1
|
Sun F, Ji C, Zhou X, Zhang Y, Cheng H, Ye Z. Targeting RACGAP1 suppresses growth hormone pituitary adenoma growth. Endocrine 2025; 88:234-248. [PMID: 39607642 DOI: 10.1007/s12020-024-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Growth hormone pituitary adenoma (GHPA) is a major subtype of pituitary adenoma (PA), with tumor enlargement and abnormal secretion of growth hormone (GH) often causing complications. Rac GTPase-activating protein 1 (RACGAP1), a member of the guanine triphosphatase-activating protein family, is highly overexpressed in multiple tumors and promotes tumor growth. However, the role of RACGAP1 in GHPA remains unelucidated. Besides, specific inhibitors targeting RACGAP1 have not yet been developed. In this study, we aimed to determine the expression and function of RACGAP1 in GHPA and identify effective inhibitors against RACGAP1. METHODS Immunohistochemistry was used to detect the expression of RACGAP1 in GHPA and normal pituitary tissues. The effect of RACGAP1 on cell proliferation, apoptosis, and cell cycle was evaluated by knockdown of RACGAP1 in GH3 cells in vitro and xenograft models of GHPA in vivo. The downstream mechanism of RACGAP1 was explored by RNA sequencing, bioinformatic analysis, and Western blot. Inhibitors targeting RACGAP1 were screened and verified through a structure-based virtual docking method, cell viability assays, and surface plasmon resonance (SPR) experiments. RESULTS RACGAP1 expression was increased in GHPA compared with normal pituitary tissues. Knocking down RACGAP1 suppressed cell growth in vitro and in vivo. Preliminary mechanism studies indicated that inhibition of RACGAP1 led to the upregulation of p21 and the downregulation of several genes involved in the cell cycle signaling pathway, such as Cyclin A, CDK1, and CDK2. Moreover, DB07268 was identified for the first time as an effective RACGAP1 inhibitor that could prominently restrain the proliferation of GH3 cells. CONCLUSION This study demonstrates that RACGAP1 plays a critical role in GHPA, highlighting the novel inhibitor DB07268 as a promising therapeutic approach.
Collapse
Affiliation(s)
- Feifan Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
| | - Xiang Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
| |
Collapse
|
2
|
Lu M, Wang Y, Zhan X. The MAPK Pathway-Based Drug Therapeutic Targets in Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:330. [PMID: 31231308 PMCID: PMC6558377 DOI: 10.3389/fendo.2019.00330] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) include ERK, p38, and JNK MAPK subfamilies, which are crucial regulators of cellular physiology, cell pathology, and many diseases including cancers. For the MAPK signaling system in pituitary adenomas (PAs), the activation of ERK signaling is generally thought to promote cell proliferation and growth; whereas the activations of p38 and JNK signaling are generally thought to promote cell apoptosis. The role of MAPK in treatment of PAs is demonstrated through the effects of currently used medications such as somatostatin analogs such as SOM230 and OCT, dopamine agonists such as cabergoline and bromocriptine, and retinoic acid which inhibit the MAPK pathway. Further, there are potential novel therapies based on putative molecular targets of the MAPK pathway, including 18beta-glycyrrhetinic acid (GA), dopamine-somatostatin chimeric compound (BIM-23A760), ursolic acid (UA), fulvestrant, Raf kinase inhibitory protein (RKIP), epidermal growth factor pathway substrate number 8 (Eps8), transmembrane protein with EGF-like and two follistatin-like domains (TMEFF2), cold inducible RNA-binding protein (CIRP), miR-16, and mammaliansterile-20-like kinase (MST4). The combined use of ERK inhibitor (e.g., SOM230, OCT, or dopamine) plus p38 activator (e.g., cabergoline, bromocriptine, and fulvestrant) and/or JNK activator (e.g., UA), or the development of single drug (e.g., BIM-23A760) to target both ERK and p38 or JNK pathways, might produce better anti-tumor effects on PAs. This article reviews the advances in understanding the role of MAPK signaling in pituitary tumorigenesis, and the MAPK pathway-based potential therapeutic drugs for PAs.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget 2018; 7:81026-81048. [PMID: 27835587 PMCID: PMC5348374 DOI: 10.18632/oncotarget.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling.
