1
|
Zhu RTL, Hung TTM, Lam FMH, Li JZ, Luo YY, Sun J, Wang S, Ma CZH. Older Fallers' Comprehensive Neuromuscular and Kinematic Alterations in Reactive Balance Control: Indicators of Balance Decline or Compensation? A Pilot Study. Bioengineering (Basel) 2025; 12:66. [PMID: 39851340 PMCID: PMC11762401 DOI: 10.3390/bioengineering12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear. This study aimed to comprehensively investigate muscle activities and joint kinematics during reactive balance control in older adults with different fall histories. Methods: This pilot observational study recruited six community-dwelling older fallers (≥1 fall in past one year) and six older non-fallers, who received unpredictable translational balance perturbations in randomized directions and intensities during standing. The whole-body center-of-mass (COM) displacements, eight dominant-leg joint motions and muscle electrical activities were collected, and analyzed using the temporal and amplitude parameters. Results: Compared to non-fallers, fallers had significantly: (a) smaller activation rate of the ankle dorsiflexor, delayed activation of the hip flexor/extensor, larger activation rate of the knee flexor, and smaller agonist-antagonist co-contraction in lower-limb muscles; (b) larger knee/hip flexion angles, longer ankle dorsiflexion duration, and delayed timing of recovery in joint motions; and (c) earlier downward COM displacements and larger anteroposterior overshooting COM displacements following unpredictable perturbations (p < 0.05). Conclusions: Compared to non-fallers, fallers used more suspensory strategies for reactive standing balance, which compensated for inadequate ankle/hip strategies but resulted in prolonged recovery. A further longitudinal study with a larger sample is still needed to examine the diagnostic accuracies and training values of these identified neuromuscular/kinematic factors in differentiating fall risks and preventing future falls of older people, respectively.
Collapse
Affiliation(s)
- Ringo Tang-Long Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Timmi Tim Mei Hung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Freddy Man Hin Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China;
| | - Jun-Zhe Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Yu-Yan Luo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
| | - Jingting Sun
- Future Architecture and Urban Research Institute, Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China;
| | - Shujun Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (R.T.-L.Z.); (T.T.M.H.); (J.-Z.L.); (Y.-Y.L.); (S.W.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Jiang L, Kasahara S, Ishida T, Koshino Y, Chiba A, Wei Y, Samukawa M, Tohyama H. Effect of suspensory strategy on balance recovery after lateral perturbation. Hum Mov Sci 2024; 94:103184. [PMID: 38330628 DOI: 10.1016/j.humov.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect. Eighteen healthy young adults (10 male and 8 female) participated in this study. Kinematic data during lateral perturbation at three velocities (7, 15, and 20 cm/s) were collected under three knee flexion angle conditions (0°, 15°, and 65°) using motion capture technology. Postural adjustments to the external perturbation were assessed by four parameters related to the temporal aspects of the center of mass (COM): reaction time, peak displacement/time and reversal time, and minimum value of the margin of stability (minimum-MOS). Our results showed that the COM height before the perturbation significantly lowered with increasing knee flexion angle. The COM reaction times for low and mid perturbation velocities were delayed at 65° of knee flexion compared to 0° and 15°, and the COM reversal times were significantly shorter at 65° of knee flexion than at 0° and 15° across all perturbation velocities. The minimum-MOS at the high-velocity of perturbation was significantly smaller at 65° of knee flexion than at 0° and 15°. In conclusion, the adoption of a suspensory strategy with slight knee flexion induced enhanced stability during sudden external and lateral perturbations. However, excessive knee flexion induced instability.
