1
|
Tian J, Ashique AM, Weeks S, Lan T, Yang H, Chen HIH, Song C, Koyano K, Mondal K, Tsai D, Cheung I, Moshrefi M, Kekatpure A, Fan B, Li B, Qurashi S, Rocha L, Aguayo J, Rodgers C, Meza M, Heeke D, Medfisch SM, Chu C, Starck S, Basak NP, Sankaran S, Malhotra M, Crawley S, Tran TT, Duey DY, Ho C, Mikaelian I, Liu W, Rivera LB, Huang J, Paavola KJ, O'Hollaren K, Blum LK, Lin VY, Chen P, Iyer A, He S, Roda JM, Wang Y, Sissons J, Kutach AK, Kaplan DD, Stone GW. ILT2 and ILT4 Drive Myeloid Suppression via Both Overlapping and Distinct Mechanisms. Cancer Immunol Res 2024; 12:592-613. [PMID: 38393969 DOI: 10.1158/2326-6066.cir-23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.
Collapse
Affiliation(s)
- Jane Tian
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sabrina Weeks
- NGM Biopharmaceuticals, South San Francisco, California
| | - Tian Lan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Hong Yang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Kikuye Koyano
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Daniel Tsai
- NGM Biopharmaceuticals, South San Francisco, California
| | - Isla Cheung
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | - Samir Qurashi
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lauren Rocha
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Col Rodgers
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Darren Heeke
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | | | | | - Dana Y Duey
- NGM Biopharmaceuticals, South San Francisco, California
| | - Carmence Ho
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lee B Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jiawei Huang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lisa K Blum
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sisi He
- NGM Biopharmaceuticals, South San Francisco, California
| | - Julie M Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | - James Sissons
- NGM Biopharmaceuticals, South San Francisco, California
| | - Alan K Kutach
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | |
Collapse
|
2
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Peripheral HLA-G/ILT-2 immune checkpoint axis in acute and convalescent COVID-19 patients. Hum Immunol 2023:S0198-8859(23)00043-5. [PMID: 36925435 PMCID: PMC10011044 DOI: 10.1016/j.humimm.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) can elicits pro-viral activities by down-modulating immune responses. We analysed soluble forms of HLA-G, IL-6 and IL-10 as well as on immune effector cell expression of HLA-G and its cognate ILT-2 receptor in peripheral blood obtained from hospitalised and convalescent COVID-19 patients. Compared with convalescents (N = 202), circulating soluble HLA-G levels (total and vesicular-bound molecules) were significantly increased in hospitalised patients (N = 93) irrespective of the disease severity. During COVID-19, IL-6 and IL-10 levels were also elevated. Regarding the immune checkpoint expression of HLA-G/ILT-2 on peripheral immune effector cells, the frequencies of membrane-bound HLA-G on CD3+ and CD14+ cells were almost identical in patients during and post COVID-19, while the frequency of ILT-2 receptor on CD3+ and CD14+ cells was increased during acute infection. A multi-parametric correlation analysis of soluble HLA-G forms with IL-6, IL-10, activation markers CD25 and CD154, HLA-G, and ILT-2 expression on immune cells revealed a strong positive correlation of soluble HLA-G forms with membrane-bound HLA-G molecules on CD3+/CD14+ cells only in convalescents. During COVID-19, only vesicular-bound HLA-G were positively correlated with the activation marker CD25 on T cells. Thus, our data suggest that the elevated levels of soluble HLA-G in COVID-19 are due to increased expression in organ tissues other than circulating immune effector cells. The concomitant increased expression of soluble HLA-G and ILT-2 receptor frequencies supports the concept that the immune checkpoint HLA-G/ILT-2 plays a role in the immune-pathogenesis of COVID-19.
