1
|
Suda E, Vieira M, Matias A, Gomide R, Sacco I. Running intralimb coordination patterns after a foot core exercise program in recreational runners. Braz J Med Biol Res 2024; 57:e13124. [PMID: 38265344 PMCID: PMC10802229 DOI: 10.1590/1414-431x2023e13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
This study investigated the effects of a foot core intervention on the coordination of foot joints in recreational runners. This was a secondary analysis from a randomized controlled trial conducted with 87 recreational runners allocated to the control group (CG), which followed a placebo lower limb stretching protocol, or the intervention group (IG), which underwent an 8-week (3 times/week) foot core training. The participants ran on a force-instrumented treadmill at a self-selected speed (9.5-10.5 km/h) while the foot segment motion was captured. The vector coding technique was used to assess inter-joint coordination for four selected coupled segment and joint angles. The coordination patterns of the calcaneus and midfoot (CalMid) and midfoot and metatarsus (MidMet) joint pairs were affected. In the frontal plane, IG showed an in-phase with proximal dominancy coordination at heel strike, with a decrease in its frequency after the training (P=0.018), suggesting a longer foot supination. Additionally, IG showed an anti-phase with distal dominancy pattern at early stance compared to CG due to a smaller but earlier inversion of the CalMid-MidMet pair (P=0.020). The intervention also had an effect on the transverse plane of the CalMid-MidMet pair, with IG showing a significantly greater frequency of anti-phase coordination with proximal dominancy during propulsion than CG (P=0.013), probably due to a reduction in the CalMid abduction. Overall, the results suggested that the foot core intervention reduces the occurrence of running-related injuries by increasing the resistance to calcaneus pronation and building a more rigid and efficient lever during push-off.
Collapse
Affiliation(s)
- E.Y. Suda
- Programa de Pós-Graduação em Fisioterapia, Universidade Ibirapuera, São Paulo, SP, Brasil
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.F. Vieira
- Laboratório de Bioengenharia e Biomecânica, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - A.B. Matias
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R.S. Gomide
- Laboratório de Bioengenharia e Biomecânica, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - I.C.N. Sacco
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Tian S, Guo L, Song Y, Miao J, Peng M, Fang X, Bai M, Miao M. Transcriptomic analysis the mechanisms of anti-osteoporosis of desert-living Cistanche herb in ovariectomized rats of postmenopausal osteoporosis. Funct Integr Genomics 2023; 23:237. [PMID: 37439895 DOI: 10.1007/s10142-023-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Desert-living Cistanche herb (DC), as a traditional Chinese medicine for tonifying kidney yang, is often used to treat postmenopausal osteoporosis (PMOP). Total phenylethanoid glycosides are instruction ingredients for discrimination and assay according to the China pharmacopoeia for DC. This research aimed to reveal the anti-osteoporosis mechanism of total phenylethanoid glycosides of DC (PGC) by transcriptomic analysis of ovariectomized rats. Serum levels of BGP were evaluated by ELISA, the bone weight was measured, and transmission electron microscopy was used to examine the ultrastructure of osteoblasts in rats. In addition, micro-CT was used to detect the bone volume (Tb.BS/BV), bone mineral density (Tb.BMD), and bone mineral content (Tb.BMC) in trabecular bone, and the ratio of cortical bone area to total area (Ct.ar/Tt.ar), and the level of bone mineral content (Ct.BMC) in cortical bone. Differential expressed genes (DEGs) after PGC treatment were analyzed by transcriptomics. Then, a bioinformatics analysis of DEGs was carried out through GO enrichment, KEGG enrichment, and selection of the nucleus gene through the protein-protein interaction network. Through qRT-PCR analysis, the DEGs were verified. The analysis results indicated that PGC increased the secretion of osteogenic markers, and ultrastructural characterization of osteoblasts and bone morphology were improved in ovariectomized rats. A total of 269 genes were differentially expressed, including 201 genes that were downregulated and 68 genes that were upregulated between the model group and the PGC group. Bioinformation analysis results prompt the conclusion that PGC could promote the bone metabolism by muscle cell development, myofibril assembly, etc. In addition, our study also found that PGC has a good effect on osteoporosis complicated with cardiomyopathy, and it also provided evidence for the correlation between sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zheng Zhou, 450046, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mengfan Peng