Collapse
Affiliation(s)
- Linjing Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Kasahara
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Tomoya Ishida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuta Koshino
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ami Chiba
- Department of Rehabilitation, Hirosaki University Hospital, Hirosaki, Japan
| | - Yuting Wei
- Department of Rehabilitation, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Mina Samukawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Floessel P, Lüneburg LM, Schneider J, Pohnert N, Foerster J, Kappert F, Lachmann D, Krzywinski J, Platz U, Disch AC. Evaluating User Perceptions of a Vibrotactile Feedback System in Trunk Stabilization Exercises: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:1134. [PMID: 38400291 PMCID: PMC10891712 DOI: 10.3390/s24041134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Low back pain patients often have deficits in trunk stability. For this reason, many patients receive physiotherapy treatment, which represents an enormous socio-economic burden. Training at home could reduce these costs. The problem here is the lack of correction of the exercise execution. Therefore, this feasibility study investigates the applicability of a vibrotactile-controlled feedback system for trunk stabilisation exercises. A sample of 13 healthy adults performed three trunk stabilisation exercises. Exercise performance was corrected by physiotherapists using vibrotactile feedback. The NASA TLX questionnaire was used to assess the practicability of the vibrotactile feedback. The NASA TLX questionnaire shows a very low global workload 40.2 [29.3; 46.5]. The quality of feedback perception was perceived as good by the subjects, varying between 69.2% (anterior hip) and 92.3% (lower back). 80.8% rated the feedback as helpful for their training. On the expert side, the results show a high rating of movement quality. The positive evaluations of the physiotherapists and the participants on using the vibrotactile feedback system indicate that such a system can reduce the trainees fear of independent training and support the users in their training. This could increase training adherence and long-term success.
Collapse
Affiliation(s)
- Philipp Floessel
- Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (J.F.); (D.L.); (U.P.); (A.C.D.)
| | - Lisa-Marie Lüneburg
- Industrial Design Engineering, Faculty of Mechanical Engineering, Technische Universität Dresden, 01219 Dresden, Germany; (L.-M.L.); (F.K.); (J.K.)
| | - Julia Schneider
- Industrial Design Engineering, Faculty of Mechanical Engineering, Technische Universität Dresden, 01219 Dresden, Germany; (L.-M.L.); (F.K.); (J.K.)
| | - Nora Pohnert
- Universitäts-Physiotherapie-Zentrum, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Justin Foerster
- Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (J.F.); (D.L.); (U.P.); (A.C.D.)
- Universitäts-Physiotherapie-Zentrum, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Franz Kappert
- Industrial Design Engineering, Faculty of Mechanical Engineering, Technische Universität Dresden, 01219 Dresden, Germany; (L.-M.L.); (F.K.); (J.K.)
| | - Doris Lachmann
- Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (J.F.); (D.L.); (U.P.); (A.C.D.)
| | - Jens Krzywinski
- Industrial Design Engineering, Faculty of Mechanical Engineering, Technische Universität Dresden, 01219 Dresden, Germany; (L.-M.L.); (F.K.); (J.K.)
| | - Uwe Platz
- Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (J.F.); (D.L.); (U.P.); (A.C.D.)
- University Comprehensive Spine Center, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Carl Disch
- Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (J.F.); (D.L.); (U.P.); (A.C.D.)
- University Comprehensive Spine Center, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Sansare A, Arcodia M, Lee SCK, Jeka J, Reimann H. Immediate application of low-intensity electrical noise reduced responses to visual perturbations during walking in individuals with cerebral palsy. J Neuroeng Rehabil 2024; 21:14. [PMID: 38281953 PMCID: PMC10822182 DOI: 10.1186/s12984-023-01299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Ashwini Sansare
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Maelyn Arcodia
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Samuel C K Lee
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - John Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Li KJ, Wong NLY, Law MC, Lam FMH, Wong HC, Chan TO, Wong KN, Zheng YP, Huang QY, Wong AYL, Kwok TCY, Ma CZH. Reliability, Validity, and Identification Ability of a Commercialized Waist-Attached Inertial Measurement Unit (IMU) Sensor-Based System in Fall Risk Assessment of Older People. BIOSENSORS 2023; 13:998. [PMID: 38131758 PMCID: PMC10742152 DOI: 10.3390/bios13120998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Falls are a prevalent cause of injury among older people. While some wearable inertial measurement unit (IMU) sensor-based systems have been widely investigated for fall risk assessment, their reliability, validity, and identification ability in community-dwelling older people remain unclear. Therefore, this study evaluated the performance of a commercially available IMU sensor-based fall risk assessment system among 20 community-dwelling older recurrent fallers (with a history of ≥2 falls in the past 12 months) and 20 community-dwelling older non-fallers (no history of falls in the past 12 months), together with applying the clinical scale of the Mini-Balance Evaluation Systems Test (Mini-BESTest). The results show that the IMU sensor-based system exhibited a significant moderate to excellent test-retest reliability (ICC = 0.838, p < 0.001), an acceptable level of internal consistency reliability (Spearman's rho = 0.471, p = 0.002), an acceptable convergent validity (Cronbach's α = 0.712), and an area under the curve (AUC) value of 0.590 for the IMU sensor-based receiver-operating characteristic (ROC) curve. The findings suggest that while the evaluated IMU sensor-based system exhibited good reliability and acceptable validity, it might not be able to fully identify the recurrent fallers and non-fallers in a community-dwelling older population. Further system optimization is still needed.
