1
|
Lakis V, Chan NL, Lyons R, Blackburn N, Nguyen TH, Chang C, Masel A, West NP, Boyle GM, Patch AM, Gill AJ, Nones K. Spatial Transcriptomics Reveals Novel Mechanisms Involved in Perineural Invasion in Pancreatic Ductal Adenocarcinomas. Cancers (Basel) 2025; 17:852. [PMID: 40075699 PMCID: PMC11899704 DOI: 10.3390/cancers17050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a high incidence of perineural invasion (PNI), a pathological feature of the cancer invasion of nerves. PNI is associated with a poor prognosis, local recurrence and cancer pain. It has been suggested that interactions between nerves and the tumor microenvironment (TME) play a role in PDAC tumorigenesis. METHODS Here, we used Nanostring GeoMx Digital Spatial Profiler to analyze the whole transcriptome of both cancer and nerve cells in the microenvironment of PNI and non-PNI foci from 13 PDAC patients. CONCLUSIONS We identified previously reported pathways involved in PNI, including Axonal Guidance and ROBO-SLIT Signaling. Spatial transcriptomics highlighted the role of PNI foci in influencing the immune landscape of the TME and similarities between PNI and nerve injury response. This study revealed that endocannabinoid and polyamine metabolism may contribute to PNI, cancer growth and cancer pain. Key members of these pathways can be targeted, offering potential novel research avenues for exploring new cancer treatment and/or pain management options in PDAC.
Collapse
Affiliation(s)
- Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Noni L Chan
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (N.L.C.); (A.J.G.)
| | - Ruth Lyons
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
| | - Nicola Blackburn
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
| | - Tam Hong Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Crystal Chang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Andrew Masel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Nicholas P. West
- Griffith Health, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4000, Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Anthony J. Gill
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (N.L.C.); (A.J.G.)
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Faculty of Health, Medicine and Behavioural Sciences/PA Southside Clinical Unit, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Zhao S, Xue Z, Wang JY, Song P. Gene Expression Array Analyses Predict Proto-Oncogene Expression During Perineural Invasion in Pancreatic Ductal Adenocarcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:48-60. [PMID: 38454277 PMCID: PMC10837604 DOI: 10.5152/tjg.2024.21430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Pancreatic ductal adenocarcinoma is the tumor type with the highest incidence of perineural invasion. This study tries to identify the differentially expressed genes regulated between pancreatic ductal adenocarcinoma tissues with perineural invasion and without perineural invasion. MATERIALS AND METHODS The GSE102238 profile was downloaded. Gene function and pathway analysis were subsequently conducted. A protein-protein interaction network was constructed to search for hub genes. Both univariate Cox analysis and multivariate Cox analysis were calculated to identify prognostic factors. Quantitative real-time polymerase chain reaction (RT-PCR) and overall survival analysis of hub genes were used to verify. RESULTS Our study identified 242 differentially expressed genes including 68 upregulated differentially expressed genes and 174 downregulated differentially expressed genes, which were involved in important functions and pathways. Nine relevant core genes using protein-protein interaction analysis as well as nestin (NES)/vascular endothlial growth factor (VEGF) signaling pathway which is highly related to the pathological process of perineural invasion in pancreatic ductal adenocarcinoma were also discovered. The differentiation was identified as an independent prognostic factor (P < .05) after multivariate Cox analysis. Three upregulated genes (JUP, CALM1, and NES) and 6 downregulated genes (EPHA2, ARF1, ORM2, TERT, IL18, and CXCL3) were validated by quantitative RT-PCR and they all had markedly worse overall survival (P < .05). CONCLUSION This analysis showed that 9 core genes including JUP, CALM1, NES, EPHA2, ARF1, ORM2, TERT, IL18, and CXCL3, as well as NES/VEGF signaling pathway, have a relationship with the development process of perineural invasion in pancreatic ductal adenocarcinoma. Cox analysis and overall survival analysis suggested differentiation as an independent prognostic factor and key roles for these 9 hub genes in perineural invasion prognosis in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Oncology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhen Xue
