1
|
Hammad M, Dugué J, Maubert E, Baugé C, Boumédiene K. Decellularized apple hypanthium as a plant-based biomaterial for cartilage regeneration in vitro: a comparative study of progenitor cell types and environmental conditions. J Biol Eng 2025; 19:38. [PMID: 40264116 PMCID: PMC12012941 DOI: 10.1186/s13036-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Decellularized plant tissues have been shown to enhance the integration and proliferation of human cells, demonstrating biocompatibility. These tissues are now being considered as valuable biomaterials for tissue engineering due to their diverse architectures and favorable cytocompatibility. In this study, we assessed decellularized apple hypanthium as a potential biomaterial for generating cartilage-like structures, utilizing four different progenitor cell types and varying environmental conditions in vitro. RESULTS Cell viability assays indicated integration and cell proliferation. Histological staining and gene expression analyses confirmed the synthesis and deposition of a cartilaginous extracellular matrix. Notably, hypoxia had varying effects on chondrogenesis based on the cell type. Among the progenitor cells evaluated, those derived from auricular perichondrium were particularly promising, as they differentiated into chondrocytes without requiring a low-oxygen environment. Additionally, our findings demonstrated that apple-derived biomaterials outperformed microencapsulation in alginate beads in promoting chondrogenesis. CONCLUSION These results highlight the potential of plant-based biomaterials for the development of implantable devices for cartilage regeneration and suggest broader applications in tissue engineering and future clinical endeavors.
Collapse
Affiliation(s)
- Mira Hammad
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Justin Dugué
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
- Service ORL et chirurgie Cervico-faciale, CHU de Caen, Caen, France
| | - Eric Maubert
- Phind Inserm UMR-S 1237, Université de Caen Normandie, Caen, France
| | - Catherine Baugé
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Karim Boumédiene
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France.
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France.
| |
Collapse
|
2
|
Manon J, Evrard R, Maistriaux L, Fieve L, Xhema D, Heller U, Broeck LVD, Vettese J, Boisson J, Schubert T, Lengele B, Behets C, Cornu O. HLA Awareness in tissue decellularization: A paradigm shift for enhanced biocompatibility, studied on the model of the human fascia lata graft. Biomaterials 2025; 312:122741. [PMID: 39121727 DOI: 10.1016/j.biomaterials.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.
Collapse
Affiliation(s)
- Julie Manon
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium.
| | - Robin Evrard
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Louis Maistriaux
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Lies Fieve
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Daela Xhema
- UCLouvain - IREC, Transplantation and Experimental Surgery Lab (CHEX), Avenue Hippocrate 55 - B1.55.04, 1200 Brussels, Belgium
| | - Ugo Heller
- APHP, Necker Enfants Malades, Unit of Maxillofacial Surgery and Plastic Surgery, Paris, France; IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Lucien Van Den Broeck
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Julia Vettese
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium
| | - Jean Boisson
- IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Thomas Schubert
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Benoît Lengele
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Plastic and Reconstructive Surgery, Brussels 1200, Belgium
| | - Catherine Behets
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Olivier Cornu
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| |
Collapse
|
3
|
Goushki MA, Kharat Z, Kehtari M, Sohi AN, Ahvaz HH, Rad I, HosseinZadeh S, Kouhkan F, Kabiri M. Applications of extraembryonic tissue-derived cells in vascular tissue regeneration. Stem Cell Res Ther 2024; 15:205. [PMID: 38982541 PMCID: PMC11234723 DOI: 10.1186/s13287-024-03784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.
Collapse
Affiliation(s)
- Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Zahra Kharat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Mousa Kehtari
- School of Biology, College of Sciences, University of Tehran, Tehran, 1417614411, Iran
| | - Alireza Naderi Sohi
- National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Iman Rad
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Simzar HosseinZadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
4
|
Ma W, Liu Z, Zhu T, Wang L, Du J, Wang K, Xu C. Fabric-Enhanced Vascular Graft with Hierarchical Structure for Promoting the Regeneration of Vascular Tissue. Adv Healthc Mater 2024; 13:e2302676. [PMID: 38279911 DOI: 10.1002/adhm.202302676] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Natural blood vessels have completed functions, including elasticity, compliance, and excellent antithrombotic properties because of their mature structure. To replace damaged blood vessels, vascular grafts should perform these functions by simulating the natural vascular structures. Although the structures of natural blood vessels are thoroughly explored, constructing a small-diameter vascular graft that matches the mechanical and biological properties of natural blood vessels remains a challenge. A hierarchical vascular graft is fabricated by Electrospinning, Braiding, and Thermally induced phase separation (EBT) processes, which could simulate the structure of natural blood vessels. The internal electrospun structure facilitates the adhesion of endothelial cells, thereby accelerating endothelialization. The intermediate PLGA fabric exhibits excellent mechanical properties, which allow it to maintain its shape during long-term transplantation and prevent graft expansion. The external macroporous structure is beneficial for cell growth and infiltration. Blood vessel remodeling aims to combine a structure that promotes tissue regeneration with anti-inflammatory materials. The results in vitro demonstrated that it EBT vascular graft (EBTVG) has matched the mechanical properties, reliable cytocompatibility, and the strongest endothelialization in situ. The results in vitro and replacement of the resected artery in vivo suggest that the EBTVG combines different structural advantages with biomechanical properties and reliable biocompatibility, significantly promoting the stabilization and regeneration of vascular endothelial cells and vascular smooth muscle cells, as well as stabilizing the blood microenvironment.
