BrS are often concealed but can be unmasked by sodium channel blockers and fever. Areas covered: Implantation of a cardioverter defibrillator (ICD) is first-line therapy for BrS patients presenting with prior cardiac arrest or documented VT. A pharmacological approach to therapy is recommended in cases of electrical storm, as an adjunct to ICD and as preventative therapy. The goal of pharmacological therapy is to produce an inward shift to counter the genetically-induced outward shift of ion channel current flowing during the early phases of the ventricular epicardial action potential. This is accomplished by augmentation of ICa using □□adrenergic agents or phosphodiesterase III inhibitors or via inhibition of Ito. Radiofrequency ablation of the right ventricular outward flow tract epicardium is effective in suppressing arrhythmogenesis in BrS patients experiencing frequent appropriate ICD-shocks. Expert commentary: Understanding of the pathophysiology and approach to therapy of BrS has advanced considerably in recent years, but there remains an urgent need for development of cardio-selective and ion-channel-specific Ito blockers for treatment of BrS.
Collapse
Affiliation(s)
- Mariana Argenziano
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA
| | - Charles Antzelevitch
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA.,b Cardiovascular Research , Lankenau Heart Institute , Wynnewood , PA , USA.,c Department of Medicine and Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
18
|
Bassil G, Noujaim SF. Editorial commentary: Brugada syndrome or not? That is the question. Trends Cardiovasc Med 2018; 28:293-294. [PMID: 29301723 DOI: 10.1016/j.tcm.2017.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Guillaume Bassil
- Department of Internal Medicine, Weil Cornell Medical College, New York, NY
| | - Sami F Noujaim
- Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs, Blvd, MDC8, Tampa, FL 33612.
| |
Collapse
|
19
|
Cerrone M. Controversies in Brugada syndrome. Trends Cardiovasc Med 2017; 28:284-292. [PMID: 29254832 DOI: 10.1016/j.tcm.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
The Brugada syndrome is an inherited channelopathy associated with increased risk of ventricular arrhythmias and sudden death, often occurring during sleep or resting conditions. Although this entity has been described more than 20 years ago, it remains one of the most debated among channelopathies, with several open questions on its genetic substrate, arrhythmia mechanisms, and clinical management. Studies on the genetics and physiopathology bases of the Brugada syndrome have opened novel investigative pathways and concepts that are now entering the field of cardiovascular genetics and are applied to other inherited arrhythmias. In this perspective, Brugada syndrome can be seen as an example on how basic science discoveries have influenced clinical management and led to novel therapeutic approaches.
Collapse
Affiliation(s)
- Marina Cerrone
- Cardiovascular Genetics Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY.
| |
Collapse
|
20
|
Teodorovich N, Kogan Y, Paz O, Swissa M. Vagally mediated ventricular arrhythmia in Brugada syndrome. HeartRhythm Case Rep 2017; 2:530-535. [PMID: 28491752 PMCID: PMC5420008 DOI: 10.1016/j.hrcr.2016.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Nicholay Teodorovich
- Department of Cardiology, Kaplan Medical Center, Rehovot, Israel.,Hebrew University Hadassah School of Medicine, Jerusalem, Israel
| | - Yonatan Kogan
- Department of Cardiology, Kaplan Medical Center, Rehovot, Israel.,Hebrew University Hadassah School of Medicine, Jerusalem, Israel
| | - Offir Paz
- Department of Cardiology, Kaplan Medical Center, Rehovot, Israel.,Hebrew University Hadassah School of Medicine, Jerusalem, Israel
| | - Moshe Swissa
- Department of Cardiology, Kaplan Medical Center, Rehovot, Israel.,Hebrew University Hadassah School of Medicine, Jerusalem, Israel
| |
Collapse
|
21
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace 2017; 19:665-694. [PMID: 28431071 PMCID: PMC5834028 DOI: 10.1093/europace/euw235] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci 2017; 205:1-11. [PMID: 28392310 DOI: 10.1016/j.autneu.2017.03.