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoyan Fang
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ming Bai
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Sacco ICN, Trombini-Souza F, Suda EY. Impact of biomechanics on therapeutic interventions and rehabilitation for major chronic musculoskeletal conditions: A 50-year perspective. J Biomech 2023; 154:111604. [PMID: 37159980 DOI: 10.1016/j.jbiomech.2023.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
The pivotal role of biomechanics in the past 50 years in consolidating the basic knowledge that underpins prevention and rehabilitation measures has made this area a great spotlight for health practitioners. In clinical practice, biomechanics analysis of spatiotemporal, kinematic, kinetic, and electromyographic data in various chronic conditions serves to directly enhance deeper understanding of locomotion and the consequences of musculoskeletal dysfunctions in terms of motion and motor control. It also serves to propose straightforward and tailored interventions. The importance of this approach is supported by myriad biomechanical outcomes in clinical trials and by the development of new interventions clearly grounded on biomechanical principles. Over the past five decades, therapeutic interventions have been transformed from fundamentally passive in essence, such as orthoses and footwear, to emphasizing active prevention, including exercise approaches, such as bottom-up and top-down strengthening programs for runners and people with osteoarthritis. These approaches may be far more effective inreducing pain, dysfunction, and, ideally, incidence if they are based on the biomechanical status of the affected person. In this review, we demonstrate evidence of the impact of biomechanics and motion analysis as a foundation for physical therapy/rehabilitation and preventive strategies for three chronic conditions of high worldwide prevalence: diabetes and peripheral neuropathy, knee osteoarthritis, and running-related injuries. We conclude with a summary of recommendations for future studies needed to address current research gaps.
Collapse
Affiliation(s)
- Isabel C N Sacco
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Francis Trombini-Souza
- Department of Physical Therapy, University of Pernambuco, Petrolina, Pernambuco, Brazil; Master's and Doctoral Programs in Rehabilitation and Functional Performance, University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Eneida Yuri Suda
- Postgraduate Program in Physiotherapy, Universidade Ibirapuera, São Paulo, Brazil
| |
Collapse
|
4
|
Mei Q, Kim HK, Xiang L, Shim V, Wang A, Baker JS, Gu Y, Fernandez J. Toward improved understanding of foot shape, foot posture, and foot biomechanics during running: A narrative review. Front Physiol 2022; 13:1062598. [PMID: 36569759 PMCID: PMC9773215 DOI: 10.3389/fphys.2022.1062598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The current narrative review has explored known associations between foot shape, foot posture, and foot conditions during running. The artificial intelligence was found to be a useful metric of foot posture but was less useful in developing and obese individuals. Care should be taken when using the foot posture index to associate pronation with injury risk, and the Achilles tendon and longitudinal arch angles are required to elucidate the risk. The statistical shape modeling (SSM) may derive learnt information from population-based inference and fill in missing data from personalized information. Bone shapes and tissue morphology have been associated with pathology, gender, age, and height and may develop rapid population-specific foot classifiers. Based on this review, future studies are suggested for 1) tracking the internal multi-segmental foot motion and mapping the biplanar 2D motion to 3D shape motion using the SSM; 2) implementing multivariate machine learning or convolutional neural network to address nonlinear correlations in foot mechanics with shape or posture; 3) standardizing wearable data for rapid prediction of instant mechanics, load accumulation, injury risks and adaptation in foot tissue and bones, and correlation with shapes; 4) analyzing dynamic shape and posture via marker-less and real-time techniques under real-life scenarios for precise evaluation of clinical foot conditions and performance-fit footwear development.
