1
|
Xie W, Gao J, Liang Y, Huang C, Zhang B, Chen X, Yao X, Nan G, Wu H, Wang Y, Wu L, Wang T, Zhu Y. Identification of Lauric Acid as a Potent Sodium Channel Na V1.5 Blocker from Compound Chinese Medicine Wenxin Keli. Drug Des Devel Ther 2025; 19:141-157. [PMID: 39807341 PMCID: PMC11727701 DOI: 10.2147/dddt.s485723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Purpose The major cardiac voltage-gated sodium channel NaV1.5 (INa) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure. However, its active components have not been fully elucidated. This study focused on identifying the active inhibitor of INa in WXKL and exploring their mode of action in electrophysiological conduction. Methods A chemical fraction library was constructed from an aqueous extract of WXKL and screened using an automated patch-clamping system in cells stably expressing the NaV1.5 gene SCN5A. Candidate fractions with INa-inhibition activity were analyzed by HPLC-ESI-IT-TOF-MS and GC-MS to identify the ingredients. NaV1.5 blocker molecules identified by single-cell electrocardiogram were tested in hiPSC-derived cardiomyocytes. We evaluated the SCN5A inhibitory potential of Wenxin Keli effective monomer employing molecular docking and molecular dynamics simulation approaches. Results A primary screen of the WXKL chemical library identified five fractions that significantly inhibited the NaV1.5 channel, with one of them rich in poly-saturated fatty acids. Molecular structural characterization revealed the presence of lauric acid, myristic acid, palmitic acid, and stearic acid in the active subfraction. Electrophysiological characterization demonstrated lauric acid (LA) as the most effective monomer for INa-inhibition with an IC50 at 27.40 ± 12.78 μM. LA shifted the steady-state inactivation of INa to more negative potentials and decreased the amplitude of extracellular field potential in hiPSC-derived cardiomyocytes. We demonstrate for the first time that naturally poly-saturated fatty acid, lauric acid, as a potential novel INa blocker. Molecular docking and molecular dynamics simulation suggested that LA binds to the NaV1.5 protein, with a significant binding affinity forming interactions with functionally essential residues and blocks the inward flow of Na+. Mechanistically, lauric acid acts on the fast inactivation of NaV1.5 alter electrophysiology conduction of hiPSC-derived cardiomyocytes and contribute to the antiarrhythmic effect of WXKL. Conclusion Lauric acid is a potent blocker for sodium channel NaV1.5 and alleviates arrhythmia via inhibiting INa.
Collapse
Affiliation(s)
- Weiwei Xie
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, People’s Republic of China
| | - Yingran Liang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Chenxing Huang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Boyong Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xiaonan Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xi Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Guo Nan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Honghua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034People’s Republic of China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| |
Collapse
|
2
|
Jeong HK, Yoon N, Kim YR, Lee KH, Park HW. Artemisinin-Quinidine Combination for Suppressing Ventricular Tachyarrhythmia in an Ex Vivo Model of Brugada Syndrome. J Korean Med Sci 2025; 40:e2. [PMID: 39763307 PMCID: PMC11707659 DOI: 10.3346/jkms.2025.40.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models. However, quinidine remains a well-established antiarrhythmic agent for treating BrS. Therefore, this study aims to investigate the efficacy of combining artemisinin with low-dose quinidine in suppressing ventricular tachyarrhythmia (VTA) in experimental canine BrS models. METHODS Transmural pseudo-electrocardiogram and epicardial/endocardial action potential (AP) were recorded from coronary-perfused canine right ventricular wedge preparation. To mimic the BrS model, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6-10 μM) were administered until VTA was induced. Subsequently, low-dose quinidine (1-2 μM) combined with artemisinin (100 μM) was perfused to mitigate VTA. Key parameters, including AP duration, J wave area, notch index, and T wave dispersion, were measured. RESULTS After administering the provocation agents, all sample models exhibited prominent J waves and VTA. Artemisinin alone (100-150 μM) suppressed VTA and restored the AP dome in all three preparations. Its infusion resulted in reductions in the J wave area and epicardial notch index. Consequently, low-dose quinidine (1-2 μM) did not fully restore the AP dome in all six sample models. However, when combined with additional artemisinin (100 μM), low-dose quinidine effectively suppressed VTA in all six models and restored the AP dome while also decreasing the J wave area and epicardial notch index. CONCLUSION Low-dose quinidine alone fails to fully alleviate VTA in the BrS wedge model. However, its combination with artemisinin effectively suppresses VTA. Artemisinin may reduce the therapeutic dose of quinidine, potentially minimizing its associated adverse effects.
Collapse
Affiliation(s)
- Hyung Ki Jeong
- Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
- Institute of Wonkang Medical Science, Iksan, Korea
| | - Namsik Yoon
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
| | - Yoo Ri Kim
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Ki Hong Lee
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Wook Park
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
3
|
Wu Q, Chang X, Wang Y, Liu J, Guan X, Liu Z, Liu R. The electrophysiological effects of Tongyang Huoxue granules on the ignition phase during hypoxia/reoxygenation injury in sinoatrial node cells. Front Physiol 2024; 15:1402478. [PMID: 38911325 PMCID: PMC11190314 DOI: 10.3389/fphys.2024.1402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction This study was undertaken to explore the potential therapeutic effects of Tongyang Huoxue Granules (TYHX) on sinoatrial node (SAN) dysfunction, a cardiac disorder characterized by impaired impulse generation or conduction. The research question addressed whether TYHX could positively influence SAN ion channel function, specifically targeting the sodium-calcium exchanger (I NCX) and L-type calcium channel (I CaL) of the SAN. Methods Sinoatrial node cells (SANCs) were isolated and cultured from neonatal Japanese big-eared white rabbits within 24 h of birth. The study encompassed five groups: Control, H/R (hypoxia/reoxygenation), H/R+100 μg/mL TYHX, H/R+200 μg/mL TYHX, and H/R+400 μg/mL TYHX. The H/R model, simulating hypoxia/reoxygenation stress, was induced within 5 days of culture. Whole-cell patch clamp technique was employed to record currents following a 3-min perfusion and stabilization period with TYHX. Results TYHX administration demonstrated improvements in the ignition phase of impaired SANCs. The half-maximal effective dose of TYHX, as determined by SANC beating frequency, was found to be 323.63 μg/mL. Inward current density of I NCX increased in response to TYHX (200 and 400 μg/mL), while TYHX enhanced I CaL current density in H/R SANCs, with 400 μg/mL exhibiting greater efficacy. Additionally, TYHX regulated the gating mechanisms of I CaL by right-shifting the steady-state inactivation curve and accelerating recovery from inactivation. Notably, TYHX increased the activation time constant under 200 and 400 μg/mL, prolonged the fast inactivation time constant τ1 with 400 μg/mL, and extended the slow inactivation time constant τ2 with 100 and 400 μg/mL. Discussion and conclusion The findings suggest that TYHX may hold promise as a therapeutic intervention for sinus node dysfunction, offering potential avenues for drug development aimed at safeguarding SAN function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruxiu Liu
- Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Yang C, Li Q, Hu F, Liu Y, Wang K. Inhibition of Cardiac Kv4.3/KChIP2 Channels by Sulfonylurea Drug Gliquidone. Mol Pharmacol 2024; 105:224-232. [PMID: 38164605 DOI: 10.1124/molpharm.123.000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 μM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