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yao Wang
- Department of Imaging, Beijing Mentougou District Hosptal, Beijing, China
| | - Peng Song
- Department of Oncology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Huang L, Chen L, Wang Y, Shan N, Wang T, Li D, Wang C, Ma H. Nestin Expression and the Survival of Patients With Digestive Tract Cancers: A Systematic Review and Meta-Analysis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:902-910. [PMID: 37485559 PMCID: PMC10542102 DOI: 10.5152/tjg.2023.22485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 07/25/2023]
Abstract
BACKGROUND/AIMS Several cancers have been associated with poor prognoses based on nestin, a confirmed marker of cancer stem cells. However, there is conflicting evidence regarding the prognostic value of tumor nestin expression in patients with digestive tract cancers. An investigation of the association between nestin and survival in patients with digestive tract cancers was performed in this meta-analysis. MATERIALS AND METHODS Meta-analyses were conducted using PubMed, Embase, and Web of Science databases to search for cohort studies. We analyzed the data using a random-effects model that incorporates differences between studies. RESULTS The pooled analysis showed a negative association between nestin expression and overall survival (hazard ratio: 1.38, 95% CI: 1.11 to 1.72, P = .004, I2 = 68%) and disease-free survival (hazard ratio: 1.48, 95% CI: 1.12 to 1.96, P = .005, I2 = 56%). Subgroup analysis showed that nestin expression was associated with poorer overall survival in gastric cancer (hazard ratio: 1.46, P < .001) and liver cancer (hazard ratio: 2.05, P < .001) patients, but not in colorectal cancer (hazard ratio: 1.03, P = .89) or pancreatic cancer (hazard ratio: 0.96, P = .80) patients. Further subgroup analysis showed a consistent association between nestin expression and poor overall survival in Asian and non-Asian studies, and in studies with univariate and multivariate regression models. CONCLUSION To sum up, the presence of high nestin expression in digestive tract cancer patients is associated with poorer survival, particularly in patients with gastric and liver cancers.
Collapse
Affiliation(s)
- Lumi Huang
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lihui Chen
- Department of Gastroenterological Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Yiming Wang
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Nan Shan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Dairong Li
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chunmei Wang
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huiwen Ma
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
4
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
5
|
Lodestijn SC, Miedema DM, Lenos KJ, Nijman LE, Belt SC, El Makrini K, Lecca MC, Waasdorp C, van den Bosch T, Bijlsma MF, Vermeulen L. Marker-free lineage tracing reveals an environment-instructed clonogenic hierarchy in pancreatic cancer. Cell Rep 2021; 37:109852. [PMID: 34686335 DOI: 10.1016/j.celrep.2021.109852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Effective treatments for pancreatic ductal adenocarcinoma (PDAC) are lacking, and targeted agents have demonstrated limited efficacy. It has been speculated that a rare population of cancer stem cells (CSCs) drives growth, therapy resistance, and rapid metastatic progression in PDAC. These CSCs demonstrate high clonogenicity in vitro and tumorigenic potential in vivo. However, their relevance in established PDAC tissue has not been determined. Here, we use marker-independent stochastic clonal labeling, combined with quantitative modeling of tumor expansion, to uncover PDAC tissue growth dynamics. We find that in contrast to the CSC model, all PDAC cells display clonogenic potential in situ. Furthermore, the proximity to activated cancer-associated fibroblasts determines tumor cell clonogenicity. This means that the microenvironment is dominant in defining the clonogenic activity of PDAC cells. Indeed, manipulating the stroma by Hedgehog pathway inhibition alters the tumor growth mode, revealing that tumor-stroma crosstalk shapes tumor growth dynamics and clonal architecture.