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The autonomic nervous system (ANS) is complex and plays an important role in cardiac arrhythmia pathogenesis. A deeper understanding of the anatomy and development of the ANS has shed light on its involvement in cardiac arrhythmias. Alterations in levels of Sema-3a and NGF, both growth factors involved in innervation patterning during development of the ANS, leads to cardiac arrhythmias. Dysregulation of the ANS, including polymorphisms in genes involved in ANS development, have been implicated in sudden infant death syndrome. Disruptions in the sympathetic and/or parasympathetic systems of the ANS can lead to cardiac arrhythmias and can vary depending on the type of arrhythmia. Simultaneous stimulation of both the sympathetic and parasympathetic systems is thought to lead to atrial fibrillation whereas increased sympathetic stimulation is thought to lead to ventricular fibrillation or ventricular tachycardia. In inherited arrhythmia syndromes, such as Long QT and Catecholaminergic Polymorphic Ventricular Tachycardia, sympathetic system stimulation is thought to lead to ventricular tachycardia, subsequent arrhythmias, and in severe cases, cardiac death. On the other hand, arrhythmic events in Brugada Syndrome have been associated with periods of high parasympathetic tone. Increasing evidence suggests that modulation of the ANS as a therapeutic strategy in the treatment of cardiac arrhythmias is safe and effective. Further studies investigating the involvement of the ANS in arrhythmia pathogenesis and its modulation for the treatment of cardiac arrhythmias is warranted.
Collapse
|
23
|
Pérez-Riera AR, Barbosa-Barros R, de Lucca AA, Viana MJ, de Abreu LC. Mid-ventricular Hypertrophic Obstructive Cardiomyopathy with Apical Aneurysm Complicated with Syncope by Sustained Monomorphic Ventricular Tachycardia. Ann Noninvasive Electrocardiol 2016; 21:618-621. [PMID: 27422472 DOI: 10.1111/anec.12377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mid-ventricular hypertrophic obstructive cardiomyopathy with secondary formation of apical aneurysm is a rare variant of hypertrophic cardiomyopathy. They have a unique behavior because unlike other variants it causes sustained monomorphic ventricular tachycardia, which makes it particularly severe.
Collapse
Affiliation(s)
| | - Raimundo Barbosa-Barros
- Coronary Center of the Messejana Hospital Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil
| | | | - Mujimbi Jose Viana
- ABC Faculty of Medicine - ABC Foundation, Santo André, São Paulo, Brazil
| | | |
Collapse
|
24
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. J Arrhythm 2016; 32:315-339. [PMID: 27761155 PMCID: PMC5063270 DOI: 10.1016/j.joa.2016.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, PA, United States
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People׳s Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, NJ, United States
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asian Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, South Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
- Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AAM. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm 2016; 13:e295-324. [PMID: 27423412 PMCID: PMC5035208 DOI: 10.1016/j.hrthm.2016.05.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Antzelevitch C, Patocskai B. Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Curr Probl Cardiol 2016; 41:7-57. [PMID: 26671757 PMCID: PMC4737702 DOI: 10.1016/j.cpcardiol.2015.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome first described as a new clinical entity in 1992. Electrocardiographically characterized by distinct coved type ST segment elevation in the right-precordial leads, the syndrome is associated with a high risk for sudden cardiac death in young adults, and less frequently in infants and children. The electrocardiographic manifestations of BrS are often concealed and may be unmasked or aggravated by sodium channel blockers, a febrile state, vagotonic agents, as well as by tricyclic and tetracyclic antidepressants. An implantable cardioverter defibrillator is the most widely accepted approach to therapy. Pharmacologic therapy is designed to produce an inward shift in the balance of currents active during the early phases of the right ventricular action potential (AP) and can be used to abort electrical storms or as an adjunct or alternative to device therapy when use of an implantable cardioverter defibrillator is not possible. Isoproterenol, cilostazol, and milrinone boost calcium channel current and drugs like quinidine, bepridil, and the Chinese herb extract Wenxin Keli inhibit the transient outward current, acting to diminish the AP notch and thus to suppress the substrate and trigger for ventricular tachycardia or fibrillation. Radiofrequency ablation of the right ventricular outflow tract epicardium of patients with BrS has recently been shown to reduce arrhythmia vulnerability and the electrocardiographic manifestation of the disease, presumably by destroying the cells with more prominent AP notch. This review provides an overview of the clinical, genetic, molecular, and cellular aspects of BrS as well as the approach to therapy.