5
|
Melgari D, Calamaio S, Frosio A, Prevostini R, Anastasia L, Pappone C, Rivolta I. Automated Patch-Clamp and Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Synergistic Approach in the Study of Brugada Syndrome. Int J Mol Sci 2023; 24:ijms24076687. [PMID: 37047659 PMCID: PMC10095337 DOI: 10.3390/ijms24076687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Collapse
Affiliation(s)
- Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| |
Collapse
|
6
|
Antzelevitch C, Di Diego JM. J wave syndromes: What's new? Trends Cardiovasc Med 2022; 32:350-363. [PMID: 34256120 PMCID: PMC8743304 DOI: 10.1016/j.tcm.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Among the inherited ion channelopathies associated with potentially life-threatening ventricular arrhythmia syndromes in nominally structurally normal hearts are the J wave syndromes, which include the Brugada (BrS) and early repolarization (ERS) syndromes. These ion channelopathies are responsible for sudden cardiac death (SCD), most often in young adults in the third and fourth decade of life. Our principal goal in this review is to briefly outline the clinical characteristics, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these primary electrical diseases that have challenged the cardiology community over the past two decades. In addition, we discuss our recently developed whole-heart experimental model of BrS, providing compelling evidence in support of the repolarization hypothesis for the BrS phenotype as well as novel findings demonstrating that voltage-gated sodium and transient outward current channels can modulate each other's function via trafficking and gating mechanisms with implications for improved understanding of the genetics of both cardiac and neuronal syndromes.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Distinguished Professor Emeritus and Executive Director, Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; Lankenau Institute for Medical Research, Wynnwoddm PA USA; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA, USA.
| | | |
Collapse
|
7
|
Mi Y, Hu W, Li W, Wan S, Xu X, Liu M, Wang H, Mei Q, Chen Q, Yang Y, Chen B, Jiang M, Li X, Yang W, Guo D. Systematic Qualitative and Quantitative Analyses of Wenxin Granule via Ultra-High Performance Liquid Chromatography Coupled with Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry and Triple Quadrupole-Linear Ion Trap Mass Spectrometry. Molecules 2022; 27:3647. [PMID: 35684583 PMCID: PMC9181919 DOI: 10.3390/molecules27113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.
Collapse
Affiliation(s)
- Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wandi Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Weiwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Shiyu Wan
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Quanxi Mei
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Boxue Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
8
|
Li Y, Lang S, Akin I, Zhou X, El-Battrawy I. Brugada Syndrome: Different Experimental Models and the Role of Human Cardiomyocytes From Induced Pluripotent Stem Cells. J Am Heart Assoc 2022; 11:e024410. [PMID: 35322667 PMCID: PMC9075459 DOI: 10.1161/jaha.121.024410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Brugada syndrome (BrS) is an inherited and rare cardiac arrhythmogenic disease associated with an increased risk of ventricular fibrillation and sudden cardiac death. Different genes have been linked to BrS. The majority of mutations are located in the SCN5A gene, and the typical abnormal ECG is an elevation of the ST segment in the right precordial leads V1 to V3. The pathophysiological mechanisms of BrS were studied in different models, including animal models, heterologous expression systems, and human-induced pluripotent stem cell-derived cardiomyocyte models. Currently, only a few BrS studies have used human-induced pluripotent stem cell-derived cardiomyocytes, most of which have focused on genotype-phenotype correlations and drug screening. The combination of new technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR associated protein 9)-mediated genome editing and 3-dimensional engineered heart tissues, has provided novel insights into the pathophysiological mechanisms of the disease and could offer opportunities to improve the diagnosis and treatment of patients with BrS. This review aimed to compare different models of BrS for a better understanding of the roles of human-induced pluripotent stem cell-derived cardiomyocytes in current BrS research and personalized medicine at a later stage.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany
| | - Siegfried Lang
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim Akin
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Xiaobo Zhou
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research Southwest Medical University Luzhou Sichuan China.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany.,Department of Cardiology and Angiology Bergmannsheil Bochum Medical Clinic II Ruhr University Bochum Germany
| |
Collapse
|
9
|
Wang P, He T, Zheng R, Sun Y, Qiu R, Zhang X, Xing Y, Shang H. Applying cooperative module pair analysis to uncover compatibility mechanism of Fangjis: An example of Wenxin Keli decoction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114214. [PMID: 34033900 DOI: 10.1016/j.jep.2021.114214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fangji is an ancient combinatorial formula. The compatibility mechanisms that how component herbs of Fangji work cooperatively to achieve the executive framework remain unexplored. AIM OF THE STUDY Toexplore compatibility mechanism and systematical effects of Fangjis by taking Wenxin Keli decoction (WXKL), a classical Fangji constituted by Codonopsis Radix, PolygonatiRhizoma, Notoginseng Radix Et Rhizoma, Ambrum, and Nardostachyos Radix Et Rhizoma., as example. MAIN METHODS Here, we employed bioinformatics approach, including cluster analysis, cooperative module pair analysis, primary module identification, and proximity examination among target profile of herbs, to investigate compatibility characterization and anti-arrhythmia mechanism of WXKL. Finally, core mechanisms of WXKL were validatedby in vivo experiments. RESULTS As a result, we identified 695 putative target proteins and 27 clusters (W-modules) inWXKL target network (W-network), in which W-module 1, 2, 4, 8, 10 were primary modules. The cooperative module pairs were W-module 2 and 4, W-module 2 and 8, and W-module 2 and 1, all of which existed in Codonopsis Radix- or Notoginseng Radix Et Rhizoma.-condition. And Nardostachyos Radix Et Rhizoma only yielded cooperation between W-module 1 and 2. The proximity of herbs' target profiles of Codonopsis Radix and Notoginseng Radix Et Rhizoma were similar, and Nardostachyos Radix Et Rhizoma and Ambrum were similar. For the compatibility framework, Codonopsis Radix general regulated 70.67% targets and majority W-modules (81.48%) as sovereign herb, contributing to primary therapeutic effect, mainly involving neurohormonal regulation, vasomotor, inflammation and oxidative stress. Other herbs assisted Codonopsis Radix to enhance major outcomes through common modules, and acted as complementary roles through unique process including mitotic cell cycle, biosynthetic and catabolic process, etc. Furthermore, WXKL regulated 66.67% hub proteins of arrhythmia-network, 68.18% and 47.37% proteins in primary arrhythmia-module 1 and 2, mainly involving ion channel activity, neurohormonal regulation, and stress response processes, to constitute regulatory network focusing on cardiovascular, renal, nervous system, to reverse the pathological process of arrhythmia. In vivo experiments demonstrated WXKL can attenuate adrenergic activation induced sympathetic atrial fibrillation by inhibiting calmodulin expression (CaM) and ryanodine receptor 2 (RYR2) phosphorylation to regulate neurohormonal action. CONCLUSION This strategy provided an overarching view of anti-arrhythmia mechanism of WXKL and its internal compatibility, and may facilitate the understanding of compatibility in Fangjis from the perspectives of modern biology.