Collapse
|
4
|
Wang S, Wei H, Zhang S. Dickkopf-4 is frequently overexpressed in epithelial ovarian carcinoma and promotes tumor invasion. BMC Cancer 2017; 17:455. [PMID: 28666421 PMCID: PMC5493011 DOI: 10.1186/s12885-017-3407-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dickkopf-4 (DKK4), a member of DKK family, appears to be a divergent protein. It remained multi-biological functions in carcinogenesis. The effect of DKK4 on the ovarian cancer cells remains unclear. This study detected the clinical significance of DKK4 in epithelial ovarian cancer (EOC) patients and its role in invasion. Methods QRT-PCR and western blot analysis were used to examine the levels of DKK4 mRNA and protein in 33 EOC tissues and 33 benign ovarian tumors. Immunohistochemical analysis was performed to assess DKK4 expression in 239 EOC samples. siRNA-mediated DKK4 silence was conducted. Transwell assay was used to detect the invasive ability. Phalloidin was used to stain the formations of actin filaments. Results The expressions of DKK4 mRNA and protein were elevated in EOC tissues as compared with those in benign ovarian tumors (p = 0.001 and <0.0001 respectively). Immunohistochemical results showed the strong expression of DKK4 protein was positively associated with late FIGO stage (p = 0.005) and poor disease free survival in univariate and multivariate analysis (p < 0.0001 and p = 0.001, respectively). SiRNA-mediated DKK4 knockdown inhibited cell invasive ability (all p < 0.0001) and the formations of actin filaments. DKK4 could promote the phosphration of c-JUN and JNK (p < 0.0001 and p = 0.001, respectively). Conclusions Our results indicated that DKK4 might be contributed to predicting EOC progression and prognosis. DKK4 could promote the invasion of EOC through JNK activation.
Collapse
Affiliation(s)
- Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36 San Hao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36 San Hao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36 San Hao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
5
|
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:116. [PMID: 27439311 PMCID: PMC4955168 DOI: 10.1186/s13046-016-0395-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 02/01/2023]
Abstract
Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Via Del Fosso di Fiorano, 64 I-00143, Rome, Italy.
| | - Maria Luisa Rocco
- Institute of Cell Biology and Neurobiology, CNR, Via Del Fosso di Fiorano, 64 I-00143, Rome, Italy
| | | | - Alessandra Micera
- IRCCS - G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| |
Collapse
|
6
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
7
|
Chopin V, Lagadec C, Toillon RA, Le Bourhis X. Neurotrophin signaling in cancer stem cells. Cell Mol Life Sci 2016; 73:1859-70. [PMID: 26883804 PMCID: PMC11108437 DOI: 10.1007/s00018-016-2156-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.
Collapse
Affiliation(s)
- Valérie Chopin
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
- University of Picardie Jules Verne, 80000, Amiens, France
| | - Chann Lagadec
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Robert-Alain Toillon
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France
| | - Xuefen Le Bourhis
- CPAC, Cell Plasticity and Cancer, Univ. Lille, INSERM U908, F-59 000, Villeneuve d'Ascq, France.
| |
Collapse
|
8
|
Sabapathy K. Role of the JNK pathway in human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:145-69. [PMID: 22340717 DOI: 10.1016/b978-0-12-396456-4.00013-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The c-Jun-NH(2)-terminal kinase (JNK) signaling pathway plays a critical role in regulating cell fate, being implicated in a multitude of diseases ranging from cancer to neurological and immunological/inflammatory conditions. Not surprisingly, therefore, it has been sought after for therapeutic intervention, and its inhibition has been shown to ameliorate many pathological conditions in experimental systems, paving the way for initial clinical trials. However, the fundamental problem in fully harnessing the potential provided by the JNK pathway has been the lack of specificity, due to the multiple JNK forms that are involved in multiple cellular processes in various cell types. Moreover, lack of sufficient knowledge of all JNK-interacting proteins and substrates has also hindered progress. This review will therefore focus on the role of the JNKs in human diseases and appraise the efforts to inhibit JNK signaling to ameliorate disease conditions, assessing potential challenges and providing insights into possible future directions to efficiently target this pathway for therapeutic use.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| |
Collapse
|
9
|
Tyrosine kinase A receptor (trkA): A potential marker in epithelial ovarian cancer. Gynecol Oncol 2011; 121:13-23. [DOI: 10.1016/j.ygyno.2010.12.341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 01/11/2023]
|
10
|