Collapse
Affiliation(s)
| | - Bence Patocskai
- Masonic Medical Research Laboratory, Utica, NY 13501
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Sarquella-Brugada G, Campuzano O, Arbelo E, Brugada J, Brugada R. Brugada syndrome: clinical and genetic findings. Genet Med 2016; 18:3-12. [PMID: 25905440 DOI: 10.1038/gim.2015.35] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
Brugada syndrome is a rare, inherited cardiac disease leading to ventricular fibrillation and sudden cardiac death in structurally normal hearts. Clinical diagnosis requires a Brugada type I electrocardiographic pattern in combination with other clinical features. The most effective approach to unmasking this diagnostic pattern is the use of ajmaline and flecainide tests, and the most effective intervention to reducing the risk of death is the implantation of a cardioverter defibrillator. To date, 18 genes have been associated with the disease, with the voltage-gated sodium channel α type V gene (SCN5A) being the most common one to date. However, only 30-35% of diagnosed cases are attributable to pathogenic variants in known genes, emphasizing the need for further genetic studies. Despite recent advances in clinical diagnoses and genetic testing, risk stratification and clinical management of patients with Brugada syndrome remain challenging.Genet Med 18 1, 3-12.
Collapse
Affiliation(s)
| | - Oscar Campuzano
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | - Elena Arbelo
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Brugada
- Pediatric Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Spain
- Cardiology Service, Hospital Josep Trueta, Girona, Spain
| |
Collapse
|
28
|
Vohra J, Rajagopalan S. Update on the Diagnosis and Management of Brugada Syndrome. Heart Lung Circ 2015; 24:1141-8. [DOI: 10.1016/j.hlc.2015.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
|
29
|
Abstract
A prominent J wave is encountered in a number of life-threatening cardiac arrhythmia syndromes, including the Brugada syndrome and early repolarization syndromes. Brugada syndrome and early repolarization syndromes differ with respect to the magnitude and lead location of abnormal J waves and are thought to represent a continuous spectrum of phenotypic expression termed J-wave syndromes. Despite two decades of intensive research, risk stratification and the approach to therapy of these 2 inherited cardiac arrhythmia syndromes are still undergoing rapid evolution. Our objective in this review is to provide an integrated synopsis of the clinical characteristics, risk stratifiers, and molecular, ionic, cellular, and genetic mechanisms underlying these 2 fascinating syndromes that have captured the interest and attention of the cardiology community in recent years.
Collapse
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, Pennsylvania; Jefferson Medical College, Philadelphia, Pennsylvania; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Patocskai B, Antzelevitch C. Novel Therapeutic Strategies for the Management of Ventricular Arrhythmias Associated with the Brugada Syndrome. Expert Opin Orphan Drugs 2015; 3:633-651. [PMID: 27559494 PMCID: PMC4993532 DOI: 10.1517/21678707.2015.1037280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by prominent J waves appearing as distinct coved type ST segment elevation in the right precordial leads of the ECG. It is associated with a high risk for sudden cardiac death. AREAS COVERED We discuss 1) ECG manifestations of BrS which can be unmasked or aggravated by sodium channel blockers, febrile states, vagotonic agents, as well as tricyclic and tetracyclic antidepressants; 2) Genetic basis of BrS; 3) Ionic and cellular mechanisms underlying BrS; 4) Therapy involving devices including an implantable cardioverter defibrillator (ICD); 5) Therapy involving radiofrequency ablation; and 6) Therapy involving pharmacological therapy which is aimed at producing an inward shift in the balance of the currents active during phase 1 of the right ventricular action potential either by boosting calcium channel current (isoproterenol, cilostazol and milrinone) or by inhibition of transient outward current Ito (quinidine, bepridil and the Chinese herb extract Wenxin Keli). EXPERT OPINION This review provides an overview of the clinical and molecular aspects of BrS with a focus on approaches to therapy. Available data suggest that agents capable of inhibiting the transient outward current Ito can exert an ameliorative effect regardless of the underlying cause.