Collapse
Affiliation(s)
- Pengqian Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijin Qiu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Impact of Dietary Factors on Brugada Syndrome and Long QT Syndrome. Nutrients 2021; 13:nu13082482. [PMID: 34444641 PMCID: PMC8401538 DOI: 10.3390/nu13082482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
A healthy regime is fundamental for the prevention of cardiovascular diseases (CVD). In inherited channelopathies, such as Brugada syndrome (BrS) and Long QT syndrome (LQTS), unfortunately, sudden cardiac death could be the first sign for patients affected by these syndromes. Several known factors are used to stratify the risk of developing cardiac arrhythmias, although none are determinative. The risk factors can be affected by adjusting lifestyle habits, such as a particular diet, impacting the risk of arrhythmogenic events and mortality. To date, the importance of understanding the relationship between diet and inherited channelopathies has been underrated. Therefore, we describe herein the effects of dietary factors on the development of arrhythmia in patients affected by BrS and LQTS. Modifying the diet might not be enough to fully prevent arrhythmias, but it can help lower the risk.
Collapse
|
11
|
Zhang Y, Zhang X, Zhang X, Cai Y, Cheng M, Yan C, Han Y. Molecular Targets and Pathways Contributing to the Effects of Wenxin Keli on Atrial Fibrillation Based on a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8396484. [PMID: 33123211 PMCID: PMC7586041 DOI: 10.1155/2020/8396484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with high rates of mortality and morbidity. The traditional Chinese medicine Wenxin Keli (WXKL) can effectively improve clinical symptoms and is safe for the treatment of AF. However, the active substances in WXKL and the molecular mechanisms underlying its effects on AF remain unclear. In this study, the bioactive compounds in WXKL, as well as their molecular targets and associated pathways, were evaluated by systems pharmacology. MATERIALS AND METHODS Chemical constituents and potential targets of WXKL were obtained via the Traditional Chinese Medicine Systems Pharmacology (TCMSP). The TTD, DrugBank, DisGeNET, and GeneCards databases were used to collect AF-related target genes. Based on common targets related to both AF and WXKL, a protein interaction network was generated using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment analyses were performed. Network diagrams of the active component-target and protein-protein interactions (PPIs) were constructed using Cytoscape. RESULTS A total of 30 active ingredients in WXKL and 219 putative target genes were screened, including 83 genes identified as therapeutic targets in AF; these overlapping genes were considered candidate targets for subsequent analyses. The effect of treating AF was mainly correlated with the regulation of target proteins, such as IL-6, TNF, AKT1, VEGFA, CXCL8, TP53, CCL2, MMP9, CASP3, and NOS3. GO and KEGG analyses revealed that these targets are associated with the inflammatory response, oxidative stress reaction, immune regulation, cardiac energy metabolism, serotonergic synapse, and other pathways. CONCLUSIONS This study demonstrated the multicomponent, multitarget, and multichannel characteristics of WXKL, providing a basis for further studies of the mechanism underlying the beneficial effects of WXKL in AF.
Collapse
Affiliation(s)
- Yujie Zhang
- Liaoning University of Traditional Chinese Medicine, Liaoning, Shenyang 110847, China
| | - Xiaolin Zhang
- Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theatre Command, Liaoning, Shenyang 110840, China
| | - Xi Zhang
- Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theatre Command, Liaoning, Shenyang 110840, China
| | - Yi Cai
- Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theatre Command, Liaoning, Shenyang 110840, China
| | - Minghui Cheng
- Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theatre Command, Liaoning, Shenyang 110840, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theatre Command, Liaoning, Shenyang 110840, China
| | - Yaling Han
- Liaoning University of Traditional Chinese Medicine, Liaoning, Shenyang 110847, China
| |
Collapse
|
12
|
Dahal S, Gong M, Guo S, Tse G, Liu T. Protective effects of Wenxin Keli against cardiac arrhythmias (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Shristi Dahal
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shaohua Guo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Centurión OA, Candia JC, Alderete JF. Electrocardiographic T Wave Peak-T Wave End Interval: In Pursue of Improving Risk Factors for the Prediction of Cardiac Arrhythmic Events in Brugada Syndrome. Open Cardiovasc Med J 2020. [DOI: 10.2174/1874192402014010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Wang S, Rodríguez-Mañero M, Ibarra-Cortez SH, Kreidieh B, Valderrábano L, Hemam M, Tavares L, Blanco E, Valderrábano M. NS5806 Induces Electromechanically Discordant Alternans and Arrhythmogenic Voltage-Calcium Dynamics in the Isolated Intact Rabbit Heart. Front Physiol 2020; 10:1509. [PMID: 31920713 PMCID: PMC6933003 DOI: 10.3389/fphys.2019.01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background: NS5806 activates the transient outward potassium current I to, and has been claimed to reproduce Brugada Syndrome (BrS) in ventricular wedge preparations. I to modulates excitation-contraction coupling, which is critical in alternans dynamics. We explored NS5806-arrhythmogenic effects in the intact whole heart and its impact on alternans. Methods: Langendorff-perfused rabbit hearts (n = 20) underwent optical AP and Ca mapping during pacing at decremental cycle lengths (CL). Spontaneous arrhythmias and pacing-induced alternans was characterized at baseline (BL), after perfusing with NS5806, before and after adding verapamil (VP), and SEA0400 (SEA, n = 5 each), to modulate Ca-current and Na-Ca exchange, the main AP-Ca coupling mechanisms. Results: NS5806 induced BrS-like ECG features in 6 out of 20 hearts. NS5806 prolonged steady-state (3 Hz) action potential duration (APD) by 16.8%, Ca decay constant by 34%, and decreased conduction velocity (CV) by 52.6%. After NS5806 infusion, spontaneous ventricular ectopy (VE) and AP/Ca alternans occurred. Pacing-induced alternans during NS5806 infusion occurred at longer CL and were AP/Ca discordant from its onset. Spatially discordant alternans after NS5806 infusion had non-propagation-driven nodal line distribution. No spontaneous phase-2 reentry occurred. Under NS5806 + VP, alternans became AP/Ca concordant and only induced in two out of five; NS5806 + SEA did not affect alternans but suppressed spontaneous ectopy. Conclusions: NS5806 disrupts AP-Ca coupling and leads to Ca-driven, AP/Ca-discordant alternans and VE. Despite BrS-like ECG features, no spontaneous sustained arrhythmias or phase-2 reentry occurred. NS5806 does not fully reproduce BrS in the intact rabbit heart.
