1
|
Tiu YC, Gong L, Zhang Y, Luo J, Yang Y, Tang Y, Lee WM, Guan XY. GLIPR1 promotes proliferation, metastasis and 5-fluorouracil resistance in hepatocellular carcinoma by activating the PI3K/PDK1/ROCK1 pathway. Cancer Gene Ther 2022; 29:1720-1730. [PMID: 35760898 DOI: 10.1038/s41417-022-00490-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to a heavy disease burden for its high prevalence and poor prognosis, with limited effective systemic therapies available. In the era of precision medicine, treatment efficacy might be improved by combining personalized systemic therapies. Since oncogenic activation is one of the primary driving forces in HCC, characterization of these oncogenes can provide insights for developing new targeted therapies. Based on RNA sequencing of epithelial-mesenchymal transition (EMT)-induced HCC cells, this study discovers and characterizes glioma pathogenesis-related protein 1 (GLIPR1) that robustly drives HCC progression and can potentially serve as a prognostic biomarker and therapeutic target with clinical utility. GLIPR1 serves opposing roles and involves distinct mechanisms in different cancers. However, based on integrated in-silico analysis, in vitro and in vivo functional investigations, we demonstrate that GLIPR1 plays a multi-faceted oncogenic role in HCC development via enhancing tumor proliferation, metastasis, and 5FU resistance. We also found that GLIPR1 induces EMT and is actively involved in the PI3K/PDK1/ROCK1 singling axis to exert its oncogenic effects. Thus, pre-clinical evaluation of GLIPR1 and its downstream factors in HCC patients might facilitate further discovery of therapeutic targets, as well as improve HCC chemotherapeutic outcomes and prognosis.
Collapse
Affiliation(s)
- Yuen Chak Tiu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Desi N, Teh V, Tong QY, Lim CY, Tabatabaeian H, Chew XH, Sanchez-Mejias A, Chan JJ, Zhang B, Pitcheshwar P, Siew BE, Wang S, Lee KC, Chong CS, Cheong WK, Lieske B, Tan IJW, Tan KK, Tay Y. MiR-138 is a potent regulator of the heterogenous MYC transcript population in cancers. Oncogene 2022; 41:1178-1189. [PMID: 34937878 PMCID: PMC8856960 DOI: 10.1038/s41388-021-02084-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022]
Abstract
3'UTR shortening in cancer has been shown to activate oncogenes, partly through the loss of microRNA-mediated repression. This suggests that many reported microRNA-oncogene target interactions may not be present in cancer cells. One of the most well-studied oncogenes is the transcription factor MYC, which is overexpressed in more than half of all cancers. MYC overexpression is not always accompanied by underlying genetic aberrations. In this study, we demonstrate that the MYC 3'UTR is shortened in colorectal cancer (CRC). Using unbiased computational and experimental approaches, we identify and validate microRNAs that target the MYC coding region. In particular, we show that miR-138 inhibits MYC expression and suppresses tumor growth of CRC and hepatocellular carcinoma (HCC) cell lines. Critically, the intravenous administration of miR-138 significantly impedes MYC-driven tumor growth in vivo. Taken together, our results highlight the previously uncharacterized shortening of the MYC 3'UTR in cancer, and identify miR-138 as a potent regulator of the heterogenous MYC transcript population.
Collapse
Affiliation(s)
- Ng Desi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Velda Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Chun You Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Avencia Sanchez-Mejias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Bei-En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Kuok-Chung Lee
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Choon-Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Wai-Kit Cheong
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Ian Jse-Wei Tan
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
3
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
4
|
Gu M, Toh TB, Hooi L, Lim JJ, Zhang X, Chow EKH. Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45427-45441. [PMID: 31718136 DOI: 10.1021/acsami.9b16323] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high mortality but limited therapeutic options. Epigenetic regulations including DNA methylation and histone modification control gene expressions and play a crucial role during tumorigenesis. G9a, also known as EHMT2 (euchromatic histone-lysine N-methyltransferase 2), is a histone methyltransferase predominantly responsible for dimethylation of histone H3 lysine 9 (H3K9). G9a has been shown to play a key role in promoting tumor progression. Recent studies have identified that G9a is a critical mediator of HCC pathogenesis. UNC0646 is a G9a inhibitor that has shown potent in vitro efficacy. However, due to its water insolubility, the in vivo efficacy of UNC0646 is not satisfactory. In this study, nanodiamonds (NDs) were utilized as a drug delivery platform to improve in vivo delivery of this small-molecule inhibitor. Our results showed that ND-UNC0646 complexes could be rapidly synthesized by physical adsorption, meanwhile possessing favorable drug delivery properties and was able to improve the dispersibility of UNC0646 in water, therefore making it amenable for intravenous administration. The release profile of UNC0646 from ND-UNC0646 was demonstrated to be pH-responsive. Moreover, ND-UNC0646 maintained the biological functionality of UNC0646, with higher efficacy in reducing H3K9 methylation as well as enhanced invasion suppressive effects. Most importantly, increased in vivo efficacy was demonstrated using an orthotopic HCC mouse model, which paves the way of translating this small-molecule inhibitor toward HCC treatment. Our work demonstrates the potential of NDs in the clinical application for HCC treatment.
Collapse
Affiliation(s)
- Mengjie Gu
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Xiyun Zhang
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- Department of Medicine, Yong Loo Lin School of Medicine , National University of Singapore , 119228 , Singapore
| | - Edward Kai-Hua Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| |
Collapse
|
5
|
Dai S, Zhou Y, Dai P, Cheng G, He P, Fang Y. The Split Primer Ligation‐triggered 8‐17 DNAzyme Assisted Cascade Rolling Circle Amplification for High Specific Detection of Liver Cancer‐involved mRNAs: TK1 and c‐myc. ELECTROANAL 2019. [DOI: 10.1002/elan.201900539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiyan Dai
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| | - Yuting Zhou
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| | - Peiqing Dai
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| | - Guifang Cheng
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| | - Pingang He
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| | - Yuzhi Fang
- College of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P.R. China
| |
Collapse
|
6
|
Genome-wide promoter DNA methylation profiling of hepatocellular carcinomas arising either spontaneously or due to chronic exposure to Ginkgo biloba extract (GBE) in B6C3F1/N mice. Arch Toxicol 2019; 93:2219-2235. [PMID: 31278416 DOI: 10.1007/s00204-019-02505-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications, such as DNA methylation, play an important role in carcinogenesis. In a recent NTP study, chronic exposure of B6C3F1/N mice to Ginkgo biloba extract (GBE) resulted in a high incidence of hepatocellular carcinomas (HCC). Genome-wide promoter methylation profiling on GBE-exposed HCC (2000 mg/kg group), spontaneous HCC (vehicle-control group), and age-matched vehicle control liver was performed to identify differentially methylated genes in GBE-exposed HCC and spontaneous HCC. DNA methylation alterations were correlated to the corresponding global gene expression changes. Compared to control liver, 1296 gene promoters (719 hypermethylated, 577 hypomethylated) in GBE-exposed HCC and 738 (427 hypermethylated, 311 hypomethylated) gene promoters in spontaneous HCC were significantly differentially methylated, suggesting an impact of methylation on GBE-exposed HCC. Differential methylation of promoter regions in relevant cancer genes (cMyc, Spry2, Dusp5) and their corresponding differential gene expression was validated by quantitative pyrosequencing and qRT-PCR, respectively. In conclusion, we have identified differentially methylated promoter regions of relevant cancer genes altered in GBE-exposed HCC compared to spontaneous HCC. Further study of unique sets of differentially methylated genes in chemical-exposed mouse HCC could potentially be used to differentiate treatment-related tumors from spontaneous-tumors in cancer bioassays and provide additional understanding of the underlying epigenetic mechanisms of chemical carcinogenesis.
Collapse
|
7
|
Lai I, Swaminathan S, Baylot V, Mosley A, Dhanasekaran R, Gabay M, Felsher DW. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J Immunother Cancer 2018; 6:125. [PMID: 30458889 PMCID: PMC6247677 DOI: 10.1186/s40425-018-0431-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Interleukin-12 (IL-12) is a promising candidate for cancer immunotherapy because of its ability to activate a number of host immune subsets that recognize and destroy cancer cells. We found that human hepatocellular carcinoma (HCC) patients with higher than median levels of IL-12 have significantly favorable clinical outcomes. Here, we report that a messenger RNA (mRNA) lipid nanoparticle delivering IL-12 (IL-12-LNP) slows down the progression of MYC oncogene-driven HCC. IL-12-LNP was well distributed within the HCC tumor and was not associated with significant animal toxicity. Treatment with IL-12-LNP significantly reduced liver tumor burden measured by dynamic magnetic resonance imaging (MRI), and increased survival of MYC-induced HCC transgenic mice in comparison to control mice. Importantly, IL-12-LNP exhibited no effect on transgenic MYC levels confirming that its therapeutic efficacy was not related to the downregulation of a driver oncogene. IL-12-LNP elicited marked infiltration of activated CD44+ CD3+ CD4+ T helper cells into the tumor, and increased the production of Interferon γ (IFNγ). Collectively, our findings suggest that IL-12-LNP administration may be an effective immunotherapy against HCC.