Collapse
Affiliation(s)
- Qichang Mei
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Hyun Kyung Kim
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Liangliang Xiang
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Encarnación-Martínez A, Wikstrom E, García-Gallart A, Sanchis-Sanchis R, Pérez-Soriano P. Seven-Weeks Gait-Retraining in Minimalist Footwear Has No Effect on Dynamic Stability Compared With Conventional Footwear. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:640-649. [PMID: 34665996 DOI: 10.1080/02701367.2021.1892021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/14/2021] [Indexed: 06/13/2023]
Abstract
Purpose: To investigate the effects of two different running footwear conditions (transition to minimalist footwear and conventional running footwear) on dynamic postural stability before and after 7 weeks of gait retraining program, and to evaluate the effect of fatigue on dynamic stability. Method: This randomized controlled clinical trial was carried out by 42 recreational male runners, who were randomly divided into two groups; Conventional Footwear Group (CFG) (n = 22) and Minimalist Footwear Group (MFG) (n = 20). Dynamic Postural Stability Index (DPSI), in a fatigued and non-fatigued state, were assessed before and after a gait retraining program. The gait retraining program consisted of three guided training sessions per week for 7 weeks. Training program was mainly focused on running technique and submaximal aerobic training with step-frequency exercises. Minimalist footwear was progressively introduced in the MFG. The CFG and MFG performed the same training exercises and a full body conditioning program. Fatigue was induced using a 30-minute running test at individual 85% of the maximal aerobic speed. Results: No differences in dynamic stability variables were found between MFG and CFG in any of the study condition. MFG and CFG showed better dynamic stability after the intervention program (CFG: 13.1% of change, DPSIpre = 0.3221 ± 0.04, DPSIpost = 0.2799 ± 0.04; p < .05; MFG: 6.7% of change, DPSIpre = 0.3117 ± 0.04, DPSIpost = 0.2907 ± 0.05). Finally, dynamic stability was significatively lower in both groups after fatigue protocol (p < .05). Conclusions: Following a 7-week gait retraining program, footwear did not affect the results, being the gait retraining program more relevant on improving dynamic stability.
Collapse
|
6
|
Analysis of Human Exercise Health Monitoring Data of Smart Bracelet Based on Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7971904. [PMID: 35720918 PMCID: PMC9200558 DOI: 10.1155/2022/7971904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
The smart bracelet has become a hot-selling commodity, according to a daily consumption survey. Based on people's interest and concern for their health, the smart bracelet, as a design and application for achieving healthy weight loss monitoring, is quickly becoming a popular new favorite. This bracelet detects fat using the near-infrared diffuse reflection principle, with the goal of assisting people in controlling and maintaining a healthy weight. A large amount of data has been accumulated in all walks of life due to the development of the Internet network and data storage technology. As a result, the emergence of machine learning plays a critical role in the data analysis of human sports health monitoring of smart bracelets. Based on machine learning, this paper investigates the data analysis of human sports health monitoring smart bracelets. When the population index reaches 50 in the analysis of health monitoring data, the average accuracy of data mining is 86.8 percent, the average accuracy of the association rule algorithm is 85.9 percent, the average accuracy of the collaborative filtering algorithm is 84.3 percent, and the average accuracy of the machine learning algorithm is 90.1 percent in this paper. Among the four algorithms, the method presented in this paper is clearly the most effective, stable, and accurate. The system's stability and accuracy have been greatly improved by the addition of GPS-assisted and hand-up misjudgment algorithms. Because the smart bracelet is inexpensive, easy to wear, and consistent with consumer psychology, it is becoming increasingly popular to use it to monitor the human body's sports health.
Collapse
|
7
|
Wei Z, Zeng Z, Liu M, Wang L. Effect of intrinsic foot muscles training on foot function and dynamic postural balance: A systematic review and meta-analysis. PLoS One 2022; 17:e0266525. [PMID: 35442981 PMCID: PMC9020712 DOI: 10.1371/journal.pone.0266525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
This systematic review aimed to analyse the effects of intrinsic foot muscle (IFM) training on foot function and dynamic postural balance. Keywords related to IFM training were used to search four databases (PubMed, CINAHL, SPORTDiscus and Web of Science databases.) for relevant studies published between January 2011 and February 2021. The methodological quality of the intervention studies was assessed independently by two reviewers by using the modified Downs and Black quality index. Publication bias was also assessed on the basis of funnel plots. This study was registered in PROSPERO (CRD42021232984). Sixteen studies met the inclusion criteria (10 with high quality and 6 with moderate quality). Numerous biomechanical variables were evaluated after IFM training intervention. These variables included IFM characteristics, medial longitudinal arch morphology and dynamic postural balance. This systematic review demonstrated that IFM training can exert positive biomechanical effects on the medial longitudinal arch, improve dynamic postural balance and act as an important training method for sports enthusiasts. Future studies should optimise standardised IFM training methods in accordance with the demands of different sports.