Collapse
Affiliation(s)
- Sufen Wang
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Moisés Rodríguez-Mañero
- Cardiology Department, Complejo Hospital Universitario de Santiago, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV CB16/11/00226 - CB16/11/00420), Madrid, Spain
| | - Sergio H Ibarra-Cortez
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Bahij Kreidieh
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Laura Valderrábano
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Majd Hemam
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Liliana Tavares
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Elvin Blanco
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States.,Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Miguel Valderrábano
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
15
|
Verkerk AO, Amin AS, Remme CA. Disease Modifiers of Inherited SCN5A Channelopathy. Front Cardiovasc Med 2018; 5:137. [PMID: 30327767 PMCID: PMC6174200 DOI: 10.3389/fcvm.2018.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations in SCN5A, the gene encoding the pore-forming α-subunit of the primary cardiac Na+ channel (NaV1.5), have been found in patients presenting with a wide range of ECG abnormalities and cardiac syndromes. Although these mutations all affect the same NaV1.5 channel, the associated cardiac syndromes each display distinct phenotypical and biophysical characteristics. Variable disease expressivity has also been reported, where one particular mutation in SCN5A may lead to either one particular symptom, a range of various clinical signs, or no symptoms at all, even within one single family. Additionally, disease severity may vary considerably between patients carrying the same mutation. The exact reasons are unknown, but evidence is increasing that various cardiac and non-cardiac conditions can influence the expressivity and severity of inherited SCN5A channelopathies. In this review, we provide a summary of identified disease entities caused by SCN5A mutations, and give an overview of co-morbidities and other (non)-genetic factors which may modify SCN5A channelopathies. A comprehensive knowledge of these modulatory factors is not only essential for a complete understanding of the diverse clinical phenotypes associated with SCN5A mutations, but also for successful development of effective risk stratification and (alternative) treatment paradigms.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
16
|
Tian G, Sun Y, Liu S, Li C, Chen S, Qiu R, Zhang X, Li Y, Li M, Shang H. Therapeutic Effects of Wenxin Keli in Cardiovascular Diseases: An Experimental and Mechanism Overview. Front Pharmacol 2018; 9:1005. [PMID: 30233380 PMCID: PMC6134428 DOI: 10.3389/fphar.2018.01005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the major public health problem and a leading cause of morbidity and mortality on a global basis. Wenxin Keli (WXKL), a formally classical Chinese patent medicine with obvious efficacy and favorable safety, plays a great role in the management of patients with CVDs. Accumulating evidence from various animal and cell studies has showed that WXKL could protect myocardium and anti-arrhythmia against CVDs. WXKL exhibited its cardioprotective roles by inhibiting inflammatory reaction, decreasing oxidative stress, regulating vasomotor disorders, lowering cell apoptosis, and protection against endothelial injure, myocardial ischemia, cardiac fibrosis, and cardiac hypertrophy. Besides, WXKL could effectively shorten the QRS and Q-T intervals, decrease the incidence of atrial/ventricular fibrillation and the number of ventricular tachycardia episodes, improve the severity of arrhythmias by regulating various ion channels with different potencies, mainly comprising peak sodium current (INa), late sodium current (INaL), transient outward potassium current (Ito), L-type calcium current (ICaL), and pacemaker current (If).
Collapse
Affiliation(s)
- Guihua Tian
- Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijin Qiu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Youping Li
- Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Integration of Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Di Diego JM, Antzelevitch C. J wave syndromes as a cause of malignant cardiac arrhythmias. Pacing Clin Electrophysiol 2018; 41:684-699. [PMID: 29870068 PMCID: PMC6281786 DOI: 10.1111/pace.13408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
Abstract
The J wave syndromes, including the Brugada (BrS) and early repolarization (ERS) syndromes, are characterized by the manifestation of prominent J waves in the electrocardiogram appearing as an ST segment elevation and the development of life-threatening cardiac arrhythmias. BrS and ERS differ with respect to the magnitude and lead location of abnormal J waves and are thought to represent a continuous spectrum of phenotypic expression termed J wave syndromes. Despite over 25 years of intensive research, risk stratification and the approach to therapy of these two inherited cardiac arrhythmia syndromes are still rapidly evolving. Our objective in this review is to provide an integrated synopsis of the clinical characteristics, risk stratifiers, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these two syndromes that have captured the interest and attention of the cardiology community over the past two decades.
Collapse
Affiliation(s)
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood PA
- Lankenau Heart Institute, Wynnewood, PA
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
18
|
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by ST-segment elevation in right precordial ECG leads and associated with sudden cardiac death in young adults. The ECG manifestations of BrS are often concealed but can be unmasked by sodium channel blockers and fever. Areas covered: Implantation of a cardioverter defibrillator (ICD) is first-line therapy for BrS patients presenting with prior cardiac arrest or documented VT. A pharmacological approach to therapy is recommended in cases of electrical storm, as an adjunct to ICD and as preventative therapy. The goal of pharmacological therapy is to produce an inward shift to counter the genetically-induced outward shift of ion channel current flowing during the early phases of the ventricular epicardial action potential. This is accomplished by augmentation of ICa using □□adrenergic agents or phosphodiesterase III inhibitors or via inhibition of Ito. Radiofrequency ablation of the right ventricular outward flow tract epicardium is effective in suppressing arrhythmogenesis in BrS patients experiencing frequent appropriate ICD-shocks. Expert commentary: Understanding of the pathophysiology and approach to therapy of BrS has advanced considerably in recent years, but there remains an urgent need for development of cardio-selective and ion-channel-specific Ito blockers for treatment of BrS.