Collapse
Affiliation(s)
- Sophie C Lodestijn
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Daniël M Miedema
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Lisanne E Nijman
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Saskia C Belt
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Khalid El Makrini
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Maria C Lecca
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Tom van den Bosch
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Szymańska-Chabowska A, Świątkowski F, Jankowska-Polańska B, Mazur G, Chabowski M. Nestin Expression as a Diagnostic and Prognostic Marker in Colorectal Cancer and Other Tumors. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211038256. [PMID: 34421318 PMCID: PMC8377314 DOI: 10.1177/11795549211038256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer, colon cancer, breast cancer, and prostate cancer are the leading causes of death in developed countries. Many cancers display non-specific signs in the early stage of the disease, thus making early diagnosis often difficult. We focused on nestin as a new biomarker of possible clinical importance in the early diagnosis and monitoring of cancer. The expression of nestin takes place at an early stage of neural differentiation, but no expression of the nestin gene can be revealed in normal, mature adult tissues. Nestin plays an important role in the development of the central nervous system and contributes to the organization and maintenance of cell shape. Nestin was found to be a marker of microvessel density, which in turn has proven to be a reliable prognostic factor for neoplastic malignancies in patients. Nestin expression correlates with an increased aggressiveness of tumor cells. The role of nestin in cancers of the colon and rectum, liver, central nervous system, lung cancer, breast cancer, melanoma, and other cancers has been reviewed in the literature. Associations between nestin expression and prognosis or drug-resistance may help in disease management. More research is needed to understand the molecular mechanisms of nestin expression and its role in possible targeted therapy.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Filip Świątkowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nervous System Diseases, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland.,Division of Oncology and Palliative Care, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
7
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Yoshimura H, Moriya M, Yoshida A, Yamamoto M, Machida Y, Ochiai K, Michishita M, Nakagawa T, Matsuda Y, Takahashi K, Kamiya S, Ishiwata T. Involvement of Nestin in the Progression of Canine Mammary Carcinoma. Vet Pathol 2021; 58:994-1003. [PMID: 34056976 DOI: 10.1177/03009858211018656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nestin, a class VI intermediate filament protein, is known to be expressed in various types of human neoplasms, including breast cancer, and is associated with their progression. However, its expression and role in canine mammary tumors remain unknown. We analyzed nestin expression in canine mammary tumors using in situ hybridization and immunohistochemistry. We also investigated its role in a canine mammary carcinoma cell line using RNA interference. Nestin expression was not observed in luminal epithelial cells of any of the 62 cases of benign mammary lesions examined, although myoepithelial cells showed its expression in most cases. In 16/50 (32%) primary mammary carcinomas and 6/15 (40%) metastases of mammary carcinomas, cytoplasmic nestin expression was detected in luminal epithelial cells. In luminal cells of primary mammary carcinomas, its expression was positively related to several pathological parameters that indicate high-grade malignancy, including histological grading (P < .01), vascular/lymphatic invasion (P < .01), Ki-67 index (P < .01), and metastasis (P < .05). Immunohistochemistry revealed that nestin expression was related to vimentin expression in mammary carcinomas (P < .01). This relationship was confirmed using reverse transcription-quantitative polymerase chain reaction using 9 cell lines derived from canine mammary carcinoma (P < .01). Finally, nestin knockdown in canine mammary carcinoma cells using small interfering RNA inhibited cell proliferation and migration based on WST-8, Boyden chamber, and cell-tracking assays. These findings suggest that nestin may at least partially mediate these behaviors of canine mammary carcinoma cells.