Collapse
Affiliation(s)
- Wenxin Ma
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Liming Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Kun Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumors, the First Affiliated Hospital of Shandong First Medical University, Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Shandong Medicine and Health Key Laboratory of General Surgery, 16766 Jingshi Rd., Jinan, 250014, P. R. China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Xueyuan Rd., Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized Silk Vascular Grafts with Decellularized Human Wharton's Jelly Improves Remodeling via Immunomodulation in Rabbit Jugular Vein. Adv Healthc Mater 2021; 10:e2100750. [PMID: 34378360 DOI: 10.1002/adhm.202100750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Gaurab Ranjan Chaudhuri
- Department of Plastic Surgery R. G. Kar Medical College and Hospital Kolkata West Bengal 700004 India
| | - G. Janani
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Manoj Agarwala
- Department of ENT and Faciomaxillary Surgery GNRC Institute of Medical Sciences Guwahati Assam 781030 India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
6
|
Decellularised Human Umbilical Artery as a Vascular Graft Elicits Minimal Pro-Inflammatory Host Response Ex Vivo and In Vivo. Int J Mol Sci 2021; 22:ijms22157981. [PMID: 34360744 PMCID: PMC8347020 DOI: 10.3390/ijms22157981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Small diameter (<6 mm) vessel grafts still pose a challenge for scientists worldwide. Decellularised umbilical artery (dUA) remains promising as small diameter tissue engineered vascular graft (TEVG), yet their immunogenicity remains unknown. Herein, we evaluated the host immune responses, with a focus on the innate part, towards human dUA implantation in mice, and confirmed our findings in an ex vivo allogeneic human setup. Overall, we did not observe any differences in the number of circulating white blood cells nor the number of monocytes among three groups of mice (1) dUA patch; (2) Sham; and (3) Mock throughout the study (day -7 to 28). Likewise, we found no difference in systemic inflammatory and anti-inflammatory cytokine levels between groups. However, a massive local remodelling response with M2 macrophages were observed in the dUA at day 28, whereas M1 macrophages were less frequent. Moreover, human monocytes from allogeneic individuals were differentiated into macrophages and exposed to lyophilised dUA to maximize an eventual M1 response. Yet, dUA did not elicit any immediate M1 response as determined by the absence of CCR7 and CXCL10. Together this suggests that human dUA elicits a minimal pro-inflammatory response further supporting its use as a TEVG in an allogeneic setup.
Collapse
|
7
|
Kimicata M, Swamykumar P, Fisher JP. Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Eng Part A 2020; 26:1388-1401. [PMID: 33231135 PMCID: PMC7759287 DOI: 10.1089/ten.tea.2020.0201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
To treat coronary heart disease, coronary artery bypass grafts are used to divert blood flow around blockages in the coronary arteries. Autologous grafts are the gold standard of care, but they are characterized by their lack of availability, low quality, and high failure rates. Alternatively, tissue-engineered small-diameter vascular grafts made from synthetic or natural polymers have not demonstrated adequate results to replace autologous grafts; synthetic grafts result in a loss of patency due to thrombosis and intimal hyperplasia, whereas scaffolds from natural polymers are generally unable to support the physiological conditions. Extracellular matrix (ECM) from a variety of sources, including cell-derived, 2D, and cannular tissues, has become an increasingly useful tool for this application. The current review examines the ECM-based methods that have recently been investigated in the field and comments on their viability for clinical applications.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
| | - Prateek Swamykumar
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Wang Z, Liu L, Mithieux SM, Weiss AS. Fabricating Organized Elastin in Vascular Grafts. Trends Biotechnol 2020; 39:505-518. [PMID: 33019966 DOI: 10.1016/j.tibtech.2020.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Surgically bypassing or replacing a severely damaged artery using a biodegradable synthetic vascular graft is a promising treatment that allows for the remodeling and regeneration of the graft to form a neoartery. Elastin-based structures, such as elastic fibers, elastic lamellae, and laminae, are key functional components in the arterial extracellular matrix. In this review, we identify the lack of elastin in vascular grafts as a key factor that prevents their long-term success. We further summarize advances in vascular tissue engineering that are focused on either de novo production of organized elastin or incorporation of elastin-based biomaterials within vascular grafts to mitigate failure and enhance enduring in vivo performance.