Collapse
Affiliation(s)
- Bence Patocskai
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
31
|
Naseef A, Behr ER, Batchvarov VN. Electrocardiographic methods for diagnosis and risk stratification in the Brugada syndrome. J Saudi Heart Assoc 2015; 27:96-108. [PMID: 25870503 PMCID: PMC4392351 DOI: 10.1016/j.jsha.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/02/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022] Open
Abstract
The Brugada syndrome (BrS) is a malignant, genetically-determined, arrhythmic syndrome manifesting as syncope or sudden cardiac death (SCD) in individuals with structurally normal hearts. The diagnosis of the BrS is mainly based on the presence of a spontaneous or Na + channel blocker induced characteristic, electrocardiographic (ECG) pattern (type 1 or coved Brugada ECG pattern) typically seen in leads V1 and V2 recorded from the 4th to 2nd intercostal (i.c.) spaces. This pattern needs to be distinguished from similar ECG changes due to other causes (Brugada ECG phenocopies). This review focuses mainly on the ECG-based methods for diagnosis and arrhythmia risk assessment in the BrS. Presently, the main unresolved clinical problem is the identification of those patients at high risk of SCD who need implantable cardioverter-defibrillator (ICD), which is the only therapy with proven efficacy. Current guidelines recommend ICD implantation only in patients with spontaneous type 1 ECG pattern, and either history of aborted cardiac arrest or documented sustained VT (class I), or syncope of arrhythmic origin (class IIa) because they are at high risk of recurrent arrhythmic events (up to 10% or more annually for those with aborted cardiac arrest). The majority of BrS patients are asymptomatic when diagnosed and considered to have low risk (around 0.5% annually) and therefore not indicated for ICD. The majority of SCD victims in the BrS, however, had no symptoms prior to the fatal event and therefore were not protected with an ICD. While some ECG markers such as QRS fragmentation, infero-lateral early repolarisation, and abnormal late potentials on signal-averaged ECG are known to be linked to increased arrhythmic risk, they are not sufficiently sensitive or specific. Potential novel ECG-based strategies for risk stratification are discussed based on computerised methods for depolarisation and repolarisation analysis, a composite approach targeting several major components of ventricular arrhythmogenesis, and the collection of large digital ECG databases in genotyped BrS patients and their relatives.