Collapse
|
4
|
HLA-G in asthma and its potential as an effective therapeutic agent. Allergol Immunopathol (Madr) 2023; 51:22-29. [PMID: 36617818 DOI: 10.15586/aei.v51i1.650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Asthma is a heterogeneous disease. Severity of asthma and sensitivity to medications vary across asthma subtypes. Human leukocyte antigen (HLA)-G has a wide range of functions in normal and pathological physiology. Due to its powerful immune function, HLA-G participates in the pathogenesis of different asthma phenotypes by regulating the activity and function of various immune cells. The mechanism of HLA-G in asthma is not fully clear, and there is no consensus on its mechanism in asthma. Further studies are needed to explore the role of HLA-G in different phenotypes of human asthma. METHODS Observational study. RESULTS HLA-G is an important immunomodulatory factor in asthma. Studies have found different levels of HLA-G in patients with different asthma subtypes and healthy controls, but other studies have come to the opposite conclusion. CONCLUSION We speculate that further study on the mechanism of HLA-G in asthma pheno-types may explain some of the contradictions in current studies. Findings should provide information regarding the potential of HLA-G as a novel target for asthma diagnosis and treatment.
Collapse
|
5
|
Seliger B, Koehl U. Underlying mechanisms of evasion from NK cells as rational for improvement of NK cell-based immunotherapies. Front Immunol 2022; 13:910595. [PMID: 36045670 PMCID: PMC9422402 DOI: 10.3389/fimmu.2022.910595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells belong to the family of innate immune cells with the capacity to recognize and kill tumor cells. Different phenotypes and functional properties of NK cells have been described in tumor patients, which could be shaped by the tumor microenvironment. The discovery of HLA class I-specific inhibitory receptors controlling NK cell activity paved the way to the fundamental concept of modulating immune responses that are regulated by an array of inhibitory receptors, and emphasized the importance to explore the potential of NK cells in cancer therapy. Although a whole range of NK cell-based approaches are currently being developed, there are still major challenges that need to be overcome for improved efficacy of these therapies. These include escape of tumor cells from NK cell recognition due to their expression of inhibitory molecules, immune suppressive signals of NK cells, reduced NK cell infiltration of tumors, an immune suppressive micromilieu and limited in vivo persistence of NK cells. Therefore, this review provides an overview about the NK cell biology, alterations of NK cell activities, changes in tumor cells and the tumor microenvironment contributing to immune escape or immune surveillance by NK cells and their underlying molecular mechanisms as well as the current status and novel aspects of NK cell-based therapeutic strategies including their genetic engineering and their combination with conventional treatment options to overcome tumor-mediated evasion strategies and improve therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Liu S, Bos NA, Verschuuren EAM, van Baarle D, Westra J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front Immunol 2022; 13:902093. [PMID: 35769475 PMCID: PMC9234285 DOI: 10.3389/fimmu.2022.902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection is regarded as one of the most severe risk factors post-transplantation. A molecule that contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-G, which belongs to the non-classical major histocompatibility complex class (MHC) I family. HLA-G was originally found to play a role during pregnancy to maintain immune tolerance between mother and child. It is expressed in the placenta and detected in several body fluids as soluble factor as well as different membrane isoforms on cells. Recent findings on HLA-G show that it can also play multifaceted roles during transplantation. This review will explain the general characteristics and biological function of HLA-G and summarize the views supporting the tolerogenic and other roles of HLA-G to better understand its role in solid organ transplantation (SOT) and its complications. Finally, we will discuss potential future research on the role of HLA-G in prevention, diagnosis, and treatment in SOT.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johanna Westra,
| |
Collapse
|
7
|
Tronik-Le Roux D, Daouya M, Jacquier A, Schenowitz C, Desgrandchamps F, Rouas-Freiss N, Carosella ED. The HLA-G immune checkpoint: a new immuno-stimulatory role for the α1-domain-deleted isoform. Cell Mol Life Sci 2022; 79:310. [PMID: 35596891 PMCID: PMC11072982 DOI: 10.1007/s00018-022-04359-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
Abstract