Collapse
Affiliation(s)
- Ziyu Wang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Linyang Liu
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Mallis P, Sokolis DP, Makridakis M, Zoidakis J, Velentzas AD, Katsimpoulas M, Vlahou A, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Insights into Biomechanical and Proteomic Characteristics of Small Diameter Vascular Grafts Utilizing the Human Umbilical Artery. Biomedicines 2020; 8:280. [PMID: 32785189 PMCID: PMC7460081 DOI: 10.3390/biomedicines8080280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gold standard vascular substitutes, used in cardiovascular surgery, are the Dacron or expanded polytetrafluoroethylene (ePTFE)-derived grafts. However, major adverse reactions accompany their use. For this purpose, decellularized human umbilical arteries (hUAs) may be proven as a significant source for the development of small diameter conduits. The aim of this study was the evaluation of a decellularization protocol in hUAs. To study the effect of the decellularization to the hUAs, histological analysis was performed. Then, native and decellularized hUAs were biochemically and biomechanically evaluated. Finally, broad proteomic analysis was applied. Histological analysis revealed the successful decellularization of the hUAs. Furthermore, a great amount of DNA was removed from the decellularized hUAs. Biomechanical analysis revealed statistically significant differences in longitudinal direction only in maximum stress (p < 0.013) and strain (p < 0.001). On the contrary, all parameters tested for circumferential direction exhibited significant differences (p < 0.05). Proteomic analysis showed the preservation of the extracellular matrix and cytoskeletal proteins in both groups. Proteomic data are available via ProteomeXchange with identifier PXD020187. The above results indicated that hUAs were efficiently decellularized. The tissue function properties of these conduits were well retained, making them ideal candidates for the development of small diameter vascular grafts.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Dimitrios P. Sokolis
- Laboratory of Biomechanics, Center for Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Manousos Makridakis
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.M.); (J.Z.); (A.V.)
| | - Jerome Zoidakis
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.M.); (J.Z.); (A.V.)
| | - Athanasios D. Velentzas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens, 161 Gr. Kousidi, Zografos, Street, 115 27 Athens, Greece;
| | - Michalis Katsimpoulas
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.K.); (A.K.)
| | - Antonia Vlahou
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.M.); (J.Z.); (A.V.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.K.); (A.K.)
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
10
|
Mallis P, Papapanagiotou A, Katsimpoulas M, Kostakis A, Siasos G, Kassi E, Stavropoulos-Giokas C, Michalopoulos E. Efficient differentiation of vascular smooth muscle cells from Wharton's Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J Stem Cells 2020; 12:203-221. [PMID: 32266052 PMCID: PMC7118289 DOI: 10.4252/wjsc.v12.i3.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations. Mesenchymal stromal cells (MSCs) derived from the Wharton's Jelly (WJ) tissue can be used as a source for obtaining vascular smooth muscle cells (VSMCs), while the human umbilical arteries (hUAs) can serve as a scaffold for blood vessel engineering. AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate. METHODS WJ-MSCs were isolated and expanded until passage (P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid, followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9, NANOG homeobox, OCT4 and GAPDH, was performed. In addition, immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated hUAs. RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into "osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression (> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, hUAs were isolated and decellularized. Based on histological analysis, decellularized hUAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized hUAs with VSMCs was performed for 3 wk. Decellularized hUAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P < 0.05). CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece.
| | - Aggeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Alkiviadis Kostakis
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Gerasimos Siasos
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
11
|
Abstract
Tissue-engineered vascular grafts (TEVGs) are considered one of the most effective means of fabricating vascular grafts. However, for small-diameter TEVGs, there are ongoing issues regarding long-term patency and limitations related to long-term in vitro culture and immune reactions. The use of acellular TEVG is a more convincing method, which can achieve in situ blood vessel regeneration and better meet clinical needs. This review focuses on the current state of acellular TEVGs based on scaffolds and gives a summary of the methodologies and in vitro/in vivo test results related to acellular TEVGs obtained in recent years. Various strategies for improving the properties of acellular TEVGs are also discussed.
Collapse
|
12
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|