Collapse
Affiliation(s)
- Ian Lai
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA
| | - Srividya Swaminathan
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA
| | - Virginie Baylot
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA
| | - Adriane Mosley
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA
| | | | - Meital Gabay
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA
| | - Dean W Felsher
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University, CA, Stanford, USA.
| |
Collapse
|
8
|
Tang L, Zeng J, Geng P, Fang C, Wang Y, Sun M, Wang C, Wang J, Yin P, Hu C, Guo L, Yu J, Gao P, Li E, Zhuang Z, Xu G, Liu Y. Global Metabolic Profiling Identifies a Pivotal Role of Proline and Hydroxyproline Metabolism in Supporting Hypoxic Response in Hepatocellular Carcinoma. Clin Cancer Res 2018; 24:474-485. [PMID: 29084919 DOI: 10.1158/1078-0432.ccr-17-1707] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Purpose: Metabolic reprogramming is frequently identified in hepatocellular carcinoma (HCC), which is the most common type of liver malignancy. The reprogrammed cellular metabolisms promote tumor cell survival, proliferation, angiogenesis, and metastasis. However, the mechanisms of this process remain unclear in HCC.Experimental Design: The global nontargeted metabolic study in 69 paired hepatic carcinomas and adjacent tissue specimens was performed using capillary electrophoresis-time of flight mass spectrometry-based approach. Key findings were validated by targeted metabolomic approach. Biological studies were also performed to investigate the role of proline biosynthesis in HCC pathogenesis.Results: Proline metabolism was markedly changed in HCC tumor tissue, characterized with accelerated consumption of proline and accumulation of hydroxyproline, which significantly correlated with α-fetoprotein levels and poor prognosis in HCC. In addition, we found that hydroxyproline promoted hypoxia- and HIF-dependent phenotype in HCC. Moreover, we demonstrated that hypoxia activated proline biosynthesis via upregulation of ALDH18A1, subsequently leading to accumulation of hydroxyproline via attenuated PRODH2 activity. More importantly, we showed that glutamine, proline, and hydroxyproline metabolic axis supported HCC cell survival through modulating HIF1α stability in response to hypoxia. Finally, inhibition of proline biosynthesis significantly enhanced cytotoxicity of sorafenib in vitro and in vivoConclusions: Our results demonstrate that hypoxic microenvironment activates proline metabolism, resulting in accumulation of hydroxyproline that promotes HCC tumor progression and sorafenib resistance through modulating HIF1α. These findings provide the proof of concept for targeting proline metabolism as a potential therapeutic strategy for HCC. Clin Cancer Res; 24(2); 474-85. ©2017 AACR.
Collapse
Affiliation(s)
- Ling Tang
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Life Science, Dalian University, Dalian, China
| | - Jun Zeng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Dalian, China
| | - Pengyu Geng
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chengnan Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Wang
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Life Science, Dalian University, Dalian, China
| | - Mingju Sun
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Changsong Wang
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiao Wang
- School of Life Science, Dalian University, Dalian, China
| | - Peiyuan Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lei Guo
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jane Yu
- Division of Pulmonary, Critical Care and Sleep Medicine Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Peng Gao
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Enyou Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Yang Liu
- Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
9
|
N-Myc Downstream-Regulated Gene 1 Restricts Hepatitis C Virus Propagation by Regulating Lipid Droplet Biogenesis and Viral Assembly. J Virol 2018; 92:JVI.01166-17. [PMID: 29118118 DOI: 10.1128/jvi.01166-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc downstream-regulated gene 1 (NDRG1) limits productive hepatitis C virus (HCV) infection by inhibiting viral assembly. Interestingly, HCV infection downregulates NDRG1 protein and mRNA expression. The loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by upregulating MYC, which directly inhibits the transcription of NDRG1 The upregulation of MYC also leads to the reduced expression of the NDRG1-specific kinase serum/glucocorticoid-regulated kinase 1 (SGK1), resulting in a markedly diminished phosphorylation of NDRG1. The knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both the transcriptional and posttranslational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by downregulating NDRG1 via a MYC-dependent mechanism.IMPORTANCE Hepatitis C virus (HCV) is an enveloped single-stranded RNA virus that targets hepatocytes in the liver. HCV is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and estimates suggest a global prevalence of 2.35%. Up to 80% of acutely infected individuals will develop chronic infection, and as many as 5% eventually progress to liver cancer. An understanding of the mechanisms behind virus-host interactions and viral carcinogenesis is still lacking. The significance of our research is that it identifies a previously unknown relationship between HCV and a known tumor-associated gene. Furthermore, our data point to a new role for this gene in the liver and in lipid metabolism. Thus, HCV infection serves as a great biological model to advance our knowledge of liver functions and the development of liver cancer.
Collapse
|
10
|
Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, Chow PK, Kuznetsov VA. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol 2017; 12:89-113. [PMID: 29117471 PMCID: PMC5748488 DOI: 10.1002/1878-0261.12153] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro‐oncogenic pathways in primary tumors (PT) and adjacent non‐malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome‐wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24‐ribosomal gene‐based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10−6) and cross‐cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross‐validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c‐MYC in the pro‐oncogenic pattern of ribosomal biogenesis co‐regulation in PT and AT. Microarray, quantitative RT‐PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co‐transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor‐like metabolic redirection/assimilation in non‐malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for stratifying HCC patient risks. The adjacent non‐malignant liver tissue alone, or in combination with HCC tissue biopsy, could be an important target for developing predictive and monitoring strategies, as well as evidence‐based therapeutic interventions, that aim to reduce the risk of post‐surgery relapse in HCC patients.
Collapse
Affiliation(s)
| | | | | | - Malay Singh
- Bioinformatics InstituteSingapore
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore
| | - Hwee Kuan Lee
- Bioinformatics InstituteSingapore
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore
| | - Kiat Hon Lim
- Division of Surgical OncologyNational Cancer CentreSingaporeSingapore
| | - Pierce Kah‐Hoe Chow
- Division of Surgical OncologyNational Cancer CentreSingaporeSingapore
- Office of Clinical SciencesDuke‐NUS Graduate Medical SchoolSingaporeSingapore
- Department of HPB and Transplantation SurgerySingapore General HospitalSingapore
| | | |
Collapse
|
11
|
Yao D, Dong Q, Tian Y, Dai C, Wu S. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation. Mol Cell Biochem 2017; 444:93-102. [PMID: 29188532 DOI: 10.1007/s11010-017-3234-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36, San Hao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
12
|
Dhanasekaran R, Gabay-Ryan M, Baylot V, Lai I, Mosley A, Huang X, Zabludoff S, Li J, Kaimal V, Karmali P, Felsher DW. Anti-miR-17 therapy delays tumorigenesis in MYC-driven hepatocellular carcinoma (HCC). Oncotarget 2017; 9:5517-5528. [PMID: 29464015 PMCID: PMC5814155 DOI: 10.18632/oncotarget.22342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options. Genomic amplification and/or overexpression of the MYC oncogene is a common molecular event in HCC, thus making it an attractive target for drug therapy. Unfortunately, currently there are no direct drug therapies against MYC. As an alternative strategy, microRNAs regulated by MYC may be downstream targets for therapeutic blockade. MiR-17 family is a microRNA family transcriptionally regulated by MYC and it is commonly overexpressed in human HCCs. In this study, we performed systemic delivery of a novel lipid nanoparticle (LNP) encapsulating an anti-miR-17 oligonucleotide in a conditional transgenic mouse model of MYC driven HCC. Treatment with anti-miR-17 in vivo, but not with a control anti-miRNA, resulted in significant de-repression of direct targets of miR-17, robust apoptosis, decreased proliferation and led to delayed tumorigenesis in MYC-driven HCCs. Global gene expression profiling revealed engagement of miR-17 target genes and inhibition of key transcriptional programs of MYC, including cell cycle progression and proliferation. Hence, anti-miR-17 is an effective therapy for MYC-driven HCC.
Collapse
Affiliation(s)
- Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meital Gabay-Ryan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginie Baylot
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian Lai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adriane Mosley
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Jian Li
- Regulus Therapeutics, San Diego, CA, USA
| | | | | | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Oncology, Department Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Attallah AM, El-Far M, Abdelrazek MA, Omran MM, Attallah AA, Elkhouly AA, Elkenawy HM, Farid K. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients. Br J Biomed Sci 2017; 74:170-175. [PMID: 28705056 DOI: 10.1080/09674845.2017.1334739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. METHODS One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. RESULTS Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). CONCLUSION c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.
Collapse
Affiliation(s)
- A M Attallah
- a Biotechnology Research Center , Industrial Zone, New Damietta , Egypt
| | - M El-Far
- b Chemistry Department, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - M A Abdelrazek
- a Biotechnology Research Center , Industrial Zone, New Damietta , Egypt
| | - M M Omran
- c Chemistry Department, Faculty of Science , Helwan University , Cairo , Egypt
| | - A A Attallah
- a Biotechnology Research Center , Industrial Zone, New Damietta , Egypt
| | - A A Elkhouly
- a Biotechnology Research Center , Industrial Zone, New Damietta , Egypt
| | - H M Elkenawy
- a Biotechnology Research Center , Industrial Zone, New Damietta , Egypt
| | - K Farid
- d Tropical Medicine Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|
14
|
Dang H, Takai A, Forgues M, Pomyen Y, Mou H, Xue W, Ray D, Ha KCH, Morris QD, Hughes TR, Wang XW. Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma. Cancer Cell 2017; 32:101-114.e8. [PMID: 28697339 PMCID: PMC5539779 DOI: 10.1016/j.ccell.2017.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.