Collapse
Affiliation(s)
- Ke-Jing Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
| | - Nicky Lok-Yi Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
| | - Man-Ching Law
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Jockey Club Smart Ageing Hub, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Freddy Man-Hin Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Hoi-Ching Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Jockey Club Smart Ageing Hub, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tsz-On Chan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Jockey Club Smart Ageing Hub, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kit-Naam Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Jockey Club Smart Ageing Hub, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Jockey Club Smart Ageing Hub, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qi-Yao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Arnold Yu-Lok Wong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Timothy Chi-Yui Kwok
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; (K.-J.L.); (N.L.-Y.W.); (M.-C.L.); (H.-C.W.); (T.-O.C.); (K.-N.W.); (Y.-P.Z.)
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| |
Collapse
|
6
|
Tong CY, Zhu RTL, Ling YT, Scheeren EM, Lam FMH, Fu H, Ma CZH. Muscular and Kinematic Responses to Unexpected Translational Balance Perturbation: A Pilot Study in Healthy Young Adults. Bioengineering (Basel) 2023; 10:831. [PMID: 37508858 PMCID: PMC10376184 DOI: 10.3390/bioengineering10070831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Falls and fall-related injuries are significant public health problems in older adults. While balance-controlling strategies have been extensively researched, there is still a lack of understanding regarding how fast the lower-limb muscles contract and coordinate in response to a sudden loss of standing balance. Therefore, this pilot study aims to investigate the speed and timing patterns of multiple joint/muscles' activities among the different challenges in standing balance. Twelve healthy young subjects were recruited, and they received unexpected translational balance perturbations with randomized intensities and directions. Electromyographical (EMG) and mechanomyographical (MMG) signals of eight dominant-leg's muscles, dominant-leg's three-dimensional (3D) hip/knee/ankle joint angles, and 3D postural sways were concurrently collected. Two-way ANOVAs were used to examine the difference in timing and speed of the collected signals among muscles/joint motions and among perturbation intensities. This study has found that (1) agonist muscles resisting the induced postural sway tended to activate more rapidly than the antagonist muscles, and ankle muscles contributed the most with the fastest rate of response; (2) voluntary corrective lower-limb joint motions and postural sways could occur as early as the perturbation-induced passive ones; (3) muscles reacted more rapidly under a larger perturbation intensity, while the joint motions or postural sways did not. These findings expand the current knowledge on standing-balance-controlling mechanisms and may potentially provide more insights for developing future fall-prevention strategies in daily life.
Collapse
Affiliation(s)
- Cheuk Ying Tong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Ringo Tang-Long Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eduardo Mendonça Scheeren
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Freddy Man Hin Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong SAR 999077, China
| | - Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
How Does Lower Limb Respond to Unexpected Balance Perturbations? New Insights from Synchronized Human Kinetics, Kinematics, Muscle Electromyography (EMG) and Mechanomyography (MMG) Data. BIOSENSORS 2022; 12:bios12060430. [PMID: 35735577 PMCID: PMC9220852 DOI: 10.3390/bios12060430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Making rapid and proper compensatory postural adjustments is vital to prevent falls and fall-related injuries. This study aimed to investigate how, especially how rapidly, the multiple lower-limb muscles and joints would respond to the unexpected standing balance perturbations. Unexpected waist-pull perturbations with small, medium and large magnitudes were delivered to twelve healthy young adults from the anterior, posterior, medial and lateral directions. Electromyographical (EMG) and mechanomyographical (MMG) responses of eight dominant-leg muscles (i.e., hip abductor/adductors, hip flexor/extensor, knee flexor/extensor, and ankle dorsiflexor/plantarflexors) together with the lower-limb joint angle, moment, and power data were recorded. The onset latencies, time to peak, peak values, and/or rate of change of these signals were analyzed. Statistical analysis revealed that: (1) agonist muscles resisting the delivered perturbation had faster activation than the antagonist muscles; (2) ankle muscles showed the largest rate of activation among eight muscles following both anteroposterior and mediolateral perturbations; (3) lower-limb joint moments that complied with the perturbation had faster increase; and (4) larger perturbation magnitude tended to evoke a faster response in muscle activities, but not necessarily in joint kinetics/kinematics. These findings provided insights regarding the underlying mechanism and lower-limb muscle activities to maintain reactive standing balance in healthy young adults.