Collapse
Key Words
- AP, action potential
- ARI, activation-recovery intervals
- BrS, Brugada syndrome
- Brugada syndrome
- ECG, electrocardiogram
- EPS, electrophysiology study
- Electrocardiogram
- Genetic arrhythmic syndromes
- ICD, implantable cardioverter-defibrillator
- IHD, ischaemic heart disease
- LBBB, left bundle branch block
- MAP, monophasic action potential
- MI, myocardial infarction
- PCA, principal component analysis
- RVOT, right ventricular outflow tract
- Risk stratification
- SAECG, signal-averaged electrocardiogram
- SCD, sudden cardiac death
- SNP, single-nucleotide polymorphism
- Sudden cardiac death
- VF, ventricular fibrillation
- VT, ventricular tachycardia
- WT, wavelet transform
Collapse
Affiliation(s)
- Abdulrahman Naseef
- Center for Health Studies, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Cardiac and Vascular Sciences Research Centre, St. George’s University of London, London, United Kingdom
| | - Elijah R. Behr
- Cardiac and Vascular Sciences Research Centre, St. George’s University of London, London, United Kingdom
| | - Velislav N. Batchvarov
- Cardiac and Vascular Sciences Research Centre, St. George’s University of London, London, United Kingdom
| |
Collapse
|
32
|
Batchvarov VN. The Brugada Syndrome - Diagnosis, Clinical Implications and Risk Stratification. Eur Cardiol 2014; 9:82-87. [PMID: 30310491 PMCID: PMC6159405 DOI: 10.15420/ecr.2014.9.2.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
The Brugada syndrome (BrS) is a hereditary arrhythmic syndrome manifesting as syncope or sudden cardiac death (SCD) in individuals without overt structural heart disease. Currently, its diagnosis is mainly based on the presence of a spontaneous or Na+-channel blocker induced so-called "type 1" Brugada electrocardiographic (ECG) pattern typically seen in leads V1 and V2 recorded from the 4th to 2nd intercostal spaces. Presently the main unresolved clinical problem in the BrS is the identification of patients at high risk of SCD who need implantable cardioverter-defibrillator (ICD). Current guidelines recommend ICD implantation only in patients with spontaneous type 1 ECG pattern and either history of aborted cardiac arrest or documented sustained ventricular tachycardia (class I) or syncope of arrhythmic origin (class IIa) because they are at high risk of recurrent arrhythmias. However, the majority of BrS patients are asymptomatic when diagnosed and have generally low risk (0.5 % annually or lower) and therefore are not indicated for ICD. Most of SCD victims in the BrS have had no symptoms prior to the fatal event and therefore were not protected with an ICD. Currently there are no reliable methods to identify these potential victims of SCD. Although some ECG markers such as QRS fragmentation and infero-lateral early repolarisation have been demonstrated to signify increased arrhythmic risk their value still needs to be confirmed in large prospective studies. Novel risk assessment strategies need to be developed based on computerised quantitative ECG analysis of large digital ECG databases in patients with BrS and their relatives, and combined assessment of the most important factors of ventricular arrhythmogenesis.
Collapse
Affiliation(s)
- Velislav N Batchvarov
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
33
|
A novel anaesthetical approach to patients with brugada syndrome in neurosurgery. Case Rep Anesthesiol 2013; 2013:280826. [PMID: 23781349 PMCID: PMC3679816 DOI: 10.1155/2013/280826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Brugada syndrome (BrS) is one of the most common causes of sudden death in young people. It usually presents with life-threatening arrhythmias in subjects without remarkable medical history. The need for surgical treatment may unmask BrS in otherwise asymptomatic patients. The best anaesthesiological treatment in such cases is matter of debate. We report a case of neurosurgical treatment of cerebello pontine angle (CPA) tumor in a BrS patient, performed under total intravenous anesthesia (TIVA) with target controlled infusion (TCI) modalities, using midazolam plus remifentanil and rocuronium, without recordings of intraoperative ECG alterations in the intraoperative period and postoperative complications.