The heterogeneity of cancer cells, in part maintained via the expression of multiple isoforms, introduces significant challenges in designing effective therapeutic approaches. In this regard, isoforms of the immune checkpoint HLA-G have been found in most of the tumors analyzed, such as ccRCC, the most common human renal malignancy. In particular, HLA-G∆α1, which is the only HLA-G isoform described that lacks the α1 extracellular domain, has been newly identified in ccRCC and now here in trophoblasts. Using a cellular model expressing HLA-G∆α1, we have uncovered its specific and overlapping functional roles, relative to the main HLA-G isoform, i.e., the full-length HLA-G1. We found that HLA-G∆α1 has several particular features: (i) although possessing the α3 domain, it does not associate with β2-microglobulin; (ii) it may not present peptides to T cells due to absence of the peptide-binding groove; and (iii) it exerts immune-stimulatory activity towards peripheral blood NK and T cells, while all known isoforms of HLA-G are immune-inhibitory checkpoint molecules. Such immune-stimulatory properties of HLA-G∆α1 on the cytotoxic function of peripheral blood NK cells are individual dependent and are not exerted through the interaction with the known HLA-G receptor, ILT2. Importantly, we are faced here with a potential antitumor effect of an HLA-G isoform, opposed to the pro-tumor properties described for all other HLA-G isoforms, which should be taken into account in future therapeutic designs aimed at blocking this immune checkpoint.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France.
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France.
| | - Marina Daouya
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Alix Jacquier
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Chantal Schenowitz
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - François Desgrandchamps
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
- Service d'Urologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Nathalie Rouas-Freiss
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| | - Edgardo D Carosella
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, 1, avenue Claude Vellefaux, 75010, Paris, France
- IRSL, UMRS 976, HIPI Unit, University of Paris, Paris, France
| |
Collapse
|
8
|
Mestrallet G, Carosella ED, Martin MT, Rouas-Freiss N, Fortunel NO, LeMaoult J. Immunosuppressive Properties of Epidermal Keratinocytes Differ According to Their Immaturity Status. Front Immunol 2022; 13:786859. [PMID: 35222373 PMCID: PMC8878806 DOI: 10.3389/fimmu.2022.786859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Preservation of a functional keratinocyte stem cell pool is essential to ensure the long-term maintenance of epidermis integrity, through continuous physiological renewal and regeneration in case of injury. Protecting stem cells from inflammation and immune reactions is thus a critical issue that needs to be explored. Here, we show that the immature CD49fhigh precursor cell fraction from interfollicular epidermis keratinocytes, comprising stem cells and progenitors, is able to inhibit CD4+ T-cell proliferation. Of note, both the stem cell-enriched CD49fhigh/EGFRlow subpopulation and the less immature CD49fhigh/EGFRhigh progenitors ensure this effect. Moreover, we show that HLA-G and PD-L1 immune checkpoints are overexpressed in CD49fhigh precursors, as compared to CD49flow differentiated keratinocytes. This potency may limit immune reactions against immature precursors including stem cells, and protect them from exacerbated inflammation. Further exploring this correlation between immuno-modulation and immaturity may open perspectives in allogenic cell therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Edgardo D. Carosella
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Michele T. Martin
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Nicolas O. Fortunel
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| | - Joel LeMaoult
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| |
Collapse
|
9
|
Olivier B, Domitille M, Julie T, Alexandre V, Isabelle K, Sandrine H, Benjamin RP, Martine RG, Ana N, Vincent B, Jonathan M, Xavier D, Julie M, Jérôme LP, Gaëlle D, Christel SR, Loic F, Antoine M, Clément P, Antoine R, Edgardo C, Joel LM, Nathalie RF, the COLT Consortium. Chronic lung allograft dysfunction is associated with an early increase of circulating cytotoxic CD4+CD57+ILT2+ T cells, selectively inhibited by the immune check-point HLA-G. J Heart Lung Transplant 2022; 41:626-640. [DOI: 10.1016/j.healun.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
|
10
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
11
|
Tumor infiltrating and peripheral CD4 +ILT2 + T cells are a cytotoxic subset selectively inhibited by HLA-G in clear cell renal cell carcinoma patients. Cancer Lett 2021; 519:105-116. [PMID: 34186161 DOI: 10.1016/j.canlet.2021.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