Collapse
Affiliation(s)
| | - Maiko Moriya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Yoshida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukino Machida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | | - Shinji Kamiya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | |
Collapse
|
9
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
10
|
Singh KN, Ramadas MN, Veeran V, Naidu MR, Dhanaraj TS, Chandrasekaran K. Expression Pattern of the Cancer Stem Cell Marker "Nestin" in Leukoplakia and Oral Squamous Cell Carcinoma. Rambam Maimonides Med J 2019; 10:RMMJ.10378. [PMID: 31675305 PMCID: PMC6824828 DOI: 10.5041/rmmj.10378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of the present study was to determine and compare the expression pattern and localization of nestin, in an attempt to explore its role in oral carcinogenesis. METHODS Western blot and immunohistochemistry analysis were performed to study the expression pattern of nestin in normal mucosa, leukoplakia, and oral squamous cell carcinoma samples. Nestin expression was evaluated in the keratinocytes and blood vessels of all the samples and compared with various clinico-pathological parameters. RESULTS Nestin expression was increased in samples of leukoplakia and oral squamous cell carcinoma when compared with normal mucosa. Among leukoplakia samples, the expression was increased in cases without dysplasia compared to cases with dysplastic features. In cases of oral squamous cell carcinoma, the expression of nestin was found to be decreased with the loss of differentiation. Neoangiogenesis status determined by nestin expression showed an increasing expression from normal mucosa through leukoplakia, to oral squamous cell carcinoma. CONCLUSION This study has two major findings: (1) identification of nestin as an effective indicator of neoangiogenesis, and (2) nestin may be used as a marker in predicting the early changes in oral carcinogenesis.
Collapse
|
11
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
12
|
Schmitt M, Sinnberg T, Nalpas NC, Maass A, Schittek B, Macek B. Quantitative Proteomics Links the Intermediate Filament Nestin to Resistance to Targeted BRAF Inhibition in Melanoma Cells. Mol Cell Proteomics 2019; 18:1096-1109. [PMID: 30890564 PMCID: PMC6553926 DOI: 10.1074/mcp.ra119.001302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Targeted inhibition of mutated kinases using selective MAP kinase inhibitors in malignant melanoma often results in temporary improvement of clinical symptoms followed by rapid development of resistance. To gain insights in molecular processes that govern resistance, we performed SILAC-based quantitative proteomics profiling of vemurafenib-resistant and -sensitive melanoma cells. Among downregulated proteins in vemurafenib-resistant cell lines we detected multiple proteins involved in cytoskeletal organization and signaling, including the intermediate filament nestin, which was one of the most downregulated proteins. Previous studies showed that nestin is expressed in various types of solid tumors and its abundance correlates with malignant phenotype of transformed cells. However, the role of nestin in cancer cells regarding acquired resistance is still poorly understood. We performed CRISPR/Cas9 knockout of the nestin gene (NES) in vemurafenib-sensitive cells and showed that loss of nestin leads to increased cellular proliferation and colony formation upon treatment with BRAFV600E and MEK inhibitors. Moreover, nestin depletion led to increased invasiveness and metalloproteinase activity like the phenotype of melanoma cells with acquired resistance to the BRAF inhibitor. Finally, phosphoproteome analysis revealed that nestin depletion influenced signaling through integrin and PI3K/AKT/mTOR pathways and led to increased focal adhesion kinase abundance and phosphorylation. Taken together, our results reveal that nestin is associated with acquired vemurafenib resistance in melanoma cells.