Collapse
Affiliation(s)
- Mariana Argenziano
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA
| | - Charles Antzelevitch
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA.,b Cardiovascular Research , Lankenau Heart Institute , Wynnewood , PA , USA.,c Department of Medicine and Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
19
|
Asvestas D, Tse G, Baranchuk A, Bazoukis G, Liu T, Saplaouras A, Korantzopoulos P, Goga C, Efremidis M, Sideris A, Letsas KP. High risk electrocardiographic markers in Brugada syndrome. IJC HEART & VASCULATURE 2018; 18:58-64. [PMID: 29876505 PMCID: PMC5988483 DOI: 10.1016/j.ijcha.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022]
Abstract
Several clinical, electrocardiographic (ECG) and electrophysiological markers have been proposed to provide optimal risk stratification in patients with Brugada syndrome (BrS). Of the different markers, only a spontaneous type 1 ECG pattern has clearly shown a sufficiently high predictive value. This review article highlights specific ECG markers based on depolarization and/or repolarization that have been associated with an increased risk of arrhythmic events in patients with BrS.
Collapse
Affiliation(s)
- Dimitrios Asvestas
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
- Li Ka Shing Institute of Health Sciences, 30-32 Ngan Shing St, Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - George Bazoukis
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, PR China
| | - Athanasios Saplaouras
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | | | - Christina Goga
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | - Michael Efremidis
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | - Antonios Sideris
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| | - Konstantinos P. Letsas
- Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Greece
| |
Collapse
|
20
|
Abstract
Brugada syndrome (BrS) is a cardiac disease caused by an inherited ion channelopathy associated with a propensity to develop ventricular fibrillation. Implantable cardioverter defibrillator implantation is recommended in BrS, based on the clinical presentation in the presence of diagnostic ECG criteria. Implantable cardioverter defibrillator implantation is not always indicated or sufficient in BrS, and is associated with a high device complication rate. Pharmacological therapy aimed at rebalancing the membrane action potential can prevent arrhythmogenesis in BrS. Quinidine, a class 1A antiarrhythmic drug with significant Ito blocking properties, is the most extensively used drug for the prevention of arrhythmias in BrS. The present review provides contemporary data gathered on all drugs effective in the therapy of BrS, and on ineffective or contraindicated antiarrhythmic drugs.
Collapse
Key Words
- Brugada syndrome,
- arrhythmia,
- bepridil,
- cilostazol,
- denopamine,
- disopyramide,
- isoproterenol,
- orciprenaline,
- pharmacology,
- quinidine,
- quinine
Collapse
Affiliation(s)
- Oholi Tovia Brodie
- University of Miami Miller School of Medicine Miami, USA.,Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Yoav Michowitz
- Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Bernard Belhassen
- Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
21
|
Luo A, Liu Z, Cao Z, Hao J, Wu L, Fu C, Zeng M, Jiang W, Zhang P, Zhao B, Zhao T, Zhao J, Ma J. Wenxin Keli diminishes Ca2+
overload induced by hypoxia/reoxygenation in cardiomyocytes through inhibiting INaL
and ICaL. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:1412-1425. [PMID: 28972668 DOI: 10.1111/pace.13206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Antao Luo
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Zhipei Liu
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Jie Hao
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Lin Wu
- Department of Cardiology, First Hospital; Peking University; Beijing China
| | - Chen Fu
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Mengliu Zeng
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Wanzhen Jiang
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Buchang Zhao
- Buchang Cardio-cerebrovascular Hospital; Xian China
| | - Tao Zhao
- Graduate School; Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Jing Zhao
- Buchang Cardio-cerebrovascular Hospital; Xian China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
22
|
Comparative metabonomics of Wenxin Keli and Verapamil reveals differential roles of gluconeogenesis and fatty acid β-oxidation in myocardial injury protection. Sci Rep 2017; 7:8739. [PMID: 28821850 PMCID: PMC5562700 DOI: 10.1038/s41598-017-09547-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Metabonomics/metabolomics is a rapid technology for comprehensive profiling of small molecule metabolites in cells, tissues, or whole organisms, the application of which has led to understanding pathophysiologic mechanisms of cardiometabolic diseases, defining predictive biomarkers for those diseases, and also assessing the efficacious effects of incident drugs. In this study, proton nuclear magnetic resonance (NMR)-based metabonomics was employed to identify the metabolic changes in rat plasma caused by myocardial ischemia-reperfusion injury (MIRI), and to compare the metabolic regulatory differences between traditional Chinese medicine Wenxin Keli (WXKL) and Western medicine verapamil. The results revealed that energy-substrate metabolism were significantly disturbed by ischemia-reperfusion (I/R) in myocardium and bulk of the key metabolites could be further modulated by verapamil and/or WXKL. Lipid metabolism and amino acid transamination occurred mainly following the treatment of verapamil, whereas glucose oxidation and BCAA degradation were prominently ameliorated by WXKL to content the energy demands of heart. Moreover, both WXKL and verapamil improved the secretions of taurine and ketone bodies to overcome the oxidative stress and the shortage of energy sources induced by ischemia-reperfusion.
Collapse
|
23
|
Li M, Qiu R, Tian G, Zhang X, Li C, Chen S, Zhang Q, Shang H. Wenxin Keli for Ventricular premature complexes with Heart failure: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Complement Ther Med 2017; 33:85-93. [PMID: 28735831 DOI: 10.1016/j.ctim.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/06/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of Wenxin Keli (WXKL) alone or combined with Western medicine in treating ventricular premature complexes (VPCs) with heart failure (HF). METHODS We searched five databases to identify relevant randomized controlled trials (RCTs) published before May 2016. Two review authors independently searched and screened the literature, extracted the data as well as assessed the methodological quality of the included studies by using criteria from the Cochrane Handbook, and analyzed via using Review Manager 5.3 software. RESULTS Eight studies of WXKL were included. The results of the Meta-analysis showed that WXKL was more significant on the frequency of VPCs (MD=-427.08, 95% CI: -526.73∼-327.43, P<0.01), left ventricular ejection fraction (LVEF) (MD=-4.12, 95% CI: 2.97∼5.27, P<0.01), the total effect of VPCs (RR=0.48, 95% CI: 0.34∼0.69, P<0.01) and 6-min walking test (MD=28.05, 95% CI: 19.56∼36.54, P<0.01). The treatment group presented a significant reduction at left ventricular end-diastolic diameter (LVED) (MD=-3.94, 95% CI: -6.57∼-1.31, P<0.01) when treatment time was 12 weeks, however, there was no statistical difference at 8 weeks. In addition, the included trials generally showed low methodological quality. CONCLUSIONS Wenxin Keli may be effective and safe for treating VPCs and HF. However, further RCTs of larger scale, multi-center/country, longer follow-up periods, and higher quality are still required to verify the efficacy of Wenxin Keli in ventricular premature beat with heart failure.