Collapse
Affiliation(s)
- Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Atsushi Takai
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yotsowat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Quaid D Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Aglan HA, Ahmed HH, El-Toumy SA, Mahmoud NS. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol 2017; 39:1010428317699127. [PMID: 28618930 DOI: 10.1177/1010428317699127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.
Collapse
Affiliation(s)
- Hadeer A Aglan
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Sayed A El-Toumy
- 2 Chemistry of Tannins Department, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
The Differential Immunohistochemical Expression of p53, c-Jun, c-Myc, and p21 Between HCV-related Hepatocellular Carcinoma With and Without Cirrhosis. Appl Immunohistochem Mol Morphol 2016; 24:75-87. [PMID: 25710583 DOI: 10.1097/pai.0000000000000155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) constitutes 70.48% of all liver tumors among Egyptians with multifactorial etiology and complex pathogenesis. HCV infection is the most common risk factor of HCC in Egypt, which commonly develops on top of cirrhosis (HCC-C); however, 15% to 20% of HCC are reported to arise in noncirrhotic livers (HCC-NC). This study aimed to explore the differences in the immunohistochemical expression of p53, c-Jun, c-Myc, and p21 between HCC-C and HCC-NC to verify the underlying molecular pathways and to study their role in hepatocarcinogenesis. This study investigated 103 cases of HCC (86 cases of HCC-C and 17 cases HCC-NC including tumorous and nontumorous tissues) together with 10 cases of chronic hepatitis and 10 cases of pure cirrhosis as control groups. Zero, 100%, 100%, and 50% of chronic hepatitis cases were positive for p53, c-Jun, c-Myc, and p21, respectively. All cirrhotic cases were negative for p53 and c-Jun, whereas they were all positive for c-Myc and p21. A total of 41%, 11.65%, 86.4%, and 57.3% of HCC cases showed p53, c-Jun, c-Myc, and p21 expression, respectively. The only difference between HCC-C and HCC-NC was the H-score values of p21 expression, which were higher in HCC-C compared with HCC-NC (P=0.03). HCV-related HCC commonly develops on top of cirrhosis with a minority develops on top of noncirrhotic liver. Only p21 pathway appears to be upregulated in favor of HCC-C than HCC-NC. p53 is considered as a late-event molecular carcinogen, whereas p21 and c-Myc may serve as early-event molecular carcinogen in HCC. The oncogenic role of p21 may be related to its cytoplasmic localization and its promotion of c-Myc expression. Progressive increase in the intensity of c-Myc expression from chronic hepatitis to cirrhosis to HCC may refer to its role as a multistep regulator of hepatocarcinogenesis. The marked reduction of c-Jun in HCC may refer to its tumor suppressor activity.
Collapse
|
17
|
Ramesh V, Ganesan K. Integrative functional genomic delineation of the cascades of transcriptional changes involved in hepatocellular carcinoma progression. Int J Cancer 2016; 139:1586-97. [PMID: 27194100 DOI: 10.1002/ijc.30195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
Abstract
Development of targeted therapeutics is still at its early stage for hepatocellular carcinoma (HCC) due to the incomplete understanding of the confounding regulations at signaling pathway level. In this investigation, gene co-expression-based networking and integrative functional genomic modeling of HCC mRNA profiles as signaling processes were employed to understand the complex signaling cascades involved in HCC development toward understanding the avenues for targeted therapeutics. Multiple sets of genes and molecular biological processes involved during HCC development were identified from this integrative analysis: (i) Loss of liver cellular features due to the reduced HNF4A & PPAR signaling in the early stages of HCC, (ii) activated inflammatory and stress signals in the cirrhosis stages and (iii) highly activated cellular proliferation with the activated E2F-MYC oncogenic signaling with the gain of embryonic liver stem cell-like features in the advanced stage tumors. Upon connecting these gene-sets with the established drug sensitivity-related gene signatures, targeted therapeutic strategies for the heterogeneous HCC conditions have been identified. PPAR agonist class of drugs for early stage HCC conditions, anti-inflammatory drugs for cirrhosis and topoisomerase inhibitors for the advanced HCC conditions were inferred. Integrative functional genomic analysis of HCC transcriptome profiles at the context of signaling pathways has defined the key molecular processes involved in HCC development. Further, the study highlights the stage-specific and pathway focused targeted therapeutics for HCC. These findings deserve extensive preclinical explorations toward the establishment of targeted therapeutics.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Cancer Genetics Laboratory, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Kumaresan Ganesan
- Cancer Genetics Laboratory, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
18
|
Li Y, Zhu Y, Prochownik EV. MicroRNA-based screens for synthetic lethal interactions with c-Myc. RNA & DISEASE 2016; 3:e1330. [PMID: 27975083 PMCID: PMC5152767 DOI: 10.14800/rd.1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRs) are small, non-coding RNAs, which play crucial roles in the development and progression of human cancer. Given that miRs are stable, easy to synthetize and readily introduced into cells, they have been viewed as having potential therapeutic benefit in cancer. c-Myc (Myc) is one of the most commonly deregulated oncogenic transcription factors and has important roles in the pathogenesis of cancer, thus making it an important, albeit elusive therapeutic target. Here we review the miRs that have been identified as being both positive and negative targets for Myc and how these participate in the complex phenotypes that arise as a result of Myc-driven transformation. We also discussseveral recent reports of Myc-synthetic lethal interactions with miRs.These highlight the importance and complexity of miRs in Myc-mediated biological functions and the opportunities for Myc-driven human cancer therapies.
Collapse
Affiliation(s)
- Youjun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yahui Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC and The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| |
Collapse
|
19
|
Dauch D, Rudalska R, Cossa G, Nault JC, Kang TW, Wuestefeld T, Hohmeyer A, Imbeaud S, Yevsa T, Hoenicke L, Pantsar T, Bozko P, Malek NP, Longerich T, Laufer S, Poso A, Zucman-Rossi J, Eilers M, Zender L. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med 2016; 22:744-53. [PMID: 27213815 DOI: 10.1038/nm.4107] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
MYC oncoproteins are involved in the genesis and maintenance of the majority of human tumors but are considered undruggable. By using a direct in vivo shRNA screen, we show that liver cancer cells that have mutations in the gene encoding the tumor suppressor protein p53 (Trp53 in mice and TP53 in humans) and that are driven by the oncoprotein NRAS become addicted to MYC stabilization via a mechanism mediated by aurora kinase A (AURKA). This MYC stabilization enables the tumor cells to overcome a latent G2/M cell cycle arrest that is mediated by AURKA and the tumor suppressor protein p19(ARF). MYC directly binds to AURKA, and inhibition of this protein-protein interaction by conformation-changing AURKA inhibitors results in subsequent MYC degradation and cell death. These conformation-changing AURKA inhibitors, with one of them currently being tested in early clinical trials, suppressed tumor growth and prolonged survival in mice bearing Trp53-deficient, NRAS-driven MYC-expressing hepatocellular carcinomas (HCCs). TP53-mutated human HCCs revealed increased AURKA expression and a positive correlation between AURKA and MYC expression. In xenograft models, mice bearing TP53-mutated or TP53-deleted human HCCs were hypersensitive to treatment with conformation-changing AURKA inhibitors, thus suggesting a therapeutic strategy for this subgroup of human HCCs.
Collapse
Affiliation(s)
- Daniel Dauch
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Ramona Rudalska
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Tae-Won Kang
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany.,Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Torsten Wuestefeld
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Anja Hohmeyer
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Sandrine Imbeaud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Tetyana Yevsa
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Lisa Hoenicke
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Przemyslaw Bozko
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tuebingen, Tuebingen, Germany
| | - Antti Poso
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany.,Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Han H, Li W, Shen H, Zhang J, Zhu Y, Li Y. microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. J Mol Cell Biol 2016; 8:400-410. [PMID: 27001970 DOI: 10.1093/jmcb/mjw010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/03/2015] [Accepted: 12/25/2015] [Indexed: 01/09/2023] Open
Abstract
Deregulation of microRNAs (miRNAs) and c-Myc (Myc) contributes to hepatocellular carcinoma (HCC) progression, but how miRNAs and Myc regulate each other in hepatocarcinogenesis is still poorly understood. Using a functional screen, we identified miR-129-5p as a miRNA that inhibits HCC cell growth. miR-129-5p targets the mitochondrial matrix protein pyruvate dehydrogenase kinase 4 (PDK4), which leads to decreased phosphorylation of the E1α subunit of pyruvate dehyrogenase (PDH) complex, inhibition of glycolysis, retarded tumor growth, and impaired lung colonization. Enforced expression of PDK4 refractory to inhibition by miR-129-5p rescued all of these phenotypes. Targeting PDK4 by shRNA recapitulated the effects caused by miR-129-5p. miR-129-5p is transcriptionally repressed by a complex comprised of Myc, histone deacetylase 3 (HDAC3), and enhancer of zeste 2 polycomb repressive complex 2 (EZH2). Levels of miR-129-5p negatively correlated with clinical stages in human HCC. Restoring miR-129-5p expression suppressed the diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. Thus, we concluded that miR-129-5p, which is a negative target of Myc, blocks glycolysis to retard hepatocarcinogenesis via targeting PDK4. The critical link between miR-129-5p and PDK4 in the progression of HCC suggests potential points of therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Han Han
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Wenjuan Li
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Hongxing Shen
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Yahui Zhu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Interactions between Myc and Mediators of Inflammation in Chronic Liver Diseases. Mediators Inflamm 2015; 2015:276850. [PMID: 26508814 PMCID: PMC4609837 DOI: 10.1155/2015/276850] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Most chronic liver diseases (CLDs) are characterized by inflammatory processes with aberrant expressions of various pro- and anti-inflammatory mediators in the liver. These mediators are the driving force of many inflammatory liver disorders, which often result in fibrosis, cirrhosis, and liver tumorigenesis. c-Myc is involved in many cellular events such as cell growth, proliferation, and differentiation. c-Myc upregulates IL-8, IL-10, TNF-α, and TGF-β, while IL-1, IL-2, IL-4, TNF-α, and TGF-β promote c-Myc expression. Their interactions play a central role in fibrosis, cirrhosis, and liver cancer. Molecular interference of their interactions offers possible therapeutic potential for CLDs. In this review, current knowledge of the molecular interactions between c-Myc and various well known inflammatory mediators is discussed.