Collapse
Affiliation(s)
- Marisa Schmitt
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Tobias Sinnberg
- §Center for Dermatooncology, Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - Nicolas C Nalpas
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Annika Maass
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Birgit Schittek
- §Center for Dermatooncology, Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- From the ‡Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany;
| |
Collapse
|
13
|
Alrawashdeh W, Jones R, Dumartin L, Radon TP, Cutillas PR, Feakins RM, Dmitrovic B, Demir IE, Ceyhan GO, Crnogorac‐Jurcevic T. Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling. Mol Oncol 2019; 13:1075-1091. [PMID: 30690892 PMCID: PMC6487729 DOI: 10.1002/1878-0261.12463] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Perineural invasion (PNI) is a common and characteristic feature of pancreatic ductal adenocarcinoma (PDAC) that is associated with poor prognosis, tumor recurrence, and generation of pain. However, the molecular alterations in cancer cells and nerves within PNI have not previously been comprehensively analyzed. Here, we describe our proteomic analysis of the molecular changes underlying neuro-epithelial interactions in PNI using liquid chromatography-mass spectrometry (LC-MS/MS) in microdissected PNI and non-PNI cancer, as well as in invaded and noninvaded nerves from formalin-fixed, paraffin-embedded PDAC tissues. In addition, an in vitro model of PNI was developed using a co-culture system comprising PDAC cell lines and PC12 cells as the neuronal element. The overall proteomic profiles of PNI and non-PNI cancer appeared largely similar. In contrast, upon invasion by cancer cells, nerves demonstrated widespread plasticity with a pattern consistent with neuronal injury. The up-regulation of SCG2 (secretogranin II) and neurosecretory protein VGF (nonacronymic) in invaded nerves in PDAC tissues was further validated using immunohistochemistry. The tested PDAC cell lines were found to be able to induce neuronal plasticity in PC12 cells in our in vitro established co-culture model. Changes in expression levels of VGF, as well as of two additional proteins previously reported to be overexpressed in PNI, Nestin and Neuromodulin (GAP43), closely recapitulated our proteomic findings in PDAC tissues. Furthermore, induction of VGF, while not necessary for PC12 survival, mediated neurite extension induced by PDAC cell lines. In summary, here we report the proteomic alterations underlying PNI in PDAC and confirm that PDAC cells are able to induce neuronal plasticity. In addition, we describe a novel, simple, and easily adaptable co-culture model for in vitro study of neuro-epithelial interactions.
Collapse
Affiliation(s)
- Wasfi Alrawashdeh
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | | | - Laurent Dumartin
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Tomasz P. Radon
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R. Cutillas
- Centre for Haemato‐OncologyBart Cancer InstituteQueen Mary University of LondonUK
| | | | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineFaculty of MedicineUniversity of OsijekCroatia
| | - Ihsan Ekin Demir
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | - Guralp O. Ceyhan
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | | |
Collapse
|
14
|
Lytle NK, Ferguson LP, Rajbhandari N, Gilroy K, Fox RG, Deshpande A, Schürch CM, Hamilton M, Robertson N, Lin W, Noel P, Wartenberg M, Zlobec I, Eichmann M, Galván JA, Karamitopoulou E, Gilderman T, Esparza LA, Shima Y, Spahn P, French R, Lewis NE, Fisch KM, Sasik R, Rosenthal SB, Kritzik M, Von Hoff D, Han H, Ideker T, Deshpande AJ, Lowy AM, Adams PD, Reya T. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell 2019; 177:572-586.e22. [PMID: 30955884 PMCID: PMC6711371 DOI: 10.1016/j.cell.2019.03.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/18/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Differentiation
- Epigenesis, Genetic
- Gene Library
- Humans
- Mice
- Mice, Knockout
- Mice, SCID
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Interleukin-10/antagonists & inhibitors
- Receptors, Interleukin-10/genetics
- Receptors, Interleukin-10/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Nikki K Lytle
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - L Paige Ferguson
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Nirakar Rajbhandari
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Kathryn Gilroy
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Raymond G Fox
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, USA
| | - Michael Hamilton
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Neil Robertson
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Wei Lin
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Pawan Noel
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martin Wartenberg
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Micha Eichmann
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Eva Karamitopoulou
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Tami Gilderman
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Lourdes Adriana Esparza
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Yutaka Shima
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Philipp Spahn
- Department of Pediatrics and the Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Randall French
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and the Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Marcie Kritzik
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Daniel Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Trey Ideker
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA; Division of Surgical Oncology, Department of Surgery, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Peter D Adams