Collapse
Affiliation(s)
- Min Li
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Ruijin Qiu
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Guihua Tian
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaoyu Zhang
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Chengyu Li
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Qin Zhang
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute of Integration of Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace 2017; 19:665-694. [PMID: 28431071 PMCID: PMC5834028 DOI: 10.1093/europace/euw235] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Expert Consensus on Wenxin Granule for Treatment of Cardiac Arrhythmias. Chin Med J (Engl) 2017; 130:203-210. [PMID: 28091413 PMCID: PMC5282678 DOI: 10.4103/0366-6999.198003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
26
|
Abstract
It is almost a quarter of century that a pioneering work of 2 researchers named Brugada brought the entire scientific community to understanding the molecular, clinical, and electrophysiological aspects of a distinctive syndrome. It affects mainly young adults with syncope and/or sudden cardiac death caused by polymorphic ventricular tachycardia or ventricular fibrillation in the absence of any sign of cardiac degeneration or alteration. Although the involvement of the epicardial layer of the right ventricular outflow tract, and the requirement of pharmacologic challenge for unveiling concealed forms, have been fully characterized, many areas of uncertainties remain to be elucidated, such as the unpredictable usefulness of programmed ventricular stimulation, the role of radiofrequency catheter ablation for reducing ST-segment elevation, and the value of risk stratification in patients diagnosed with upper displacement of right precordial leads. How much Brugada syndrome is an intense field of research is witnessed by 4 different consensus committees that took place in a relatively short period of time considering the recent discovery of this intricate arrhythmogenic disease. The main focus of this review is to describe the milestones in Brugada syndrome from its first phenotypic and genotypic appraisals to recent achievements in electrical therapies proposed for the management of this fascinating rhythm disturbance that, despite new diagnostic and therapeutic learnings, still predisposes to sudden cardiac death.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, University Magna Graecia, Campus di Germaneto
| | | | | |
Collapse
|
27
|
Wang T, Lu M, Du Q, Yao X, Zhang P, Chen X, Xie W, Li Z, Ma Y, Zhu Y. An integrated anti-arrhythmic target network of a Chinese medicine compound, Wenxin Keli, revealed by combined machine learning and molecular pathway analysis. MOLECULAR BIOSYSTEMS 2017; 13:1018-1030. [DOI: 10.1039/c7mb00003k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deciphering the compound Wenxin Keli's anti-arrhythmic pharmacological mechanism by integrating network pharmacology and experimental verification methods.
Collapse
|
28
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. J Arrhythm 2016; 32:315-339. [PMID: 27761155 PMCID: PMC5063270 DOI: 10.1016/j.joa.2016.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, PA, United States
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People׳s Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, NJ, United States
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asian Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, South Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
- Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AAM. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm 2016; 13:e295-324. [PMID: 27423412 PMCID: PMC5035208 DOI: 10.1016/j.hrthm.2016.05.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Hu D, Barajas-Martínez H, Burashnikov A, Panama BK, Cordeiro JM, Antzelevitch C. Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. Int J Cardiol 2016; 207:326-34. [PMID: 26820362 DOI: 10.1016/j.ijcard.2016.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/29/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Atrial-selective inhibition of cardiac sodium channel current (INa) and INa-dependent parameters has been shown to contribute to the safe and effective management of atrial fibrillation. The present study was designed to examine the basis for the atrial-selective actions of Wenxin Keli. METHODS Whole cell INa was recorded at room temperature in canine atrial and ventricular myocytes. Trains of 40 pulses were elicited over a range of pulse durations and interpulse intervals to determine tonic and use-dependent block. A Markovian model for INa that incorporates interaction of Wenxin Keli with different states of the channel was developed to examine the basis for atrial selectivity of the drug. RESULTS Our data indicate that Wenxin Keli does not bind significantly to either closed or open states of the sodium channel, but binds very rapidly to the inactivated state of the channel and dissociates rapidly from the closed state. Action potentials recorded from atrial and ventricular preparations in the presence of 5g/L Wenxin Keli were introduced into the computer model in current clamp mode to simulate the effects on maximum upstroke velocity (Vmax). The model predicted much greater inhibition of Vmax in atrial vs. ventricular cells at rapid stimulation rates. CONCLUSION Our findings suggest that atrial selectivity of Wenxin Keli to block INa is due to more negative steady-state inactivation, less negative resting membrane potential, and shorter diastolic intervals in atrial vs. ventricular cells at rapid activation rates. These actions of Wenxin Keli account for its relatively safe and effective suppression of atrial fibrillation.
Collapse
Affiliation(s)
- Dan Hu
- Masonic Medical Research Laboratory, Utica, NY, United States
| | | | | | - Brian K Panama
- Masonic Medical Research Laboratory, Utica, NY, United States
| | | | | |
Collapse
|
31
|
Antzelevitch C, Patocskai B. Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Curr Probl Cardiol 2016; 41:7-57. [PMID: 26671757 PMCID: PMC4737702 DOI: 10.1016/j.cpcardiol.2015.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome first described as a new clinical entity in 1992. Electrocardiographically characterized by distinct coved type ST segment elevation in the right-precordial leads, the syndrome is associated with a high risk for sudden cardiac death in young adults, and less frequently in infants and children. The electrocardiographic manifestations of BrS are often concealed and may be unmasked or aggravated by sodium channel blockers, a febrile state, vagotonic agents, as well as by tricyclic and tetracyclic antidepressants. An implantable cardioverter defibrillator is the most widely accepted approach to therapy. Pharmacologic therapy is designed to produce an inward shift in the balance of currents active during the early phases of the right ventricular action potential (AP) and can be used to abort electrical storms or as an adjunct or alternative to device therapy when use of an implantable cardioverter defibrillator is not possible. Isoproterenol, cilostazol, and milrinone boost calcium channel current and drugs like quinidine, bepridil, and the Chinese herb extract Wenxin Keli inhibit the transient outward current, acting to diminish the AP notch and thus to suppress the substrate and trigger for ventricular tachycardia or fibrillation. Radiofrequency ablation of the right ventricular outflow tract epicardium of patients with BrS has recently been shown to reduce arrhythmia vulnerability and the electrocardiographic manifestation of the disease, presumably by destroying the cells with more prominent AP notch. This review provides an overview of the clinical, genetic, molecular, and cellular aspects of BrS as well as the approach to therapy.