Collapse
|
8
|
Ma CZH, Bao T, DiCesare CA, Harris I, Chambers A, Shull PB, Zheng YP, Cham R, Sienko KH. Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot-Floor Contact Angle. SENSORS (BASEL, SWITZERLAND) 2022; 22:3641. [PMID: 35632054 PMCID: PMC9144019 DOI: 10.3390/s22103641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Slip-induced falls, responsible for approximately 40% of falls, can lead to severe injuries and in extreme cases, death. A large foot-floor contact angle (FFCA) during the heel-strike event has been associated with an increased risk of slip-induced falls. The goals of this feasibility study were to design and assess a method for detecting FFCA and providing cues to the user to generate a compensatory FFCA response during a future heel-strike event. The long-term goal of this research is to train gait in order to minimize the likelihood of a slip event due to a large FFCA. An inertial measurement unit (IMU) was used to estimate FFCA, and a speaker provided auditory semi-real-time feedback when the FFCA was outside of a 10-20 degree target range following a heel-strike event. In addition to training with the FFCA feedback during a 10-min treadmill training period, the healthy young participants completed pre- and post-training overground walking trials. Results showed that training with FFCA feedback increased FFCA events within the target range by 16% for "high-risk" walkers (i.e., participants that walked with more than 75% of their FFCAs outside the target range) both during feedback treadmill trials and post-training overground trials without feedback, supporting the feasibility of training FFCA using a semi-real-time FFCA feedback system.
Collapse
Affiliation(s)
- Christina Zong-Hao Ma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Tian Bao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - Christopher A. DiCesare
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - Isaac Harris
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - April Chambers
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.C.); (R.C.)
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter B. Shull
- Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Rakie Cham
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.C.); (R.C.)
| | - Kathleen H. Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| |
Collapse
|
9
|
Ferris J, Barone VJ, Perkins NC, Sienko KH. A Pilot Study Comparing the Effects of Concurrent and Terminal Visual Feedback on Standing Balance in Older Adults. SENSORS 2022; 22:s22082826. [PMID: 35458811 PMCID: PMC9033013 DOI: 10.3390/s22082826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
While balance training with concurrent feedback has been shown to improve real-time balance in older adults, terminal feedback may simplify implementation outside of clinical settings. Similarly, visual feedback is particularly well-suited for use outside the clinic as it is relatively easily understood and accessible via ubiquitous mobile devices (e.g., smartphones) with little additional peripheral equipment. However, differences in the effects of concurrent and terminal visual feedback are not yet well understood. We therefore performed a pilot study that directly compared the immediate effects of concurrent and terminal visual feedback as a first and necessary step in the future design of visual feedback technologies for balance training outside of clinical settings. Nineteen healthy older adults participated in a single balance training session during which they performed 38 trials of a single balance exercise including trials with concurrent, terminal or no visual feedback. Analysis of trunk angular position and velocity features recorded via an inertial measurement unit indicated that sway angles decreased with training regardless of feedback type, but sway velocity increased with concurrent feedback and decreased with terminal feedback. After removing feedback, training with either feedback type yielded decreased mean velocity, but only terminal feedback yielded decreased sway angles. Consequently, this study suggests that, for older adults, terminal visual feedback may be a viable alternative to concurrent visual feedback for short duration single-task balance training. Terminal feedback provided using ubiquitous devices should be further explored for balance training outside of clinical settings.
Collapse
|
10
|
Rabuffetti M, Zemp DD, Tettamanti M, Quadri PL, Ferrarin M. Stabilization after postural transitions in the elderly: Experimental study on community-dwelling subjects and nursing home residents. Gait Posture 2022; 91:105-110. [PMID: 34673445 DOI: 10.1016/j.gaitpost.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postural transitions have been identified as presenting challenging situations for the elderly. RESEARCH QUESTION This study hypothesizes a relationship between age-related factors and postural stabilization performance after a transition movement. In particular, the controlled factors in the experiment are: 1) assistance in living (independent living for community-dwelling subjects vs. assisted living for institutionalized subjects in nursing homes); 2) age of institutionalized individuals, by comparing groups with different age ranges. METHODS Sixty-three institutionalized individuals in nursing homes were recruited (17 in the age range 64-79; 46, including 6 drop-outs, in the age range 80-95). Moreover, seventeen (one drop out) community dwelling subjects (64-79 years) were enlisted. The study focuses on the postural stabilization phase after a "step forward" task. RESULTS When comparing age-matched subjects from the two groups, the residents in nursing homes were characterised by a worse stabilization performance: the stabilization time more than doubled, Instability increased by 39 %, and Promptness decreased by 77 %, although there was no significant difference in the quiet erect posture between the groups. No difference was observed when comparing the two age groups of residents in the nursing homes, however a potential confounding effect has been identified in the unequal mortality rates between the two groups. SIGNIFICANCE It is hypothesized that an individual identification of abnormal values of Instability and/or Promptness may inform different rehabilitation approaches.