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK; Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tannishtha Reya
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
15
|
Matsuda Y, Tanaka M, Sawabe M, Mori S, Muramatsu M, Mieno MN, Ishiwata T, Arai T. The stem cell-specific intermediate filament nestin missense variation p.A1199P is associated with pancreatic cancer. Oncol Lett 2019; 17:4647-4654. [PMID: 30988821 DOI: 10.3892/ol.2019.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 11/06/2022] Open
Abstract
The intermediate filament nestin is upregulated in stem/progenitor cells and cancers, and regulates cell proliferation, migration, invasion and stemness. The present study comparatively analyzed serial autopsies of Japanese patients (n=2,206; males, 1,225; females, 981; median, 80.7 years old; range, 33-104 years old) with malignant tumors of whole organs, with respect to the clinical information, and 5 single nucleotide polymorphisms of the nestin gene. p.A1199P associated with pancreatic cancer (odds ratio, 4.4; 95% confidence interval, 1.9-10.0, P=0.001) while it did not associate with malignant neoplasms in other organs. p.A1199P did not associate with precancerous lesions of the pancreas. Single nucleotide polymorphisms of nestin were not associated with sex, drinking, smoking, or body weight. In conclusion, the amino acid 1,199 of nestin is localized in the tail structure of the filament and polymerizes with other intermediate filament proteins. The present results suggest that missense variations of nestin affect pancreatic carcinogenesis in Japanese patients.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Makiko Naka Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
16
|
Zhou Y, Sun B, Li W, Zhou J, Gao F, Wang X, Cai M, Sun Z. Pancreatic Stellate Cells: A Rising Translational Physiology Star as a Potential Stem Cell Type for Beta Cell Neogenesis. Front Physiol 2019; 10:218. [PMID: 30930789 PMCID: PMC6424017 DOI: 10.3389/fphys.2019.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The progressive decline and eventual loss of islet β-cell function underlies the pathophysiological mechanism of the development of both type 1 and type 2 diabetes mellitus. The recovery of functional β-cells is an important strategy for the prevention and treatment of diabetes. Based on similarities in developmental biology and anatomy, in vivo induction of differentiation of other types of pancreatic cells into β-cells is a promising avenue for future diabetes treatment. Pancreatic stellate cells (PSCs), which have attracted intense research interest due to their effects on tissue fibrosis over the last decade, express multiple stem cell markers and can differentiate into various cell types. In particular, PSCs can successfully differentiate into insulin- secreting cells in vitro and can contribute to tissue regeneration. In this article, we will brings together the main concepts of the translational physiology potential of PSCs that have emerged from work in the field and discuss possible ways to develop the future renewable source for clinical treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Outpatient, Army Engineering University, Jingling Hospital, Nanjing University, Nanjing, China
| | - Feng Gao
- Graduate Innovation Platform of Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Min Cai
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T, Aida J. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 2018; 24:797-805. [PMID: 29948612 DOI: 10.1007/s12253-018-0420-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Hisashi Yoshimura
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-0022, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shunji Ishiwata
- Division of Medical Pharmaceutics & Therapeutics, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
18
|
Emerging Role of Nestin as an Angiogenesis and Cancer Stem Cell Marker in Epithelial Ovarian Cancer: Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2018; 25:571-580. [PMID: 26945442 DOI: 10.1097/pai.0000000000000338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most fatal gynecologic malignancy and the existing second-line treatments have not been confirmed to be effective. Cancer stem cells research has a leading role to explore promising therapeutic applications. Nestin was postulated to reflect cancer stem cell properties in various tumors, correlating with poor prognosis. Furthermore, nestin is proposed as a reliable neovascularization marker. This study aimed to elucidate the status of nestin expression in various epithelial ovarian cancers (EOCs), its neoangiogenic properties, and investigate its potential association with clinicopathologic parameters. A total of 80 primary EOCs (37 serous, 20 Mucinous, 13 endometrioid, and 10 clear cell carcinomas) were immunohistochemically stained with nestin. Staining intensity and automated microvascular density (MVD) were assessed. Positive nestin expression was defined in ≈47.5% of all EOC; more commonly in ≈60% of the serous tumors. It was noticeably expressed in tumor spheroids. Nestin expression significantly correlated with overall tumor grade, lymph node, distant metastasis, and stage. Nestin neoangiogenesis was detectable in all cases (average=60.1). The nestin expression in tumor cells significantly correlated with Nestin/MVD. The average Nestin/MVD was significantly an independent predictor of high tumor stage. As a stem cell marker, nestin is expressed in cells of EOC including those growing as spherules and correlated with poor prognosis. Thus, nestin may be a novel therapeutic target for tumor angiogenesis and a combination therapy that includes nestin-targeting agents may be an effective therapeutic approach. In addition, detection of Nestin/stem cells and Nestin/MVD can be used as predictors of disease.