Collapse
|
34
|
|
35
|
Wada T, Morita H. Clinical outcome and risk stratification in Brugada syndrome. J Arrhythm 2013. [DOI: 10.1016/j.joa.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
36
|
Shea YF, Mok MYM, Fang JX. Transient Brugada electrocardiogram pattern associated with Tenchkoff catheter exit site infection. Nephrology (Carlton) 2013; 18:239-40. [PMID: 23432750 DOI: 10.1111/nep.12016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
|
37
|
Fernando RR, Yilmaz M, Higgins JP. The changing electrocardiogram in Brugada syndrome. Int J Cardiol 2013; 163:e36-7. [DOI: 10.1016/j.ijcard.2012.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022]
|
38
|
De Maria E, Bonetti L, Patrizi G, Scrivener J, Andraghetti A, Di Gregorio F, Montin A, Zuccon G, Cappelli S. Implantation of a completely subcutaneous ICD system: case report of a patient with Brugada syndrome and state of the art. J Interv Card Electrophysiol 2012; 34:105-113. [PMID: 21993598 DOI: 10.1007/s10840-011-9626-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
Abstract
AIMS Complications of implantable cardioverter-defibrillator (ICD) therapy are often linked to transvenous lead insertion, lead failure, or infections. An entirely subcutaneous ICD system (S-ICD) avoids the need for the placement of electrodes within the heart and can provide clinical advantages. METHODS AND RESULTS A 45-year-old patient with Brugada syndrome (spontaneous type 1 Brugada ECG, syncope during fever, family history of sudden death <45 years old) was implanted with an entirely S-ICD. A left lateral incision was made over the sixth rib in the anterior axillary line for pocket formation and pulse generator placement. The subcutaneous electrode was placed subcutaneously, parallel to and 2 cm to the left of the sternal midline, and was connected to the generator. The insertion of the system was guided only by anatomical landmarks, and no fluoroscopy was required. Ventricular fibrillation was induced and terminated by a 65-J shock (15-J safety margin). No complication occurred, and subsequent course was uneventful. CONCLUSIONS S-ICD is a new system for delivering lifesaving shock therapy in patients at risk of sudden cardiac death, without the need of intracardiac leads. Young patients with inherited arrhythmogenic syndromes could benefit the most from this system. This is the first case of Brugada syndrome implanted with a first-generation S-ICD in Italy.
Collapse
Affiliation(s)
- Elia De Maria
- Cardiology Unit, Ramazzini Hospital, Via Molinari, Carpi, Modena, Italy, 41012.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hudzik B, Szkodzinski J, Wozniak A, Nowowiejska-Wiewiora A, Polonski L. When you hear hoofbeats, think of horses and zebras: a 58-year-old man with chest pain and palpitations. Intern Emerg Med 2011; 6:537-41. [PMID: 21369850 DOI: 10.1007/s11739-011-0544-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Bartosz Hudzik
- 3rd Department of Cardiology, Silesian Center for Heart Disease, Medical University of Silesia, Szpitalna 2, 41-800 Zabrze, Poland.
| | | | | | | | | |
Collapse
|
40
|
Take Y, Morita H, Wu J, Nagase S, Morita S, Toh N, Nishii N, Nakamura K, Kusano KF, Ohe T, Ito H, Zipes DP. Spontaneous electrocardiogram alterations predict ventricular fibrillation in Brugada syndrome. Heart Rhythm 2011; 8:1014-21. [DOI: 10.1016/j.hrthm.2011.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/06/2011] [Indexed: 11/29/2022]
|
41
|
Anesthetic management of patients with Brugada syndrome: a case series and literature review. Can J Anaesth 2011; 58:824-36. [DOI: 10.1007/s12630-011-9546-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022] Open
|
42
|
Efficacy of low-dose bepridil for prevention of ventricular fibrillation in patients with Brugada syndrome with and without SCN5A mutation. J Cardiovasc Pharmacol 2011; 56:389-95. [PMID: 20625312 DOI: 10.1097/fjc.0b013e3181f03c2f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been reported that bepridil prevents ventricular fibrillation (VF) in patients with Brugada syndrome, but the comparative efficacy with and without mutation in the SCN5A gene has not been elucidated. The purpose of this study was to assess the efficacy of low-dose bepridil (100 mg/day) for VF prevention in patients with Brugada syndrome with and without SCN5A mutation. Among 130 patients with Brugada-type electrocardiogram (ECG), low-dose bepridil was administered to seven patients because of repetitive VF episodes, including three with and four without SCN5A mutation. Preventive effect for VF recurrence and changes of the ECG and the signal-averaged ECG were evaluated. Frequencies of VF episodes were reduced after treatment with low-dose bepridil in all three patients with the SCN5A mutation (before: 0.33 versus after: 0.02 episodes/month, P < 0.01), but not in all four patients without the SCN5A mutation (before: 0.43 versus after: 2.94 episodes/month, P = nonsignificant). Levels of ST-segment elevation at J points and duration of low-amplitude signals less than 40 µV in the terminal filtered QRS complex (LAS40) in signal-averaged ECG were improved exclusively in patients with the SCN5A mutation. Treatment with bepridil prevented recurrence of VF along with improvement of ST elevation and LAS40 in patients with Brugada syndrome with the SCN5A mutation.