Collapse
|
22
|
Srivastava J, Siddiq A, Gredler R, Shen XN, Rajasekaran D, Robertson CL, Subler MA, Windle JJ, Dumur CI, Mukhopadhyay ND, Garcia D, Lai Z, Chen Y, Balaji U, Fisher PB, Sarkar D. Astrocyte elevated gene-1 and c-Myc cooperate to promote hepatocarcinogenesis in mice. Hepatology 2015; 61:915-29. [PMID: 25065684 PMCID: PMC4309751 DOI: 10.1002/hep.27339] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Astrocyte elevated gene-1 (AEG-1) and c-Myc are overexpressed in human hepatocellular carcinoma (HCC) functioning as oncogenes. AEG-1 is transcriptionally regulated by c-Myc, and AEG-1 itself induces c-Myc by activating the Wnt/β-catenin-signaling pathway. We now document the cooperation of AEG-1 and c-Myc in promoting hepatocarcinogenesis by analyzing hepatocyte-specific transgenic mice expressing either AEG-1 (albumin [Alb]/AEG-1), c-Myc (Alb/c-Myc), or both (Alb/AEG-1/c-Myc). Wild-type and Alb/AEG-1 mice did not develop spontaneous HCC. Alb/c-Myc mice developed spontaneous HCC without distant metastasis, whereas Alb/AEG-1/c-Myc mice developed highly aggressive HCC with frank metastasis to the lungs. Induction of carcinogenesis by N-nitrosodiethylamine significantly accelerated the kinetics of tumor formation in all groups. However, in Alb/AEG-1/c-Myc, the effect was markedly pronounced with lung metastasis. In vitro analysis showed that Alb/AEG-1/c-Myc hepatocytes acquired increased proliferation and transformative potential with sustained activation of prosurvival and epithelial-mesenchymal transition-signaling pathways. RNA-sequencing analysis identified a unique gene signature in livers of Alb/AEG-1/c-Myc mice that was not observed when either AEG-1 or c-Myc was overexpressed. Specifically, Alb/AEG-1/c-Myc mice overexpressed maternally imprinted noncoding RNAs (ncRNAs), such as Rian, Meg-3, and Mirg, which are implicated in hepatocarcinogenesis. Knocking down these ncRNAs significantly inhibited proliferation and invasion by Alb/AEG-1/c-Myc hepatocytes. CONCLUSION Our studies reveal a novel cooperative oncogenic effect of AEG-1 and c-Myc that might explain the mechanism of aggressive HCC. Alb/AEG-1/c-Myc mice provide a useful model to understand the molecular mechanism of cooperation between these two oncogenes and other molecules involved in hepatocarcinogenesis. This model might also be of use for evaluating novel therapeutic strategies targeting HCC.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chadia L. Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nitai D. Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Yidong Chen
- Computational Biology and Bioinformatics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Uthra Balaji
- Department of Pathology, Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
,Corresponding author: 1220 East Broad St, PO Box 980035 Richmond, VA 23298 Tel: 804-827-2339 Fax: 804-628-1176
| |
Collapse
|
23
|
Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Mohd Abdul Rashid M, Ho D, Chow EKH. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS NANO 2014; 8:12151-66. [PMID: 25437772 PMCID: PMC4334265 DOI: 10.1021/nn503491e] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Xinyi Casuarine Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Weixin Hou
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Lissa Nurrul Abdullah
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Masturah Mohd Abdul Rashid
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Dean Ho
- Division of Oral Biology and Medicine, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, California NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edward Kai-Hua Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Address correspondence to
| |
Collapse
|
24
|
Lu L, Han H, Tian Y, Li W, Zhang J, Feng M, Li Y. Aurora kinase A mediates c-Myc's oncogenic effects in hepatocellular carcinoma. Mol Carcinog 2014; 54:1467-79. [PMID: 25284017 DOI: 10.1002/mc.22223] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022]
Abstract
Dysregulation of c-Myc (Myc) has been shown to contribute to progression of hepatocellular carcinoma, however, the detailed molecular mechanism remains poorly understood. Here, we report that Myc binds to the Aurora kinase A (Aurka) promoter and induces expression of Aurka in HCC cells. Increased expression of Aurka correlates with that of Myc in HCC. Nuclear accumulation of Aurka was confirmed by subcellular protein fractionation and immunoblot experiments in HCC cells. Myc inhibition decreases the nuclear accumulation of Aurka in HCC cells. Also Aurka accumulating in the nucleus up-regulates Myc transcription by binding the Myc promoter containing the highly conserved CCCTCCCCA in the NHE region of the CpG islands. Inhibition of Myc or Aurka diminishes the malignant phenotypes of HCC cells by down-regulating some common target genes. Also Aurka and Myc mediates the effects of each other, at least partially, on proliferation, anchorage-independent soft agar growth, and ATP production. Blocking Aurka in an orthotopic model significantly impairs tumor growth in mice. These results identify a Myc-Aurka feedback loop in which Myc and Aurka regulate expression of each other at the transcriptional level and both play an important role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Longfeng Lu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Han Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenjuan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan, China
| | - Maohui Feng
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Youjun Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Xia S, Ma J, Bai X, Zhang H, Cheng S, Zhang M, Zhang L, Du M, Wang Y, Li H, Rong R, Shi F, Yang Q, Leng J. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway. Oncol Rep 2014; 32:1521-30. [PMID: 25109834 DOI: 10.3892/or.2014.3393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major health problem worldwide. Prostaglandin E2 (PGE2), the predominant product of cyclooxygenase-2, has been implicated in hepatocarcinogenesis. However, the underlying molecular mechanisms remain to be further elucidated. c-myc, a cellular proto-oncogene, is activated or overexpressed in many types of human cancer, including HCC. The present study was designed to investigate the internal relationship and molecular mechanisms between PGE2 and c-Myc in HCC, and to define its role in HCC cell growth and invasion. Our results showed that PGE2 significantly upregulated c-Myc expression at both the mRNA and protein levels, and knockdown of c-Myc blocked PGE2-induced HCC cell growth and invasive ability in human HCC Huh-7 cells. The effect of PGE2 on c-Myc expression was mainly through the EP4 receptor, and EP4 receptor-mediated c-Myc protein upregulation largely depended on de novo biosynthesis of c-Myc mRNA and its protein. EP4 receptor signaling activated GS/AC and increased the intracellular cAMP level in Huh-7 cells. The adenylate cyclase (AC) activator forskolin mimicked the effects of the EP4 receptor agonist on c-Myc expression, while the AC inhibitor SQ22536 reduced EP4 receptor-mediated c-Myc upregulation. These data confirm the involvement of the GS/AC/cAMP pathway in EP4 receptor-mediated c-Myc upregulation. Moreover, the phosphorylation levels of CREB protein were markedly elevated by EP4 receptor signaling, and by using specific inhibitor and siRNA interference, we demonstrated that PKA/CREB was also involved in the EP4 receptor-mediated c-Myc upregulation. In summary, the present study revealed that PGE2 significantly upregulates c-Myc expression at both mRNA and protein levels through the EP4R/GS/AC/cAMP/PKA/CREB signaling pathway, thus promoting cell growth and invasion in HCC cells. Targeting of the PGE2/EP4R/c-Myc pathway may be a new therapeutic strategy to prevent and cure human HCC.