Collapse
Affiliation(s)
- Zhen Wei
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ziwei Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Min Liu
- Shanghai Normal University Tianhua College, Shanghai, China
| | - Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Davidović Cvetko E, Nešić N, Matić A, Milas Ahić J, Drenjančević I. Effects of 8-week increment aerobic exercise program on bone metabolism and body composition in young non-athletes. Eur J Appl Physiol 2022; 122:1019-1034. [PMID: 35141785 DOI: 10.1007/s00421-022-04900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The effects of aerobic exercise on bone metabolism are still unclear. Thus, the main goal of this study was to explore if there was an effect of the short-term aerobic exercise program on the bone remodeling process and if there were sex differences in the effect of the training program on bone metabolism. METHODS Twenty-one participants (men and women) aged 20-23 performed an 8-week aerobic exercise program three times per week in 1-h sessions with increases in the exercise load every 2 weeks. Bone density, bone mineral content and concentration of markers of bone metabolism: osteocalcin, C-terminal procollagen type I peptide, pyridinoline, parathyroid hormone, osteoprotegerin, and the receptor activator of nuclear kappa B ligand by ELISA were measured at the start and at the end of the study, while changes in body composition were assessed by a bioelectric impedance analysis method 6 times during the study. RESULTS The aerobic exercise program increased the concentration of osteocalcin (11.34 vs 14.24 ng/ml), pyridinoline (67.51 vs 73.99 nmol/l), and the receptor activator of nuclear kappa B ligand (95.122 vs 158.15 pg/ml). A statistically significant increase in bone density at neck mean (1.122 vs 1.176 g/cm3) and in bone mineral content at dual femur (33.485 vs 33.700 g) was found in women, while there was no statistically significant change at any site in men. CONCLUSION 8 weeks of the aerobic exercise program with increment in intensity increased some of bone remodeling biomarkers and showed different effects for men and women.
Collapse
Affiliation(s)
- Erna Davidović Cvetko
- Health Studies Department, College of Applied Sciences Lavoslav Ruzicka in Vukovar, Županijska 50, 32000, Vukovar, Croatia
| | - Nebojša Nešić
- Health Studies Department, College of Applied Sciences Lavoslav Ruzicka in Vukovar, Županijska 50, 32000, Vukovar, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia.,Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer Osijek, Trg Svetog Trojstva 3, 31000, Osijek, Croatia
| | - Jasminka Milas Ahić
- Department of Pathophysiology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia.,Department of Internal Medicine, Clinical Hospital Centre Osijek, J. Huttlera 4, 31000, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University of Josip Juraj Strossmayer Osijek, J. Huttlera 4, 31000, Osijek, Croatia. .,Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer Osijek, Trg Svetog Trojstva 3, 31000, Osijek, Croatia.
| |
Collapse
|
9
|
Willemse L, Wouters EJM, Bronts HM, Pisters MF, Vanwanseele B. The effect of interventions anticipated to improve plantar intrinsic foot muscle strength on fall-related dynamic function in adults: a systematic review. J Foot Ankle Res 2022; 15:3. [PMID: 35057831 PMCID: PMC8772142 DOI: 10.1186/s13047-021-00509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures. Supplementary Information The online version contains supplementary material available at 10.1186/s13047-021-00509-0.