Collapse
|
43
|
Pedrón-Torrecilla J, Climent AM, Millet J, Berné P, Brugada J, Brugada R, Guillem MS. Characteristics of inverse-computed epicardial electrograms of Brugada syndrome patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:235-238. [PMID: 22254293 DOI: 10.1109/iembs.2011.6090044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Brugada syndrome (BrS) causes sudden death in patients with structurally normal hearts. Manifestation of BrS in the ECG is dynamic and most patients do not show unequivocal signs of the syndrome during ECG screening. Electrograms (EGMs) of BrS patients show conduction delay and fractionation at the right ventricular outflow tract area (RVOT) and thus could be used for diagnosis, but their recording requires an invasive procedure. We have obtained 67-lead body surface potential mapping recordings (BSPM) of 6 BrS patients and 6 controls and computed their EGMs by solving the inverse problem of electrocardiography by using Tikhonov's regularization method. Inverse-computed EGMs presented similar activation times and durations in controls and BrS patients for apex and septum. However, RVOT EGMs showed a later activation in BrS patients than in controls (58 ± 7 vs. 39 ± 5 ms, p<0.01) and EGMs were longer (122 ± 22 vs. 85 ± 8 ms, p<0.01). Inverse-computed EGMs of BrS patients showed abnormalities consistent with those observed in electrophysiological studies and could be used for a non-invasive diagnosis and characterization of Brugada syndrome.
Collapse
|
44
|
Guillem MS, Climent AM, Millet J, Berne P, Ramos R, Brugada J, Brugada R. Conduction abnormalities in the right ventricular outflow tract in Brugada syndrome detected body surface potential mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:2537-40. [PMID: 21096440 DOI: 10.1109/iembs.2010.5626869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brugada syndrome (BrS) causes sudden death in patients with structurally normal hearts. Manifestation of BrS in the ECG is dynamical and most patients do not show unequivocal signs of the syndrome during ECG screening. We have obtained 67-lead body surface potential mapping recordings of 25 patients with BrS and analyzed their spatial distribution of surface potentials during ventricular activation. Six patients presented spontaneous type I ECGs during the recording. These patients showed non-dipolarities in isopotential maps at the right ventricular outflow tract (RVOT) region during the development of terminal R waves in right precordial leads. Same finding was observed in 95% of BrS patients not presenting a type I ECG. Conduction delay in the RVOT may be a consistent finding in BrS patients that can be identified by Body Surface Potential Mapping.
Collapse
Affiliation(s)
- Maria S Guillem
- BIO-ITACA at Universidad Politécnica de Valencia, 46022, Spain.
| | | | | | | | | | | | | |
Collapse
|
45
|
Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, Kroboth SL, Song C, Zhou Q, Kopp D, Schwartz PJ, Makielski JC, Ackerman MJ. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm 2010; 7:1466-71. [PMID: 20558321 DOI: 10.1016/j.hrthm.2010.06.016] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/09/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.
Collapse
Affiliation(s)
- Argelia Medeiros-Domingo
- Department of Medicine (Division of Cardiovascular Diseases), Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Batchvarov VN, Govindan M, Macfarlane P, Camm AJ, Behr ER. Diagnostic utility of bipolar precordial leads during ajmaline testing for suspected Brugada syndrome. Heart Rhythm 2010; 7:208-15. [DOI: 10.1016/j.hrthm.2009.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/05/2009] [Indexed: 11/28/2022]
|