Collapse
Affiliation(s)
- Shukai Xia
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanyu Cheng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingzhan Du
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai Li
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rong Rong
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Shi
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Shilo A, Ben Hur V, Denichenko P, Stein I, Pikarsky E, Rauch J, Kolch W, Zender L, Karni R. Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development. RNA (NEW YORK, N.Y.) 2014; 20:505-15. [PMID: 24572810 PMCID: PMC3964912 DOI: 10.1261/rna.042259.113] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In recent years, it has become clear that splicing factors play a direct role in cancer development. We showed previously that splicing factors SRSF1, SRSF6, and hnRNP A2/B1 are up-regulated in several cancers and can act as oncogenes when up-regulated. Here we examined the role of splicing factors hnRNP A1/A1b and hnRNP A2/B1 in hepatocellular carcinoma (HCC). We show that the splicing factors hnRNP A1 and hnRNP A2 are up-regulated in HCC tumors derived from inflammation-induced liver cancer mouse model. Overexpression of hnRNP A1 or hnRNP A2, but not the splicing isoform hnRNP B1, induced tumor formation of immortalized liver progenitor cells, while knockdown of these proteins inhibited anchorage-independent growth and tumor growth of human liver cancer cell lines. In addition, we found that cells overexpressing hnRNP A2 showed constitutive activation of the Ras-MAPK-ERK pathway. In contrast, knockdown of hnRNP A2 inhibited the Ras-MAPK-ERK pathway and prevented ERK1/2 activation by EGF. Moreover, we found that hnRNP A2 regulates the splicing of A-Raf, reducing the production of a short dominant-negative isoform of A-Raf and elevating the full-length A-Raf transcript. Taken together, our data suggest that hnRNP A2 up-regulation in HCC induces an alternative splicing switch that down-regulates a dominant-negative isoform of A-Raf, leading to activation of the Raf-MEK-ERK pathway and cellular transformation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Alternative Splicing
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Heterogeneous Nuclear Ribonucleoprotein A1
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Humans
- Inflammation/complications
- Inflammation/genetics
- Inflammation/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Proto-Oncogene Proteins A-raf/genetics
- RNA, Small Interfering/genetics
- Tumor Suppressor Protein p53/physiology
- Xenograft Model Antitumor Assays
- ras Proteins/genetics
- ras Proteins/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Asaf Shilo
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Vered Ben Hur
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Polina Denichenko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumors, Department of Internal Medicine I, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
27
|
The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers (Basel) 2014; 6:79-111. [PMID: 24419005 PMCID: PMC3980619 DOI: 10.3390/cancers6010079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 12/14/2022] Open
Abstract
The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.
Collapse
|
28
|
Pedica F, Ruzzenente A, Bagante F, Capelli P, Cataldo I, Pedron S, Iacono C, Chilosi M, Scarpa A, Brunelli M, Tomezzoli A, Martignoni G, Guglielmi A. A re-emerging marker for prognosis in hepatocellular carcinoma: the add-value of fishing c-myc gene for early relapse. PLoS One 2013; 8:e68203. [PMID: 23874541 PMCID: PMC3707955 DOI: 10.1371/journal.pone.0068203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/28/2013] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma is one leading cause of cancer-related death and surgical resection is still one of the major curative therapies. Recently, there has been a major effort to find mechanisms involved in carcinogenesis and early relapse. c-myc gene abnormality is found in hepatocarcinogenesis. Our aim was to analyze the role of c-myc as prognostic factor in terms of overall survival and disease-free survival and to investigate if c-myc may be an important target for therapy. We studied sixty-five hepatocellular carcinomas submitted to surgical resection with curative intent. Size, macro-microvascular invasion, necrosis, number of nodules, grading and serum alfa-fetoprotein level were registered for all cases. We evaluated the c-myc aberrations by using break-apart FISH probes. Probes specific for the centromeric part of chromosome 8 and for the locus specific c-myc gene (8q24) were used to assess disomy, gains of chromosomes (polysomy due to polyploidy) and amplification. c-myc gene amplification was scored as 8q24/CEP8 > 2. Statistical analysis for disease-free survival and overall survival were performed. At molecular level, c-myc was amplified in 19% of hepatocellular carcinoma, whereas showed gains in 55% and set wild in 26% of cases. The 1- and 3-year disease-free survival and overall survival for disomic, polysomic and amplified groups were significantly different (p=0.020 and p=.018 respectively). Multivariate analysis verified that the AFP and c-myc status (amplified vs. not amplified) were significant prognostic factors for overall patients survival. c-myc gene amplification is significantly correlated with disease-free survival and overall survival in patients with hepatocellular carcinoma after surgical resection and this model identifies patients with risk of early relapse (≤12 months). We suggest that c-myc assessment may be introduced in the clinical practice for improving prognostication (high and low risk of relapse) routinely and may have be proposed as biomarker of efficacy to anti-c-myc targeted drugs in clinical trials.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/physiology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Early Detection of Cancer/methods
- Female
- Genes, myc/physiology
- Humans
- In Situ Hybridization, Fluorescence
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Predictive Value of Tests
- Prognosis
- Recurrence
Collapse
Affiliation(s)
- Federica Pedica
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Andrea Ruzzenente
- Department of Surgery, Division of General Surgery "A", GB Rossi Hospital, University of Verona Medical School, University of Verona, Verona, Italy
| | - Fabio Bagante
- Department of Surgery, Division of General Surgery "A", GB Rossi Hospital, University of Verona Medical School, University of Verona, Verona, Italy
| | - Paola Capelli
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Ivana Cataldo
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Serena Pedron
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Calogero Iacono
- Department of Surgery, Division of General Surgery "A", GB Rossi Hospital, University of Verona Medical School, University of Verona, Verona, Italy
| | - Marco Chilosi
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Anna Tomezzoli
- Azienda Ospedaliera Universitaria Integrata di Verona, dO DAI Pathology and Diagnostic, Verona, Italy
| | - Guido Martignoni
- Azienda Ospedaliera Universitaria Integrata di Verona, FISH Molecular Laboratory, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Alfredo Guglielmi
- Department of Surgery, Division of General Surgery "A", GB Rossi Hospital, University of Verona Medical School, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Personeni N, Rimassa L, Pressiani T, Destro A, Ligorio C, Tronconi MC, Bozzarelli S, Carnaghi C, Di Tommaso L, Giordano L, Roncalli M, Santoro A. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2013; 139:1179-87. [PMID: 23568548 DOI: 10.1007/s00432-013-1429-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE Preclinical studies show that sorafenib, a multitarget kinase inhibitor, displays anti-proliferative, anti-angiogenic, and pro-apoptotic properties in hepatocellular carcinoma (HCC). However, the determinants of sorafenib sensitivity in vivo remain largely unknown. METHODS We assessed the expression of Mcl-1, activated/phosphorylated extracellular signal-regulated kinase (pERK) 1/2, and activated/phosphorylated AKT (pAKT) in pretreatment tumor specimens from 44 patients with advanced HCC who received sorafenib. Furthermore, we assessed MYC and MET gene copy numbers (GCN) by fluorescence in situ hybridization. RESULTS Poorer overall survival (OS) times were correlated with pERK expression [hazard ratio (HR) 1.013; 95 % CI 1.003-1.035] and Mcl-1 expression (HR 1.016; 95 % CI 1.002-1.030) in pretreatment tumor samples. Expression levels of pERK and Mcl-1, however, were not correlated with time to tumor progression (TTP). Increased pERK expression was positively associated with higher Cancer of Liver Italian Program scores (P = 0.012) and was prognostic in patients with scores 2-6 but not in those with scores 0-1. pERK expression was significantly less frequent in specimens sourced from previous surgical procedures compared to biopsy samples (9.6 vs. 92.3 %, respectively; P < 0.0001). Analysis of pAKT expression, MET and MYC GCN, did not indicate any prognostic nor predictive values for these biomarkers in terms of survival. CONCLUSIONS Expression levels of Mcl-1 and pERK are associated with reduced OS in HCC patients treated with sorafenib and might be useful markers for risk stratification. However, in contrast to previous findings, pERK expression levels, as well as other biomarkers tested, did not affect TTP.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Disease-Free Survival
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Dosage
- Genes, myc
- Humans
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Phenylurea Compounds/therapeutic use
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-met/genetics
- Retrospective Studies
- Sorafenib
- Treatment Outcome
Collapse
Affiliation(s)
- Nicola Personeni
- Department of Oncology-Hematology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Mi, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Han H, Sun D, Li W, Shen H, Zhu Y, Li C, Chen Y, Lu L, Li W, Zhang J, Tian Y, Li Y. A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 2013; 57:2378-2389. [PMID: 23389829 DOI: 10.1002/hep.26302] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/12/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED c-Myc (Myc) plays an important role in normal liver development and tumorigenesis. We show here that Myc is pathologically activated in and essential for promoting human hepatocellular carcinoma (HCC). Myc induces HCC through a novel, microRNA (miRNA)-mediated feedback loop comprised of miR-148a-5p, miR-363-3p, and ubiquitin-specific protease 28 (USP28). Myc directly binds to conserved regions in the promoters of the two miRNAs and represses their expression. miR-148a-5p directly targets and inhibits Myc, whereas miR-363-3p destabilizes Myc by directly targeting and inhibiting USP28. Inhibition of miR-148a-5p or miR-363-3p induces hepatocellular tumorigenesis by promoting G1 to S phase progression, whereas activation of them has the opposite effects. The Myc-miRNA feedback loop is dysregulated in human HCC. CONCLUSION These results define miR-148a-5p and miR-363-3p as negative regulators of Myc, thus revealing their heretofore unappreciated roles in hepatocarcinogenesis. (HEPATOLOGY 2013;57:2378-2389).
Collapse
Affiliation(s)
- Han Han
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jung YJ, Kim JW, Park SJ, Min BY, Jang ES, Kim NY, Jeong SH, Shin CM, Lee SH, Park YS, Hwang JH, Kim N, Lee DH. c-Myc-mediated overexpression of miR-17-92 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol 2013; 85:969-78. [PMID: 23532756 DOI: 10.1002/jmv.23534] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression in various physiological and pathological processes, including viral infections. The miR-17-92 cluster encodes six miRNAs (miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a-1) which are transactivated by c-Myc. Because hepatitis B virus transactivates c-Myc, the interaction between the miR-17-92 cluster and HBV replication was examined in this study. Inducing HBV replication in a human hepatoma cell line increased miR-17-5p, miR-20a and miR-92a-1 expression. HBV-induced overexpression of miR-17-92 was reversed by c-Myc knockdown. Antisense peptide nucleic acids against miR-20a and miR-92a-1 augmented HBV replication. A computational analysis yielded potential binding sites for miR-20a and miR-92a-1 in the HBV genome. The direct interaction between these two miRNAs and target regions in HBV transcripts was confirmed by luciferase reporter analysis. These results demonstrated negative feedback suppression of HBV replication by the miR-17-92 polycistron.