HLA-G ILT2 has recently been positioned as a major immune checkpoint in urologic cancers. In clear cell renal cell carcinoma (ccRCC), tumor-infiltrating CD8+ T cells expressing ILT2 are a highly cytotoxic cell population, distinct from PD1+ T cells, and whose function is inhibited by HLA-G+ targets. Here we report that ILT2 receptor can also be expressed by CD4+ T cells in urologic cancer patients. In the course of deciphering the role of these ILT2+CD4+ T cells, we found a statistical association between the tumor context and these T cells, and a positive correlation between the levels of peripheral and intra-tumoral CD4+ILT2+ T cells. Phenotypic analyses revealed that CD4+ILT2+ T cells express memory T cell (CD27-CD28-CD57+) and cytotoxicity (Tbet+Perforin+KLRG1+NKp80+GPR56+) markers, consistent with a CD4+CTL phenotype. Functional assays showed that ccRCC-infiltrating CD4+ILT2+ T cells indeed have high cytolytic properties and therefore function as proper CD4+CTLs, but are selectively inhibited by HLA-G+ targets. Clinical relevance was provided by immunohistochemical analyses on ccRCC tumor lesions with HLA-G+ HLA class II+ tumor cells next to CD4+ T cell infiltrates. Our findings provide evidence supporting that ILT2+ T cells constitute a reservoir of intratumor cytotoxic T cells that is not targeted by the current checkpoint inhibitors, but could be by anti-HLA-G/anti-ILT2 antibodies as novel immunotherapy in HLA-G+ tumors.
Collapse
|
12
|
Mestrallet G, Auvré F, Schenowitz C, Carosella ED, LeMaoult J, Martin MT, Rouas-Freiss N, Fortunel NO. Human Keratinocytes Inhibit CD4 + T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells 2021; 10:cells10061438. [PMID: 34201301 PMCID: PMC8227977 DOI: 10.3390/cells10061438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Human skin protects the body against infection and injury. This protection involves immune and epithelial cells, but their interactions remain largely unknown. Here, we show that cultured epidermal keratinocytes inhibit allogenic CD4+ T-cell proliferation under both normal and inflammatory conditions. Inhibition occurs through the secretion of soluble factors, including TGFB1 and the cell-surface expression of HLA-G1 and PD-L1 immune checkpoints. For the first time, we here describe the expression of the HLA-G1 protein in healthy human skin and its role in keratinocyte-driven tissue immunomodulation. The overexpression of HLA-G1 with an inducible vector increased the immunosuppressive properties of keratinocytes, opening up perspectives for their use in allogeneic settings for cell therapy.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Frédéric Auvré
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Chantal Schenowitz
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Joel LeMaoult
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Michèle T. Martin
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nathalie Rouas-Freiss
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nicolas O. Fortunel
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| |
Collapse
|
13
|
Adolf IC, Almars A, Dharsee N, Mselle T, Akan G, Nguma IJ, Nateri AS, Atalar F. HLA-G and single nucleotide polymorphism (SNP) associations with cancer in African populations: Implications in personal medicine. Genes Dis 2021; 9:1220-1233. [PMID: 35873024 PMCID: PMC9293715 DOI: 10.1016/j.gendis.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022] Open
Abstract
The immune system plays an important role in protecting the body against malignancy. During cancer immunoediting, the immune system can recognize and keep checking the tumor cells by down-expression of some self-molecules or by increasing expression of some novel molecules. However, the microenvironment created in the course of cancer development hampers the immune ability to recognize and destroy the transforming cells. Human Leukocyte Antigen G (HLA-G) is emerging as immune checkpoint molecule produced more by cancer cells to weaken the immune response against them. HLA-G is a non-classical HLA class I molecule which is normally expressed in immune privileged tissues as a soluble or membrane-bound protein. HLA-G locus is highly polymorphic in the non-coding 3′ untranslated region (UTR) and in the 5′ upstream regulatory region (5′ URR). HLA-G expression is controlled by polymorphisms located in these regions, and several association studies between these polymorphic sites and disease predisposition, response to therapy, and/or HLA-G protein expression have been reported. Various polymorphisms are demonstrated to modulate its expression and this is increasingly finding more significance in cancer biology. This review focuses on the relevance of the HLA-G gene and its polymorphisms in cancer development. We highlight population genetics of HLA-G as evidence to espouse the need and importance of exploring potential utility of HLA-G in cancer diagnosis, prognosis and immunotherapy in the currently understudied African population.