Collapse
Affiliation(s)
| | - Damiano D Zemp
- Servizio Sottocenerino di Geriatria, Regional Hospitals of Lugano and Mendrisio, Switzerland; Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Mauro Tettamanti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Pier Luigi Quadri
- Servizio Sottocenerino di Geriatria, Regional Hospitals of Lugano and Mendrisio, Switzerland.
| | | |
Collapse
|
11
|
Giraldo-Pedroza A, Lee WCC, Lam WK, Coman R, Alici G. A Wearable Biofeedback Device to Increase Gait Swing Time Could Have Positive Effects on Gait among Older Adults. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010102. [PMID: 35009646 PMCID: PMC8747130 DOI: 10.3390/s22010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 05/14/2023]
Abstract
Older adults walk with a shorter stride length, reduced hip range of motion (ROM) and higher cadence. These are signs of reductions in walking ability. This study investigated whether using a wireless smart insole system that monitored and provided biofeedback to encourage an extension of swing time could increase stride length and hip flexion, while reducing the cadence. Seven older adults were tested in this study, with and without the biofeedback device, in an outdoor environment. Gait analysis was performed by using GaitRite system and Xsens MVN. Repeated measures analysis demonstrated that with biofeedback, the swing time increased by 6.45%, stride length by 4.52% and hip flexion by 14.73%, with statistical significance. It also decreased the cadence significantly by 5.5%. This study has demonstrated that this smart insole system modified positively the studied gait parameters in older adults and has the potential to improve their walking ability.
Collapse
Affiliation(s)
- Alexandra Giraldo-Pedroza
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Winson Chiu-Chun Lee
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Wing-Kai Lam
- Li Ning Sports Science Research Center, Beijing 101111, China
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Robyn Coman
- School of Health and Society, Faculty of Arts, Social Sciences & Humanities, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong Innovation Campus, North Wollongong, NSW 2500, Australia
| |
Collapse
|
12
|
Tannert I, Schulleri KH, Michel Y, Villa S, Johannsen L, Hermsdorfer J, Lee D. Immediate Effects of Vibrotactile Biofeedback Instructions on Human Postural Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7426-7432. [PMID: 34892813 DOI: 10.1109/embc46164.2021.9630992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vibrotactile biofeedback can improve balance and consequently be helpful in fall prevention. However, it remains unclear how different types of stimulus presentations affect not only trunk tilt, but also Center of Pressure (CoP) displacements, and whether an instruction on how to move contributes to a better understanding of vibrotactile feedback.Based on lower back tilt angles (L5), we applied individualized multi-directional vibrotactile feedback to the upper torso by a haptic vest in 30 healthy young adults. Subjects were equally distributed to three instruction groups (attractive - move in the direction of feedback, repulsive - move in the opposite direction of feedback & no instruction - with attractive stimuli). We conducted four conditions with eyes closed (feedback on/off, Narrow Stance with head extended, Semi-Tandem stance), with seven trials of 45s each. For CoP and L5, we computed Root Mean Square (RMS) of position/angle and standard deviation (SD) of velocity, and for L5 additionally, the percentage in time above threshold. The analysis consisted of mixed model ANOVAs and t-tests (α-level: 0.05).In the attractive and repulsive groups feedback significantly decreased the percentage above threshold (p<0.05). Feedback decreased RMS of L5, whereas RMS of CoP and SD of velocity in L5 and COP increased (p<0.05). Finally, an instruction on how to move contributed to a better understanding of the vibrotactile biofeedback.