Collapse
|
10
|
Damrongthai C, Kuwamizu R, Suwabe K, Ochi G, Yamazaki Y, Fukuie T, Adachi K, Yassa MA, Churdchomjan W, Soya H. Benefit of human moderate running boosting mood and executive function coinciding with bilateral prefrontal activation. Sci Rep 2021; 11:22657. [PMID: 34811374 PMCID: PMC8608901 DOI: 10.1038/s41598-021-01654-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Running, compared to pedaling is a whole-body locomotive movement that may confer more mental health via strongly stimulating brains, although running impacts on mental health but their underlying brain mechanisms have yet to be determined; since almost the mechanistic studies have been done with pedaling. We thus aimed at determining the acute effect of a single bout of running at moderate-intensity, the most popular condition, on mood and executive function as well as their neural substrates in the prefrontal cortex (PFC). Twenty-six healthy participants completed both a 10-min running session on a treadmill at 50%[Formula: see text] and a resting control session in randomized order. Executive function was assessed using the Stroop interference time from the color-word matching Stroop task (CWST) and mood was assessed using the Two-Dimensional Mood Scale, before and after both sessions. Prefrontal hemodynamic changes while performing the CWST were investigated using functional near-infrared spectroscopy. Running resulted in significant enhanced arousal and pleasure level compared to control. Running also caused significant greater reduction of Stroop interference time and increase in Oxy-Hb signals in bilateral PFCs. Besides, we found a significant association among pleasure level, Stroop interference reaction time, and the left dorsolateral PFCs: important brain loci for inhibitory control and mood regulation. To our knowledge, an acute moderate-intensity running has the beneficial of inducing a positive mood and enhancing executive function coinciding with cortical activation in the prefrontal subregions involved in inhibitory control and mood regulation. These results together with previous findings with pedaling imply the specificity of moderate running benefits promoting both cognition and pleasant mood.
Collapse
Affiliation(s)
- Chorphaka Damrongthai
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Kazuya Suwabe
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ryugasaki, 301-8555, Japan
| | - Genta Ochi
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Yudai Yamazaki
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takemune Fukuie
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Kazutaka Adachi
- Laboratory of Applied Anatomy, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Michael A Yassa
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92679-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92679-3800, USA
| | - Worachat Churdchomjan
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
11
|
Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med 2021; 52:725-740. [PMID: 34542868 PMCID: PMC8450723 DOI: 10.1007/s40279-021-01561-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.
Collapse
|
12
|
Abstract
Patellofemoral pain (PFP) is among the most common injuries in recreational runners. Current evidence does not identify alignment, muscle weakness, and patellar maltracking or a combination of these as causes of PFP. Rather than solely investigating biomechanics, we suggest a holistic approach to address the causes of PFP. Both external loads, such as changes in training parameters and biomechanics, and internal loads, such as sleep and psychological stress, should be considered. As for the management of runners with PFP, recent research suggested that various interventions can be considered to help symptoms, even if these interventions target biomechanical factors that may not have caused the injury in the first place. In this Current Concepts article, we describe how the latest evidence on education about training modifications, strengthening exercises, gait and footwear modifications, and psychosocial factors can be applied when treating runners with PFP. The importance of maintaining relative homeostasis between load and capacity will be emphasized. Recommendations for temporary or longer-term interventions will be discussed. A holistic, evidence-based approach should consist of a graded exposure to load, including movement, exercise, and running, while considering the capacity of the individual, including sleep and psychosocial factors. Cost, accessibility, and the personal preferences of patients should also be considered.
Collapse
Affiliation(s)
- Jean-Francois Esculier
- The Running Clinic, Lac Beauport, QC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- MoveMed Physiotherapy, Kelowna, BC, Canada
| | - Kevin Maggs
- The Running Clinic, Lac Beauport, QC, Canada
- Lively Health Clinic, Gainesville, VA
| | - Ellora Maggs
- The Running Clinic, Lac Beauport, QC, Canada
- Peak Performance Care Physical Therapy, Sonora, CA
| | - Blaise Dubois
- The Running Clinic, Lac Beauport, QC, Canada
- Physiothérapie et médecine du sport PCN, Quebec City, QC, Canada
| |
Collapse
|
13
|
Suda EY, Watari R, Matias AB, Sacco ICN. Recognition of Foot-Ankle Movement Patterns in Long-Distance Runners With Different Experience Levels Using Support Vector Machines. Front Bioeng Biotechnol 2020; 8:576. [PMID: 32596226 PMCID: PMC7300177 DOI: 10.3389/fbioe.2020.00576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
Running practice could generate musculoskeletal adaptations that modify the body mechanics and generate different biomechanical patterns for individuals with distinct levels of experience. Therefore, the aim of this study was to investigate whether foot-ankle kinetic and kinematic patterns can be used to discriminate different levels of experience in running practice of recreational runners using a machine learning approach. Seventy-eight long-distance runners (40.7 ± 7.0 years) were classified into less experienced (n = 24), moderately experienced (n = 23), or experienced (n = 31) runners using a fuzzy classification system, based on training frequency, volume, competitions and practice time. Three-dimensional kinematics of the foot-ankle and ground reaction forces (GRF) were acquired while the subjects ran on an instrumented treadmill at a self-selected speed (9.5–10.5 km/h). The foot-ankle kinematic and kinetic time series underwent a principal component analysis for data reduction, and combined with the discrete GRF variables to serve as inputs in a support vector machine (SVM), to determine if the groups could be distinguished between them in a one-vs.-all approach. The SVM models successfully classified all experience groups with significant crossvalidated accuracy rates and strong to very strong Matthew’s correlation coefficients, based on features from the input data. Overall, foot mechanics was different according to running experience level. The main distinguishing kinematic factors for the less experienced group were a greater dorsiflexion of the first metatarsophalangeal joint and a larger plantarflexion angles between the calcaneus and metatarsals, whereas the experienced runners displayed the opposite pattern for the same joints. As for the moderately experienced runners, although they were successfully classified, they did not present a visually identifiable running pattern, and seem to be an intermediate group between the less and more experienced runners. The results of this study have the potential to assist the development of training programs targeting improvement in performance and rehabilitation protocols for preventing injuries.