Collapse
Affiliation(s)
- Yong Jin Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li L, Jin R, Zhang X, Lv F, Liu L, Liu D, Liu K, Li N, Chen D. Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology 2012; 56:1380-90. [PMID: 22706665 DOI: 10.1002/hep.25891] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Glypican-3 (GPC3) is a heparan sulfate proteoglycan that has an important role in cell growth and differentiation, and its function in tumorigenesis is tissue-dependent. In hepatocellular carcinoma (HCC), the overexpression of GPC3 has been demonstrated to be a reliable diagnostic indicator. However, the mechanisms that regulate the expression and function of GPC3 remain unclear. The oncoprotein c-Myc is a transcription factor that plays a significant role in more than 50% of human tumors. We report here that GPC3 is a transcriptional target of c-Myc and that the expression of c-Myc is also regulated by GPC3, thus forming a positive feedback signaling loop. We found that the overexpression of c-Myc could induce GPC3 promoter-dependent luciferase activity in luciferase reporter experiments. Furthermore, mutational analysis identified c-Myc-binding sites within the GPC3 promoter. The exogenous overexpression of c-Myc increased the endogenous messenger RNA (mRNA) and protein levels of GPC3. Chromatin immunoprecipitation experiments revealed the binding of c-Myc to the endogenous GPC3 promoter, indicating that c-Myc can directly transcriptionally activate GPC3. Interestingly, GPC3 can also elevate c-Myc expression. Overexpression of GPC3 increased c-Myc protein levels, whereas the knockdown of GPC3 reduced c-Myc expression levels. Lastly, the elevated levels of c-Myc correlate with the overexpression of GPC3 in human HCC samples. CONCLUSION These data provide new mechanistic insight into the roles of GPC3 and of c-Myc in the development of HCC.
Collapse
Affiliation(s)
- Li Li
- Beijing Institute of Liver Disease, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Au SLK, Wong CCL, Lee JMF, Fan DNY, Tsang FH, Ng IOL, Wong CM. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 2012; 56:622-31. [PMID: 22370893 DOI: 10.1002/hep.25679] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/11/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. CONCLUSION Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis.
Collapse
Affiliation(s)
- Sandy Leung-Kuen Au
- State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
34
|
Copy number aberrations in combined hepatocellular carcinoma and cholangiocarcinoma. Exp Mol Pathol 2012; 92:281-6. [PMID: 22366251 DOI: 10.1016/j.yexmp.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/04/2011] [Accepted: 01/31/2012] [Indexed: 02/08/2023]
Abstract
Combined hepatocellular carcinoma and cholangiocarcinoma (CHC) is a rare liver cancer which shares unequivocal features of both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). A greater awareness of genetic relationship between HCC and CC components is limited. To help characterize this rare liver neoplasm, we described clinicopathologic features and evaluated copy number (CN) changes in this study. A total of 13 cases of CHC were collected. Four paired HCC and CC components from four cases were first subject to genome-wide analysis. Nine target genes were subsequently selected for further analysis using quantitative polymerase chain reaction. The paired HCC and CC components in each case had a concordant trend of CN gain or loss in these nine genes. However, the magnitude of concordant CN gain or loss was different. There were significant differences of CN copies between HCC and CC in each case. We demonstrate genetic divergence between HCC and CC components in CHC.
Collapse
|
35
|
Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/β-catenin signalling in liver cancer. World J Clin Oncol 2011; 2:311-25. [PMID: 21876852 PMCID: PMC3163259 DOI: 10.5306/wjco.v2.i8.311] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the fifth and seventh most common cause of cancer in men and women, respectively. Wnt/β-catenin signalling has emerged as a critical player in both the development of normal liver as well as an oncogenic driver in hepatocellular carcinoma (HCC). Based on the current understanding, this article summarizes the possible mechanisms for the aberrant activation of this pathway with specific focus on HCC. Furthermore, we will discuss the role of dickkopfs (DKKs) in regulating Wnt/β-catenin signalling, which is poorly understood and understudied. DKKs are a family of secreted proteins that comprise at least four members, namely DKK1-DKK4, which act as inhibitors of Wnt/β-catenin signalling. Nevertheless, not all members antagonize Wnt/β-catenin signalling. Their functional significance in hepatocarcinogenesis remains to be further characterized for which these studies should provide new insights into the regulatory role of DKKs in Wnt/β-catenin signalling in hepatic carcinogenesis. Because of the important oncogenic roles, there are an increasing number of therapeutic molecules targeting β-catenin and the Wnt/β-catenin pathway for potential therapy of HCC.
Collapse
Affiliation(s)
- Sarwat Fatima
- Sarwat Fatima, Nikki P Lee, Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
36
|
Chung KY, Cheng IKC, Ching AKK, Chu JH, Lai PBS, Wong N. Block of proliferation 1 (BOP1) plays an oncogenic role in hepatocellular carcinoma by promoting epithelial-to-mesenchymal transition. Hepatology 2011; 54:307-18. [PMID: 21520196 DOI: 10.1002/hep.24372] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Genomic amplification of regional chromosome 8q24 is a common event in human cancers. In hepatocellular carcinoma (HCC), a highly aggressive malignancy that is rapidly fatal, recurrent 8q24 gains can be detected in >50% of cases. In this study, attempts to resolve the 8q24 region by way of array comparative genomic hybridization for affected genes in HCC revealed distinctive gains of block of proliferation 1 (BOP1). Gene expression evaluation in an independent cohort of primary HCC (n = 65) revealed frequent BOP1 up-regulation in tumors compared with adjacent nontumoral liver (84.6%; P < 0.0001). Significant associations could also be drawn between increased expressions of BOP1 and advance HCC staging (P = 0.004), microvascular invasion (P = 0.006), and shorter disease-free survival of patients (P = 0.02). Examination of expression of C-MYC, a well-known oncogene located in proximity to BOP1, in the same series of primary HCC cases did not suggest strong clinicopathologic associations. Functional investigations by small interfering RNA-mediated suppression of BOP1 in HCC cell lines indicated significant inhibition on cell invasion (P < 0.005) and migration (P < 0.05). Overexpression of BOP1 in the immortalized hepatocyte cell line L02 showed increase cellular invasiveness and cell migratory rate (P < 0.0001). In both gene knockdown and ectopic expression assays, BOP1 did not exert an effect on cell viability and proliferation. Evident regression of the epithelial-mesenchymal transition (EMT) phenotype was readily identified in BOP1 knockdown cells, whereas up-regulation of epithelial markers (E-cadherin, cytokeratin 18, and γ-catenin) and down-regulation of mesenchymal markers (fibronectin and vimentin) were seen. A corresponding augmentation of EMT was indicated from the ectopic expression of BOP1 in L02. In addition, BOP1 could stimulate actin stress fiber assembly and RhoA activation. CONCLUSION Our findings underline an important role for BOP1 in HCC invasiveness and metastasis potentials through inducing EMT and promoting actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Kit-Ying Chung
- Department of Anatomical and Cellular Pathology, Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
37
|
Ritorto MS, Borlak J. Combined serum and tissue proteomic study applied to a c-Myc transgenic mouse model of hepatocellular carcinoma identified novel disease regulated proteins suitable for diagnosis and therapeutic intervention strategies. J Proteome Res 2011; 10:3012-30. [PMID: 21644509 DOI: 10.1021/pr101207t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death in the U.S. Notably, most HCCs display c-Myc hyperactivity but this transcription factor participates in the regulation of as many as 15-20% of genes of the human genome. To better understand its oncogenic activity, a mass spectrometry-based proteomic approach was employed to search for disease-regulated proteins in liver tissue and serum of c-Myc transgenic mice that specifically developed HCC. Overall, a total of 90 differentially expressed proteins were identified with retinol binding protein 4, transthyretin, major urinary protein family, apolipoprotein E, and glutathione peroxidase being regulated in common in tissue and serum of HCC mice. Importantly, this study identified n = 22 novel tumor tissue-regulated proteins to function in cell cycle and proliferation, nucleotide and ribosomal biogenesis, oxidative stress, and GSH metabolism, while bioinformatics revealed the coding sequences of regulated proteins to enharbour c-Myc binding sites. Translation of the findings to human disease was achieved by Western immunoblotting of serum proteins and by immunohistochemistry of human HCC. Taken collectively, our study helps to define a c-Myc proteome suitable for diagnostic and possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Maria Stella Ritorto
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer ITEM, Hanover, Germany
| | | |
Collapse
|
38
|
Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci 2011. [PMID: 21711594 DOI: 10.1186/2045-3701-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major forms of primary liver cancers (PLC), accounting for approximately 90% and 5% respectively. The incidence of each is increasing rapidly in the western world, however our knowledge of the underlying mechanisms remains limited and the outcome, dismal. The etiologies of each vary geographically; nevertheless, chronic inflammation has been identified in more than 80% of the cases and appears to be a key mediator in altering the liver microenvironment, increasing the risk of carcinogenesis. However, since not all HCC and especially ICC cases have a recognized risk factor, there are currently two proposed models for liver carcinogenesis. The clonal evolution model demonstrates a multi-step process of tumor development from precancerous lesions to metastatic carcinoma, arising from the accumulation of genetic and epigenetic changes in a cell in the setting of chronic inflammation. While the majority of cases do occur as a consequence of chronic inflammation, most individuals with chronic infection do not develop PLC, suggesting the involvement of individual genetic and environmental factors. Further, since hepatocytes and cholangiocytes both have regenerative potential and arise from the same bi-potential progenitor cell, the more recently proposed cancer stem cell model is gaining its due attention. The integration of these models and the constant improvement in molecular profiling platforms is enabling a broader understanding of the mechanisms underlying these two devastating malignancies, perhaps moving us closer to a new world of molecularly-informed personalized medicine.