Collapse
|
13
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
14
|
Kotov S, Egorova Y, Isakova E. Efficiency of a comprehensive program with biological feedback on support reaction in the restoring period of stroke. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:20-25. [DOI: 10.17116/jnevro202112112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ma CZH, Lam WK, Chang BC, Lee WCC. Can Insoles Be Used to Improve Static and Dynamic Balance of Community-Dwelling Older Adults? A Systematic Review on Recent Advances and Future Perspectives. J Aging Phys Act 2020; 28:971-986. [PMID: 32498037 DOI: 10.1123/japa.2019-0293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
This systematic review investigated the effects of orthopedic, vibrating, and textured insoles on the postural balance of community-dwelling older adults. Articles published in English from 1999 to 2019 investigating the effects of (a) orthopedic, (b) vibrating, and (c) textured insoles on static and dynamic balance in community-dwelling older adults were considered. Twenty-four trials with a total of 634 older adults were identified. The information gathered generally supported the balance-improving effects of orthopedic, vibrating, and textured insoles in both static and dynamic conditions among community-dwelling older adults. Further examination found that rigidity, texture patterns, vibration thresholds, and components like arch supports and heel cups are important factors in determining whether insoles can improve balance. This review highlights the potential of insoles for improving the static and dynamic balance of community-dwelling older adults. Good knowledge in insole designs and an understanding of medical conditions of older adults are required when attempts are made to improve postural balance using insoles.
Collapse
|
16
|
Giraldo-Pedroza A, Lee WCC, Lam WK, Coman R, Alici G. Effects of Wearable Devices with Biofeedback on Biomechanical Performance of Running-A Systematic Review. SENSORS 2020; 20:s20226637. [PMID: 33228137 PMCID: PMC7699362 DOI: 10.3390/s20226637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023]
Abstract
This present review includes a systematic search for peer-reviewed articles published between March 2009 and March 2020 that evaluated the effects of wearable devices with biofeedback on the biomechanics of running. The included articles did not focus on physiological and metabolic metrics. Articles with patients, animals, orthoses, exoskeletons and virtual reality were not included. Following the PRISMA guidelines, 417 articles were first identified, and nineteen were selected following the removal of duplicates and articles which did not meet the inclusion criteria. Most reviewed articles reported a significant reduction in positive peak acceleration, which was found to be related to tibial stress fractures in running. Some previous studies provided biofeedback aiming to increase stride frequencies. They produced some positive effects on running, as they reduced vertical load in knee and ankle joints and vertical displacement of the body and increased knee flexion. Some other parameters, including contact ground time and speed, were fed back by wearable devices for running. Such devices reduced running time and increased swing phase time. This article reviews challenges in this area and suggests future studies can evaluate the long-term effects in running biomechanics produced by wearable devices with biofeedback.
Collapse
Affiliation(s)
- Alexandra Giraldo-Pedroza
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Winson Chiu-Chun Lee
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Wing-Kai Lam
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
- Li Ning Sports Science Research Center, Beijing 101111, China
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Robyn Coman
- School of Health and Society, Faculty of Arts, Social Sciences & Humanities, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong Innovation Campus, North Wollongong, NSW 2500, Australia
| |
Collapse
|
17
|
Ma CZH, Ling YT, Shea QTK, Wang LK, Wang XY, Zheng YP. Towards Wearable Comprehensive Capture and Analysis of Skeletal Muscle Activity during Human Locomotion. SENSORS 2019; 19:s19010195. [PMID: 30621103 PMCID: PMC6339139 DOI: 10.3390/s19010195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022]
Abstract
Background: Motion capture and analyzing systems are essential for understanding locomotion. However, the existing devices are too cumbersome and can be used indoors only. A newly-developed wearable motion capture and measurement system with multiple sensors and ultrasound imaging was introduced in this study. Methods: In ten healthy participants, the changes in muscle area and activity of gastrocnemius, plantarflexion and dorsiflexion of right leg during walking were evaluated by the developed system and the Vicon system. The existence of significant changes in a gait cycle, comparison of the ankle kinetic data captured by the developed system and the Vicon system, and test-retest reliability (evaluated by the intraclass correlation coefficient, ICC) in each channel’s data captured by the developed system were examined. Results: Moderate to good test-retest reliability of various channels of the developed system (0.512 ≤ ICC ≤ 0.988, p < 0.05), significantly high correlation between the developed system and Vicon system in ankle joint angles (0.638R ≤ 0.707, p < 0.05), and significant changes in muscle activity of gastrocnemius during a gait cycle (p < 0.05) were found. Conclusion: A newly developed wearable motion capture and measurement system with ultrasound imaging that can accurately capture the motion of one leg was evaluated in this study, which paves the way towards real-time comprehensive evaluation of muscles and joint motions during different activities in both indoor and outdoor environments.