Collapse
Affiliation(s)
- Ismael Chatita Adolf
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, P.O Box 608, Tanzania
| | - Amany Almars
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nazima Dharsee
- Ocean Road Cancer Institute, Department of Oncology, Dar es Salaam, P.O Box 3592, Tanzania
| | - Teddy Mselle
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Gokce Akan
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Irene Jeremiah Nguma
- Clinical Oncology Department, Mbeya Zonal Referral Hospital (MZRH), Mbeya P.O Box 419, Tanzania
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Corresponding author.
| | - Fatmahan Atalar
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
- Child Health Institute, Department of Rare Diseases, Istanbul University, Istanbul 34093, Turkey
- Corresponding author. Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, P.O Box 65001, Dar es Salaam, Tanzania.
| |
Collapse
|
14
|
Schwich E, Hò GGT, LeMaoult J, Bade-Döding C, Carosella ED, Horn PA, Rebmann V. Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary. Front Immunol 2020; 11:2046. [PMID: 32973812 PMCID: PMC7472666 DOI: 10.3389/fimmu.2020.02046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor immune escape is associated with both, the expression of immune checkpoint molecules on peripheral immune cells and soluble forms of the human leukocyte antigen-G (HLA-G) in the blood, which are consequently discussed as clinical biomarker for disease status and outcome of cancer patients. HLA-G preferentially interacts with the inhibitory receptor immunoglobulin-like transcript (ILT) receptor-2 in the blood and can be secreted as free soluble molecules (sHLA-G) or via extracellular vesicles (EV). To investigate the contribution of these two forms to the expression of checkpoint molecules in peripheral blood, we primed peripheral blood mononuclear cells with purified soluble sHLA-G1 protein, or EV preparations derived from SUM149 cells transfected with membrane-bound HLA-G1 or control vector prior to anti-CD3/CD28 T cell activation. Our study demonstrated that priming of PBMC with sHLA-G1 protein prior to 48 h activation resulted in enhanced frequencies of ILT-2 expressing CD8+ T cells, and in an upregulation of immune checkpoint molecules CTLA-4, PD-1, TIM-3, and CD95 exclusively on ILT-2 positive CD8+ T cells. In contrast, when PBMC were primed with EV (containing HLA-G1 or not) upregulation of CTLA-4, PD-1, TIM-3, and CD95 occurred exclusively on ILT-2 negative CD8+ T cells. Taken together, our data suggest that priming with sHLA-G forms induces a pronounced immunosuppressive/exhausted phenotype and that priming with sHLA-G1 protein or EV derived from HLA-G1 positive or negative SUM149 cells affects CD8+ T cells complementary by targeting either the ILT-2 positive or negative subpopulation, respectively, after T cell activation.
Collapse
Affiliation(s)
- Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Joel LeMaoult
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Institut de Recherche Saint-Louis, Université de paris, Paris, France
| | | | - Edgardo D Carosella
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Institut de Recherche Saint-Louis, Université de paris, Paris, France
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|