Collapse
Affiliation(s)
| | - Bence Patocskai
- Masonic Medical Research Laboratory, Utica, NY 13501
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Abstract
In the last decade, there have been considerable advances in the understanding of the pathophysiology of malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Over 80% of SCD occurs in patients with organic heart disease. However, approximately 10%-15% of SCD occurs in the presence of structurally normal heart, and the majority of these patients are young. In this group of patients, changes in genes encoding cardiac ion channels produce modifications of the function of the channel resulting in an electrophysiological substrate of VT and SCD. Collectively, these disorders are referred to as cardiac ion channelopathies. The four major syndromes in this group are: the long QT syndrome (LQTS), the Brugada syndrome (BrS), the short QT syndrome (SQTS), and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Each of these syndromes includes multiple subtypes with different and sometimes complex cardiac ion channel genetic abnormalities. Many are associated with other somatic and neurological abnormalities besides the risk of VT and SCD. The current management of cardiac ion channelopathies can be summarized as follows: (1) in symptomatic patients, the implantable cardioverter defibrillator (ICD) is the only viable option; (2) in asymptomatic patients, risk stratification is necessary, followed by either the ICD, pharmacotherapy, or a combination of both. A genotype-specific approach to pharmacotherapy requires a thorough understanding of the molecular-cellular basis of arrhythmogenesis in cardiac ion channelopathies as well as the specific drug profile.
Collapse
|
33
|
Abstract
A prominent J wave is encountered in a number of life-threatening cardiac arrhythmia syndromes, including the Brugada syndrome and early repolarization syndromes. Brugada syndrome and early repolarization syndromes differ with respect to the magnitude and lead location of abnormal J waves and are thought to represent a continuous spectrum of phenotypic expression termed J-wave syndromes. Despite two decades of intensive research, risk stratification and the approach to therapy of these 2 inherited cardiac arrhythmia syndromes are still undergoing rapid evolution. Our objective in this review is to provide an integrated synopsis of the clinical characteristics, risk stratifiers, and molecular, ionic, cellular, and genetic mechanisms underlying these 2 fascinating syndromes that have captured the interest and attention of the cardiology community in recent years.
Collapse
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, Pennsylvania; Jefferson Medical College, Philadelphia, Pennsylvania; The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Joukar S, Asadipour H. Evaluation of Melissa officinalis (Lemon Balm) Effects on Heart Electrical System. Res Cardiovasc Med 2015; 4:e27013. [PMID: 26396973 PMCID: PMC4576163 DOI: 10.5812/cardiovascmed.4(2)2015.27013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Background: Melissa officinalis, an herbal drug, is well known and frequently applied in traditional and modern medicine. Yet, there is inadequate information regarding its effects on electrical properties of the heart. The present study attempted to elucidate the effects of Melissa officinalis aqueous extract on electrocardiogram (ECG) in rat. Objectives: ECG is an easy, fast and valuable tool to evaluate the safety of used materials and drugs on heart electrical and conductivity properties. Many drugs with no cardiovascular indication or any overt cardiovascular effects of therapeutic dosing become cardiotoxic when overdosed (16). On the other hand, there are numerous substances and drugs that can cause ECG changes, even in patients without a history of cardiac disease. Therefore, this study was conducted to elucidate safety and outcome of one-week administration of M. officinalis aqueous extract on blood pressure and ECG parameters of rats. Materials and Methods: Four animal groups received tap water (control group), aqueous extracts of Melissa officinalis 50 (M50), 100 (M100) and 200 (M200) mg/kg/day, respectively and orally for a week. ECG and blood pressure were recorded on the eighth day of experiment. Results: Consumption of Melissa officinalis extract associated with prolonged QRS interval (P < 0.05 for M50 and M100 groups and P < 0.01 for M200 group versus the control group, respectively), prolonged QTc and JT intervals (P < 0.01 for different M groups versus the control group) and prolonged TpTe interval (P < 0.001 when M groups compared with the control group) of ECG. However, different doses of the extract had no significant effect on RR interval, PR interval, amplitudes of ECG waves, heart rate and blood pressure. Conclusions: For the first time, this study revealed that consumption of Melissa officinalis extract is associated with significant ECG alterations in rat. Future studies are necessary to determine potential clinical outcomes.
Collapse
Affiliation(s)
- Siyavash Joukar
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
- Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran
- Corresponding author: Siyavash Joukar, Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P. O. Box: 7616914115, Kerman, IR Iran. Tel/Fax: +98-3413220081, E-mail: ,
| | - Haleh Asadipour
- Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran
| |
Collapse
|
35
|
Wenxin Keli versus Sotalol for Paroxysmal Atrial Fibrillation Caused by Hyperthyroidism: A Prospective, Open Label, and Randomized Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:101904. [PMID: 26074982 PMCID: PMC4449914 DOI: 10.1155/2015/101904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/05/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022]
Abstract
We aimed to compare effectiveness of Wenxin Keli (WK) and sotalol in assisting sinus rhythm (SR) restoration from paroxysmal atrial fibrillation (PAF) caused by hyperthyroidism, as well as in maintaining SR. We randomly prescribed WK (18 g tid) or sotalol (80 mg bid) to 91 or 89 patients. Since it was not ethical not to give patients antiarrhythmia drugs, no control group was set. Antithyroid drugs were given to 90 patients (45 in WK group, 45 in sotalol group); 131I was given to 90 patients (46 in WK group, 44 in sotalol group). Three months later, SR was obtained in 83/91 or 80/89 cases from WK or sotalol groups (P = 0.762). By another analysis, SR was obtained in 86/90 or 77/90 cases from 131I or ATD groups (P = 0.022). Then, we randomly assigned the successfully SR-reverted patients into three groups: WK, sotalol, and control (no antiarrhythmia drug was given) groups. After twelve-month follow-up, PAF recurrence happened in 1/54, 2/54, and 9/55 cases, respectively. Log-Rank test showed significant higher PAF recurrent rate in control patients than either treatment (P = 0.06). We demonstrated the same efficacies of WK and sotalol to assist SR reversion from hyperthyroidism-caused PAF. We also showed that either drug could maintain SR in such patients.