Collapse
Affiliation(s)
- Mia Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
39
|
Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci 2011; 1:5. [PMID: 21711594 PMCID: PMC3116244 DOI: 10.1186/2045-3701-1-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major forms of primary liver cancers (PLC), accounting for approximately 90% and 5% respectively. The incidence of each is increasing rapidly in the western world, however our knowledge of the underlying mechanisms remains limited and the outcome, dismal. The etiologies of each vary geographically; nevertheless, chronic inflammation has been identified in more than 80% of the cases and appears to be a key mediator in altering the liver microenvironment, increasing the risk of carcinogenesis. However, since not all HCC and especially ICC cases have a recognized risk factor, there are currently two proposed models for liver carcinogenesis. The clonal evolution model demonstrates a multi-step process of tumor development from precancerous lesions to metastatic carcinoma, arising from the accumulation of genetic and epigenetic changes in a cell in the setting of chronic inflammation. While the majority of cases do occur as a consequence of chronic inflammation, most individuals with chronic infection do not develop PLC, suggesting the involvement of individual genetic and environmental factors. Further, since hepatocytes and cholangiocytes both have regenerative potential and arise from the same bi-potential progenitor cell, the more recently proposed cancer stem cell model is gaining its due attention. The integration of these models and the constant improvement in molecular profiling platforms is enabling a broader understanding of the mechanisms underlying these two devastating malignancies, perhaps moving us closer to a new world of molecularly-informed personalized medicine.
Collapse
Affiliation(s)
- Mia Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
40
|
Lin CP, Liu CR, Lee CN, Chan TS, Liu HE. Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J Hepatol 2010; 2:16-20. [PMID: 21160952 PMCID: PMC2999263 DOI: 10.4254/wjh.v2.i1.16] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 01/08/2010] [Accepted: 01/15/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatocelluar carcinoma (HCC) is the most lethal cancer in the world. Most HCC over-express c-Myc, which plays a critical role in regulating cellular growth, differentiation and apoptosis in both normal and neoplastic cells. c-Myc is among the most frequently overexpressed genes in human cancers. Overexpression of c-Myc in hepatic cells leads to development of hepatocellular carcinoma. Here, we review the current progress in understanding physiologic function and regulation of c-Myc as well as its role in hepatic carcinogenesis and discuss the association of c-Myc activation in chronic hepatitis B infection and the upregulation of HIF-1/VEGF. We also explore the possibility of treating HCC by inhibiting c-Myc and examine the pros and cons of such an approach. Although this strategy is currently not available in clinics, with recent advances in better drug design, pharmacokinetics and pharmacogenetics, inhibition of c-Myc might become a novel therapy for HCC in the future.
Collapse
Affiliation(s)
- Che-Pin Lin
- Che-Pin Lin, Chien-Ru Liu, Department of Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Dancygier H. Malignant Tumors. CLINICAL HEPATOLOGY 2010:1305-1350. [DOI: 10.1007/978-3-642-04519-6_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Liu X, Xiong F, Wei X, Yang H, Zhou R. LAPTM4B-35, a novel tetratransmembrane protein and its PPRP motif play critical roles in proliferation and metastatic potential of hepatocellular carcinoma cells. Cancer Sci 2009; 100:2335-40. [PMID: 19843073 PMCID: PMC11158284 DOI: 10.1111/j.1349-7006.2009.01346.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lysosomal protein transmembrane 4 beta (LAPTM4B) was originally identified as a hepatocellular carcinoma (HCC)-associated gene. This gene and its protein product LAPTM4B-35, are both overexpressed in a variety of human cancers. However, its specific role in cell transformation and malignancy has remained elusive. In the present study we investigated the effects of LAPTM4B-35 overexpression on the malignant phenotypic features in the HLE cell line. Our data show that overexpression of LAPTM4B-35 promotes cell proliferation, exogenous growth-stimulating factor-independent and anchorage-independent growth, and enhances metastatic potential, including promotion of both cell migration and invasion. Study of the underlying mechanisms demonstrated alterations of molecular events involved in these processes, which included upregulation of proliferation-promoting transcription factors such as c-Myc, c-Jun, and c-Fos, and cell cycle-promoting proteins such as cyclin D1 and cyclin E. In addition, mutagenesis study showed that the PPRP motif in the N-terminal region of LAPTM4B-35 plays a critical role in promoting proliferation, migration, and invasion, as well as in the upregulation of the oncoproteins noted above. These data offer insight into the mechanism by which this novel tetratransmembrane protein contributes to the pathogenesis of liver cancer, and suggest that it may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xinrong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
43
|
Kaposi-Novak P, Libbrecht L, Woo HG, Lee YH, Sears NC, Coulouarn C, Conner EA, Factor VM, Roskams T, Thorgeirsson SS. Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res 2009; 69:2775-82. [PMID: 19276364 DOI: 10.1158/0008-5472.can-08-3357] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocarcinogenesis is a multistage process in which precursor lesions progress into early hepatocellular carcinomas (eHCC) by sequential accumulation of multiple genetic and epigenetic alterations. To decode the molecular events during early stages of liver carcinogenesis, we performed gene expression profiling on cirrhotic (regenerative) and dysplastic nodules (DN), as well as eHCC. Although considerable heterogeneity was observed at the regenerative and dysplastic stages, overall, 460 differentially expressed genes were detected between DN and eHCC. Functional analysis of the significant gene set identified the MYC oncogene as a plausible driver gene for malignant conversion of the DNs. In addition, gene set enrichment analysis revealed global activation of the MYC up-regulated gene set in eHCC versus dysplasia. Presence of the MYC signature significantly correlated with increased expression of CSN5, as well as with higher overall transcription rate of genes located in the 8q chromosome region. Furthermore, a classifier constructed from MYC target genes could robustly discriminate eHCC from high-grade and low-grade DNs. In conclusion, our study identified unique expression patterns associated with the transition of high-grade DNs into eHCC and showed that activation of the MYC transcription signature is strongly associated with the malignant conversion of preneoplastic liver lesions.
Collapse
Affiliation(s)
- Pal Kaposi-Novak
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Park SL, Chang SC, Cai L, Cordon-Cardo C, Ding BG, Greenland S, Hussain SK, Jiang Q, Liu S, Lu ML, Mao JT, Morgenstern H, Mu LN, Ng LJ, Pantuck A, Rao J, Reuter VE, Tashkin DP, You NCY, Yu CQ, Yu SZ, Zhao JK, Belldegrun A, Zhang ZF. Associations between variants of the 8q24 chromosome and nine smoking-related cancer sites. Cancer Epidemiol Biomarkers Prev 2009; 17:3193-202. [PMID: 18990762 DOI: 10.1158/1055-9965.epi-08-0523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies identified key single nucleotide polymorphisms (SNPs) in the 8q24 region to be associated with prostate cancer. 8q24 SNPs have also been associated with colorectal cancer, suggesting that this region may not be specifically associated to just prostate cancer. To date, the association between these polymorphisms and tobacco smoking-related cancer sites remains unknown. Using epidemiologic data and biological samples previously collected in three case-control studies from U.S. and Chinese populations, we selected and genotyped one SNP from each of the three previously determined "regions" within the 8q24 loci, rs1447295 (region 1), rs16901979 (region 2), and rs6983267 (region 3), and examined their association with cancers of the lung, oropharynx, nasopharynx, larynx, esophagus, stomach, liver, bladder, and kidney. We observed noteworthy associations between rs6983267 and upper aerodigestive tract cancers [adjusted odds ratio (ORadj), 1.69; 95% confidence interval (95% CI), 1.28-2.24], particularly in oropharynx (ORadj, 1.80; 95% CI, 1.30-2.49) and larynx (ORadj, 2.04; 95% CI, 1.12-3.72). We also observed a suggestive association between rs6983267 and liver cancer (ORadj, 1.51; 95% CI, 0.99-2.31). When we stratified our analysis by smoking status, rs6983267 was positively associated with lung cancer among ever-smokers (ORadj, 1.45; 95% CI, 1.05-2.00) and inversely associated with bladder cancer among ever-smokers (ORadj, 0.35; 95% CI, 0.14-0.83). Associations were observed between rs16901979 and upper aerodigestive tract cancer among never-smokers and between rs1447295 and liver cancer among ever-smokers. Our results suggest variants of the 8q24 chromosome may play an important role in smoking-related cancer development. Functional and large epidemiologic studies should be conducted to further investigate the association of 8q24 SNPs with smoking-related cancers.