Collapse
Affiliation(s)
- Christina Zong-Hao Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Department of Rehabilitation, Jönköping University, 551 11 Jönköping, Sweden.
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Queenie Tsung Kwan Shea
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Li-Ke Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiao-Yun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, China.
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Sienko KH, Seidler RD, Carender WJ, Goodworth AD, Whitney SL, Peterka RJ. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Front Neurol 2018; 9:944. [PMID: 30483209 PMCID: PMC6240674 DOI: 10.3389/fneur.2018.00944] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have demonstrated the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies for reducing postural sway during static tasks and improving balance during dynamic tasks. The mechanism by which sensory augmentation information is processed and used by the CNS is not well understood. The dominant hypothesis, which has not been supported by rigorous experimental evidence, posits that observed reductions in postural sway are due to sensory reweighting: feedback of body motion provides the CNS with a correlate to the inputs from its intact sensory channels (e.g., vision, proprioception), so individuals receiving sensory augmentation learn to increasingly depend on these intact systems. Other possible mechanisms for observed postural sway reductions include: cognition (processing of sensory augmentation information is solely cognitive with no selective adjustment of sensory weights by the CNS), “sixth” sense (CNS interprets sensory augmentation information as a new and distinct sensory channel), context-specific adaptation (new sensorimotor program is developed through repeated interaction with the device and accessible only when the device is used), and combined volitional and non-volitional responses. This critical review summarizes the reported sensory augmentation findings spanning postural control models, clinical rehabilitation, laboratory-based real-time usage, and neuroimaging to critically evaluate each of the aforementioned mechanistic theories. Cognition and sensory re-weighting are identified as two mechanisms supported by the existing literature.
Collapse
Affiliation(s)
- Kathleen H Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wendy J Carender
- Michigan Balance Vestibular Testing and Rehabilitation, Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI, United States
| | - Adam D Goodworth
- Department of Rehabilitation Sciences, University of Hartford, Hartford, CT, United States
| | - Susan L Whitney
- Departments of Physical Therapy and Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J Peterka
- Department of Neurology, Oregon Health & Science University and National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
19
|
Ma CZH, Zheng YP, Lee WCC. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Top Stroke Rehabil 2017; 25:20-27. [PMID: 28950803 DOI: 10.1080/10749357.2017.1380339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Patients with stroke walk with excessive foot inversion at the affected side, which may disturb their balance and gait. OBJECTIVES This study aimed to investigate the effects of instant biofeedback of plantar force at the medial and lateral forefoot regions on gait and plantar foot loading in patients with stroke. METHODS A total of eight patients with hemiplegic stroke, who had flexible rearfoot varus deformity at the affected side, participated in this study. A vibrotactile biofeedback system was developed and evaluated. It analyzed forces at the medial and lateral forefeet, and instantly provided vibration clues when the plantar force at medial forefoot was less than a threshold. Each subject's three-dimensional gait parameters and plantar-pressure distribution during walking were measured under two experimental conditions (sequence randomized): with and without the device turned on (Trial-registration number: ChiCTR-IPB-15006530 and HKCTR-1853). RESULTS Providing biofeedback significantly reduced the foot inversion and increased the mid-stance foot-floor contact area and medial midfoot plantar pressure of the affected limb, bringing the values of these parameters closer to those of the unaffected side. The biofeedback also significantly reduced the unaffected side's excessive knee flexion and hip abduction. CONCLUSIONS There were signs of improved foot loading characteristics and gait upon provision of instant vibrotactile biofeedback of plantar force. The positive results of this study further support the development of wearable biofeedback devices for improving gait of patients with stroke.
Collapse
Affiliation(s)
- Christina Zong-Hao Ma
- a Interdisciplinary Division of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China.,b Rehabilitation Engineering Research Institute, China Rehabilitation Research Center , Beijing , China
| | - Yong-Ping Zheng
- a Interdisciplinary Division of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Winson Chiu-Chun Lee
- a Interdisciplinary Division of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China.,c School of Mechanical, Materials, Mechatronic and Biomedical Engineering , University of Wollongong , Wollongong , Australia
| |
Collapse
|