Finkelstein Y, Milatovic D, Lazarovici P, Ophir A, Richter ED, Aschner M, Lecht S, Marcinkiewicz C, Lelkes PI, Zaja-Milatovic S, Gupta RC, Brodsky B, Rosengarten A, Proscura E, Shapira E, Wormser U. Peaceful use of disastrous neurotoxicants. Neurotoxicology 2010; 31:608-20. [PMID: 20620165 DOI: 10.1016/j.neuro.2010.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022]
Abstract
The increasing exposure to environmental neurotoxicants in the last decades caused serious health problems in the world population. Some of the neurotoxic agents are being used in agriculture and household such as insecticides and rodenticides and others are of natural origin like snake and scorpion venoms. Additional group of harmful substances is the chemical warfare agents including nerve and blistering agents that are known for their disastrous effects on neuronal tissues. The present paper presents a combination of epidemiological/clinical and molecular approaches for investigating the effect of certain groups of neurotoxicants on a variety of pathologies. The work of Finkelstein and coworkers describes epidemiological and clinical studies on acute and chronic organophosphate (OP)-induced neurotoxicity in certain populations in Israel. They mainly investigated the neurotoxic effects of low-level long-term exposure to OP in agricultural areas but also dealt with acute exposures as well. A molecular approach to OP mechanism of neuronal injury was described by Milatovic and coworkers. They demonstrated OP-induced oxidative injury in pyramidal neurons in the CA1 hippocampal area and its suppression by antioxidants. Lecht and coworkers described the novel snake venom angioneurins as important mediators of the physiological cross-talk between the cardiovascular and nervous systems. They also showed that under certain conditions these angioneurins may induce pathologies such as tumor development or disruption of the vascular barrier function during envenomation. Additional mechanistic/therapeutic approach was presented by Brodsky, Rosengarten, Proscura, Shapira and Wormser. They developed a novel anti-inflammatory peptide that reduced skin irritation induced by heat and sulfur mustard (SM) stimuli. Since SM causes neuropsychiatric symptoms and alterations in neurological functions this peptide may serve as a potential treatment of neuronal injuries caused by environmental neurotoxicants. These reviews highlight different aspects of neurotoxicity, addressing epidemiology and mechanisms of toxicity; and identifying novel potential therapies.
Collapse
Affiliation(s)
- Yoram Finkelstein
- Service and Unit of Neurology and Toxicology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Engle DB, Belisle JA, Gubbels JAA, Petrie SE, Hutson PR, Kushner DM, Patankar MS. Effect of acetyl-l-carnitine on ovarian cancer cells' proliferation, nerve growth factor receptor (Trk-A and p75) expression, and the cytotoxic potential of paclitaxel and carboplatin. Gynecol Oncol 2009; 112:631-6. [PMID: 19263582 DOI: 10.1016/j.ygyno.2008.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The incidence of chemotherapy induced peripheral neuropathy (CIPN) is 15-25% with platinum and taxanes. CIPN can be permanent and often requires dose reduction or change in chemotherapy. Acetyl-l-carnitine (ALCAR), an ester of l-carnitine, is used to treat CIPN in humans and in animal models. The goals of this study are: 1) examine the effects of ALCAR on ovarian cancer cells, 2) determine if ALCAR affects the cytotoxicity of standard chemotherapy on ovarian cancer cells. METHODS OVCAR-3 and SKOV-3 ovarian cancer lines were incubated in ALCAR containing media. Viability, proliferation, and expression of the nerve growth factor receptors (NGFR) Trk-A and p-75 were determined by flow cytometry. Cytotoxicity assays examining ALCAR's effect on paclitaxel and carboplatin were done by flow cytometry and infrared plate-reader. RESULTS Flow cytometry showed no change in percent live (p = 0.87) or proliferation (p = 0.95) of OVCAR-3 cells when comparing controls with up to 100 microM ALCAR. However, there was a slight but significant decrease in the proliferation of SKOV-3 cells incubated at higher ALCAR concentrations (p = < 0.01). Flow cytometry showed no difference in the viability of OVCAR-3 cells when comparing ALCAR: +/- paclitaxel (p = 1), +/- carboplatin (p = 0.8), or both (p = 0.4). Proliferation assays indicated that paclitaxel's cytotoxicity on OVCAR-3 and SKOV-3 cells was unchanged at higher ALCAR concentrations (p = < 0.01-0.4). ALCAR did not affect the expression of NGFR on OVCAR-3 or SKOV-3 cells. CONCLUSION ALCAR does not affect the cytotoxicity of paclitaxel or carboplatin. There was no increase in proliferation, or NGFR of OVCAR-3 or SKOV-3 cells exposed to ALCAR.
Collapse
Affiliation(s)
- David B Engle
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., H4-636, Madison, WI 53792-6188, USA.
| | | | | | | | | | | | | |
Collapse
|