Collapse
Affiliation(s)
- Eneida Yuri Suda
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricky Watari
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Bento Matias
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Isabel C N Sacco
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Tourillon R, Gojanovic B, Fourchet F. How to Evaluate and Improve Foot Strength in Athletes: An Update. Front Sports Act Living 2019; 1:46. [PMID: 33344969 PMCID: PMC7739583 DOI: 10.3389/fspor.2019.00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022] Open
Abstract
The foot is a complex system with multiple degrees of freedom that play an essential role in running or sprinting. The intrinsic foot muscles (IFM) are the main local stabilizers of the foot and are part of the active and neural subsystems that constitute the foot core. These muscles lengthen eccentrically during the stance phase of running before shortening at the propulsion phase, as the arch recoils in parallel to the plantar fascia. They play a key role in supporting the medial longitudinal arch, providing flexibility, stability and shock absorption to the foot, whilst partially controlling pronation. Much of the foot rigidity in late stance has been attributed to the windlass mechanism – the dorsiflexion of the toes building tension up in the plantar aponeurosis and stiffening the foot. In addition, recent studies have shown that the IFM provide a necessary active contribution in late stance, in order to develop sufficient impedance in the metatarsal-phalangeal joints. This in turn facilitates the propulsive forces at push-off. These factors support the critical role of the foot in providing rigidity and an efficient lever at push-off. During running or sprinting, athletes need to generate and maintain the highest (linear) running velocity during a single effort in a sprinting lane. Acceleration and sprinting performance requires forces to be transmitted efficiently to the ground. It may be of particular interest to strengthen foot muscles to maintain and improve an optimal capacity to generate and absorb these forces. The current evidence supports multiple exercises to achieve higher strength in the foot, such as the “short foot exercise,” doming, toes curl, towing exercises or the more dynamic hopping exercises, or even barefoot running. Their real impact on foot muscle strength remains unclear and data related to its assessment remains scarce, despite a recognized need for this, especially before and after a strengthening intervention. It would be optimal to be able to assess it. In this article, we aim to provide the track and field community with an updated review on the current modalities available for foot strength assessment and training. We present recommendations for the incorporation of foot muscles training for performance and injury prevention in track and field.
Collapse
Affiliation(s)
- Romain Tourillon
- Faculty of Sport Sciences, University of Nantes, Nantes, France.,School of Physical Therapy and Rehabilitation, IFM3R, Saint-Sébastien sur Loire, France.,Motion Analysis Lab, Physiotherapy and Sports Medicine Department, Swiss Olympic Medical Center, La Tour Hospital, Meyrin, Switzerland
| | - Boris Gojanovic
- Motion Analysis Lab, Physiotherapy and Sports Medicine Department, Swiss Olympic Medical Center, La Tour Hospital, Meyrin, Switzerland
| | - François Fourchet
- Motion Analysis Lab, Physiotherapy and Sports Medicine Department, Swiss Olympic Medical Center, La Tour Hospital, Meyrin, Switzerland
| |
Collapse
|