Collapse
Affiliation(s)
- Sungshim Lani Park
- Department of Epidemiology, University of California at Los Angeles School of Public Health, 71-225 CHS, Box 951772, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shachaf CM, Gentles AJ, Elchuri S, Sahoo D, Soen Y, Sharpe O, Perez OD, Chang M, Mitchel D, Robinson WH, Dill D, Nolan GP, Plevritis SK, Felsher DW. Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res 2008; 68:5132-42. [PMID: 18593912 DOI: 10.1158/0008-5472.can-07-6192] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MYC overexpression has been implicated in the pathogenesis of most types of human cancers. MYC is likely to contribute to tumorigenesis by its effects on global gene expression. Previously, we have shown that the loss of MYC overexpression is sufficient to reverse tumorigenesis. Here, we show that there is a precise threshold level of MYC expression required for maintaining the tumor phenotype, whereupon there is a switch from a gene expression program of proliferation to a state of proliferative arrest and apoptosis. Oligonucleotide microarray analysis and quantitative PCR were used to identify changes in expression in 3,921 genes, of which 2,348 were down-regulated and 1,573 were up-regulated. Critical changes in gene expression occurred at or near the MYC threshold, including genes implicated in the regulation of the G(1)-S and G(2)-M cell cycle checkpoints and death receptor/apoptosis signaling. Using two-dimensional protein analysis followed by mass spectrometry, phospho-flow fluorescence-activated cell sorting, and antibody arrays, we also identified changes at the protein level that contributed to MYC-dependent tumor regression. Proteins involved in mRNA translation decreased below threshold levels of MYC. Thus, at the MYC threshold, there is a loss of its ability to maintain tumorigenesis, with associated shifts in gene and protein expression that reestablish cell cycle checkpoints, halt protein translation, and promote apoptosis.
Collapse
Affiliation(s)
- Catherine M Shachaf
- Department of Medicine and Pathology, Division of Medical Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Midorikawa Y, Sugiyama Y, Aburatani H. Screening of liver-targeted drugs. Expert Opin Drug Discov 2008; 3:643-54. [DOI: 10.1517/17460441.3.6.643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Wang Y, Wu DC, Zhou PK. DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer 2008; 7:32. [PMID: 18426604 PMCID: PMC2383926 DOI: 10.1186/1476-4598-7-32] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 04/22/2008] [Indexed: 12/31/2022] Open
Abstract
Background C-Myc is a short-lived oncoprotein that is destroyed by ubiquitin-mediated proteolysis. Dysregulated accumulation of c-Myc commonly occurs in human cancers. Some of those cases with the dysregulated c-Myc protein accumulation are attributed to gene amplification or increased mRNA expression. However, the abnormal accumulation of c-Myc protein is also a common finding in human cancers with normal copy number and transcription level of c-Myc gene. It seems that the mechanistic dysregulation in the control of c-Myc protein stabilization is another important hallmark associated with c-Myc accumulation in cancer cells. Here we report a novel mechanistic pathway through which DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulates the stability of c-Myc protein. Results Firstly, siRNA-mediated silencing of DNA-PKcs strikingly downregulated c-Myc protein levels in HeLa and HepG2 cells, and simultaneously decreased cell proliferation. The c-Myc protein level in DNA-PKcs deficient human glioma M059J cells was also found much lower than that in DNA-PKcs efficient M059K cells. ATM deficiency does not affect c-Myc expression level. Silencing of DNA-PKcs in HeLa cells resulted in a decreased stability of c-Myc protein, which was associated the increasing of c-Myc phosphorylation on Thr58/Ser62 and ubiquitination level. Phosphorylation of Akt on Ser473, a substrate of DNA-PKcs was found decreased in DNA-PKcs deficient cells. As the consequence, the phosphorylation of GSK3 β on Ser9, a negatively regulated target of Akt, was also decreased, and which led to activation of GSK 3β and in turn phosphorylation of c-Myc on Thr58. Moreover, inhibition of GSK3 activity by LiCl or specific siRNA molecules rescued the downregulation of c-Myc mediated by silencing DNA-PKcs. Consistent with this depressed DNA-PKcs cell model, overexpressing DNA-PKcs in normal human liver L02 cells, by sub-chronically exposing to very low dose of carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), increased c-Myc protein level, the phosphorylation of Akt and GSK3 β, as well as cell proliferation. siRNA-mediated silencing of DNA-PKcs in this cell model reversed above alterations to the original levels of L02 cells. Conclusion A suitable DNA-PKcs level in cells is necessary for maintaining genomic stability, while abnormal overexpression of DNA-PKcs may contribute to cell proliferation and even oncogenic transformation by stabilizing the c-Myc oncoprotein via at least the Akt/GSK3 pathway. Our results suggest DNA-PKcs a novel biological role beyond its DNA repair function.
Collapse
Affiliation(s)
- Jing An
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tannuri ACA, Tannuri U, Wakamatsu A, Mello ES, Coelho MCM, Dos Santos NASR. Effect of the immunosuppressants on hepatocyte proliferation and apoptosis in a young animal model of liver regeneration: an immunohistochemical study using tissue microarrays. Pediatr Transplant 2008; 12:40-6. [PMID: 18186887 DOI: 10.1111/j.1399-3046.2007.00766.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocyte proliferation and apoptosis (programmed cell death) occur during the liver parenchyma regeneration and the liver size modeling is mainly controlled by hepatocyte apoptosis. The purpose of the present study was to verify the influence of immunosuppressant drugs on these phenomena by utilizing tissue microarray techniques. Thirty-six weaning rats (age 21-23 days, weight 30-50 g) were divided into six groups: control, sham, hepatectomy, hepatectomy plus solumedrol, hepatectomy plus CsA, and hepatectomy plus Tac. The animals were killed one day after hepatectomy, and the remnant livers were weighed and harvested for tissue microarray sections. Liver cell proliferation was evaluated by staining for PCNA and apoptosis was detected by the TUNEL method. It was verified that CsA promoted a decrease in the liver weight, Tac and CsA decreased the proliferation index of hepatocytes, and glucocorticoid had no significant effects. The apoptosis index was not altered by hepatectomy or immunosuppressants. Our data indicate that, in the growing rat, CsA and Tac have negative effects on hepatocyte proliferation and have no effect on the hepatocyte apoptosis.
Collapse
|
49
|
Increased severity of alcoholic liver injury in female verses male rats: a microarray analysis. Exp Mol Pathol 2007; 84:46-58. [PMID: 18062962 DOI: 10.1016/j.yexmp.2007.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 08/28/2007] [Accepted: 10/02/2007] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is an increasingly recognized condition that may progress to end-stage liver disease. In addition to alcohol consumption, genetic factors, dietary fatty acids, gender and viral infection potentiate the severity of alcoholic liver injury. In humans, significant gender differences in susceptibility to ALD are observed. In the intragastric infusion rat model of ALD, female rats developed more severe liver injury than males. To understand the effect of gender on the development of more severe ALD in female rats, we performed a microarray based expression profiling of genes in rats fed with fish oil and ethanol diet. A large number of genes showed significant changes in female livers compared to males. The upregulated genes in female liver were involved in proteosome endopeptidase activity, catalytic activity, lipid metabolism, alcohol metabolism, mitochondrial and oxidoreductase activity. The downregulated genes were involved in oxidoreductase activity, chaperone activity, and electron transport activity in the female liver as demonstrated by biological theme analysis. Ingenuity computational pathway analysis tools were used to identify specific regulatory networks of genes operative in promoting liver injury. These networks allowed us to identify a large cluster of genes involved in lipid metabolism, development, cellular growth and proliferation, apoptosis, carcinogenesis and various signaling pathways. Genes listed in this article that were significantly increased or decreased (expression two fold or more) were assigned to pathological functional groups and reviewed for relevance to establish hypotheses of potential mechanisms involved in ALD in female liver injury.
Collapse
|
50
|
Lin CP, Liu JD, Chow JM, Liu CR, Liu HE. Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anticancer Drugs 2007; 18:161-70. [PMID: 17159602 DOI: 10.1097/cad.0b013e3280109424] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
c-Myc oncogene is critical for the development of hepatocellular carcinoma. Given the successful use of small-molecule inhibitors on cancers, targeting c-Myc with small-molecule inhibitors represents a promising approach. The potential of using small-molecule c-Myc inhibitor, 10058-F4, was evaluated on hepatocellular carcinoma cell lines, HepG2 and Hep3B cells. HepG2 cells were more sensitive to 10058-F4 than Hep3B cells, as demonstrated by reduced cell viability, marked morphological changes and decreased c-Myc levels. 10058-F4 arrested the cell cycle (at G0/G1 phase) and induced apoptosis upon extended treatment. These observations might be attributable to the increased cyclin-dependent kinase inhibitor, p21, and decreased cyclin D3 levels. Besides, 10058-F4 also significantly decreased the alpha-fetoprotein levels, an indicator for hepatocellular carcinoma differentiation. We further found that 10058-F4 inhibited the transactivation of human telomerase reverse transcriptase, downregulated human telomerase reverse transcriptase expression and abrogated telomerase activity. In addition, pretreatment with 10058-F4 increased the chemosensitivity of HepG2 cells to low-dose doxorubicin, 5-fluorouracil and cisplatin. Therefore, small-molecule c-Myc inhibitors might represent a novel agent, alone or in combination with conventional chemotherapeutic agents, for anti-hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Che-Pin Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|