Collapse
|
36
|
Patocskai B, Antzelevitch C. Novel Therapeutic Strategies for the Management of Ventricular Arrhythmias Associated with the Brugada Syndrome. Expert Opin Orphan Drugs 2015; 3:633-651. [PMID: 27559494 PMCID: PMC4993532 DOI: 10.1517/21678707.2015.1037280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by prominent J waves appearing as distinct coved type ST segment elevation in the right precordial leads of the ECG. It is associated with a high risk for sudden cardiac death. AREAS COVERED We discuss 1) ECG manifestations of BrS which can be unmasked or aggravated by sodium channel blockers, febrile states, vagotonic agents, as well as tricyclic and tetracyclic antidepressants; 2) Genetic basis of BrS; 3) Ionic and cellular mechanisms underlying BrS; 4) Therapy involving devices including an implantable cardioverter defibrillator (ICD); 5) Therapy involving radiofrequency ablation; and 6) Therapy involving pharmacological therapy which is aimed at producing an inward shift in the balance of the currents active during phase 1 of the right ventricular action potential either by boosting calcium channel current (isoproterenol, cilostazol and milrinone) or by inhibition of transient outward current Ito (quinidine, bepridil and the Chinese herb extract Wenxin Keli). EXPERT OPINION This review provides an overview of the clinical and molecular aspects of BrS with a focus on approaches to therapy. Available data suggest that agents capable of inhibiting the transient outward current Ito can exert an ameliorative effect regardless of the underlying cause.
Collapse
Affiliation(s)
- Bence Patocskai
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
37
|
McMillan MR, Day TG, Bartsota M, Mead-Regan S, Bryant R, Mangat J, Abrams D, Lowe M, Kaski JP. Feasibility and outcomes of ajmaline provocation testing for Brugada syndrome in children in a specialist paediatric inherited cardiovascular diseases centre. Open Heart 2014; 1:e000023. [PMID: 25332787 PMCID: PMC4195922 DOI: 10.1136/openhrt-2013-000023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 12/02/2022] Open
Abstract
Objectives Brugada syndrome (BrS) is an inherited arrhythmia syndrome that causes sudden cardiac death in the young. The class Ia antiarrhythmic ajmaline can be used to provoke the diagnostic ECG pattern. Its use has been established in adults, but little data exist on the ajmaline provocation test in children. This study aims to determine the safety and feasibility of ajmaline provocation testing in a large paediatric cohort in a specialist paediatric inherited cardiac diseases centre. Methods 98 consecutive ajmaline tests were performed in 95 children between September 2004 and July 2012 for family history of BrS (n=46 (48%)); family history of unexplained sudden cardiac death (n=39 (41%); symptoms with suspicious ECG abnormalities (n=9 (10%)). Three patients were retested with age, due to the possibility of age-related penetrance. ECG parameters were measured at baseline and during maximal ajmaline effect. Results The mean patient age was 12.55 years, 43% were female. Nineteen patients (20%) had a positive ajmaline test. There were no arrhythmias or adverse events during testing. Ajmaline provoked significant prolongation of the PR, QRS and QTc in all patients. Mean follow-up was 3.62 years with no adverse outcomes reported in any patients with BrS. There were no predictors of a positive ajmaline provocation test on multivariable analysis. One patient who tested negative at 12 years of age, subsequently tested positive at 15 years of age. Conclusions Ajmaline testing appears safe and feasible in children when performed in an appropriate setting by an experienced team. Test positivity may change with age in individuals, suggesting that the test should be repeated in the late teenage years or early adulthood.
Collapse
Affiliation(s)
- Merlin Ranald McMillan
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Thomas George Day
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Margarita Bartsota
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Sarah Mead-Regan
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Rory Bryant
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Jasveer Mangat
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Dominic Abrams
- Department of Cardiology , Boston Children's Hospital , Boston, Massachusetts , USA
| | - Martin Lowe
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK
| | - Juan Pablo Kaski
- Inherited Cardiovascular Diseases Unit, Department of Cardiology , Great Ormond Street Hospital for Children , London , UK ; Institute of Cardiovascular Science, University College London , London , UK
| |
Collapse
|
38
|
The effects of wenxin keli on p-wave dispersion and maintenance of sinus rhythm in patients with paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:245958. [PMID: 24368925 PMCID: PMC3867920 DOI: 10.1155/2013/245958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/15/2013] [Indexed: 12/19/2022]
Abstract
Objective. To evaluate the beneficial and adverse effects of Wenxin Keli (WXKL), alone or combined with Western medicine, on P-wave dispersion (Pd) and maintenance of sinus rhythm for the treatment of paroxysmal atrial fibrillation (PAF). Methods. Seven major electronic databases were searched to retrieve randomized controlled trials (RCTs) designed to evaluate the clinical effectiveness of WXKL, alone or combined with Western medicine, for PAF, with Pd or maintenance rate of sinus rhythm as the main outcome measure. The methodological quality of the included studies was assessed using criteria from the Cochrane Handbook for Systematic Review of Interventions, version 5.1.0, and analysed using RevMan 5.1.0 software. Results. Fourteen RCTs of WXKL were included. The methodological quality of the trials was generally evaluated as low. The results of meta-analysis showed that WXKL, alone or combined with Western medicine, was more effective in Pd and the maintenance of sinus rhythm, compared with no medicine or Western medicine alone, in patients with PAF or PAF complicated by other diseases. Seven of the trials reported adverse events, indicating that the safety of WXKL is still uncertain. Conclusions. WXKL, alone or combined with Western medicine, appears to be more effective in improving Pd as well as maintenance of sinus rhythm in patients with PAF and its complications.
Collapse
|
39
|
Nielsen MW, Holst AG, Olesen SP, Olesen MS. The genetic component of Brugada syndrome. Front Physiol 2013; 4:179. [PMID: 23874304 PMCID: PMC3710955 DOI: 10.3389/fphys.2013.00179] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
Brugada syndrome (BrS) is a clinical entity first described in 1992. BrS is characterized by ST-segment elevations in the right precordial leads and susceptibility to ventricular arrhythmias and sudden cardiac death. It affects young subjects, predominantly males, with structurally normal hearts. The prevalence varies with ethnicity ranging from 1:2,000 to 1:100,000 in different parts of the world. Today, hundreds of variants in 17 genes have been associated with BrS of which mutations in SCN5A, coding for the cardiac voltage-gated sodium channel, accounts for the vast majority. Despite this, approximately 70% of BrS cases cannot be explained genetically with the current knowledge. Moreover, the monogenic role of some of the variants previously described as being associated with BrS has been questioned by their occurrence in about 4% (1:23) of the general population as found in NHLBI GO Exome Sequencing Project (ESP) currently including approximately 6500 individuals. If we add the variants described in the five newest identified genes associated with BrS, they appear at an even higher prevalence in the ESP (1:21). The current standard treatment of BrS is an implantable cardioverter-defibrillator (ICD). The risk stratification and indications for ICD treatment are based on the ECG and on the clinical and family history. In this review we discuss the genetic basis of BrS.
Collapse
Affiliation(s)
- Morten W Nielsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia Copenhagen, Denmark ; Department of Cardiology, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|