Collapse
|
19
|
Hu W, Lu H, Wang S, Yin W, Liu X, Dong L, Chiu R, Shen L, Lu WJ, Lan F. Suppression of Nestin reveals a critical role for p38-EGFR pathway in neural progenitor cell proliferation. Oncotarget 2018; 7:87052-87063. [PMID: 27894083 PMCID: PMC5349970 DOI: 10.18632/oncotarget.13498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The expression of intermediate filament Nestin is necessary for the neural progenitor cells (NPCs) to maintain stemness, but the underlying cellular and molecular mechanism remains unclear. In this study, we demonstrated that Nestin is required for the self-renew of NPCs through activating MAPK and EGFR pathways. Knockdown of Nestin by shRNA inhibited cell cycle progression and proliferation in mouse NPCs. Moreover, suppression of Nestin reduced expression of the epidermal growth factor receptor (EGFR) in NPCs and inhibited the mitogenic effects of EGF on these cells. Treatment of NPCs with p38-MAPK inhibitor PD169316 reversed cell cycle arrest caused by the knockdown of Nestin. Our findings indicate that Nestin promotes NPC proliferation via p38-MAPK and EGFR pathways, and reveals the necessity of these pathways in NPCs self-renewal.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhan Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xujie Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Deparment of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Lin Dong
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Richard Chiu
- Deparment of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Li Shen
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Wen-Jing Lu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Matsuda Y, Ishiwata T, Yoshimura H, Yamahatsu K, Minamoto T, Arai T. Nestin phosphorylation at threonines 315 and 1299 correlates with proliferation and metastasis of human pancreatic cancer. Cancer Sci 2017; 108:354-361. [PMID: 28002641 PMCID: PMC5378226 DOI: 10.1111/cas.13139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/06/2016] [Accepted: 12/17/2016] [Indexed: 01/05/2023] Open
Abstract
The neuroepithelial stem cell marker nestin is a cytoskeletal protein that regulates cell proliferation, invasion, and stemness in various tumors, including pancreatic tumors. In the present study, we examined the expression and roles of phosphorylated nestin in pancreatic cancer cells. Nestin phosphorylation at threonines 315 (Thr315) and 1299 (Thr1299) was observed during mitosis in human pancreatic cancer cells. Nestin phosphorylation was positively correlated with a cell proliferation marker, MIB-1 expression in human pancreatic cancer samples. Transfection of MIA PaCa-2 cells with nestin mutated at Thr315 and/or Thr1299 (to suppress phosphorylation) resulted in lower proliferation rates than those in control groups. Transfecting MIA PaCa-2 cells with wild-type nestin or with nestin mutated at Thr315 increased migration and invasion. In contrast, transfection with nestin mutated at both phosphorylation sites (Thr315 and Thr1299) did not enhance cell migration or invasion. In an intra-splenic xenograft experiment using MIA PaCa-2 cells, tumors expressing the nestin double mutant formed fewer liver metastases than tumors expressing wild-type nestin. Nestin phosphorylation at these two sites was decreased upon treatment with inhibitors for cyclin dependent kinases, AKT, and Aurora in PANC-1 cells, which express a high baseline level of phosphorylated nestin. These findings suggest that phosphorylation of nestin at Thr315 and/or Thr1299 affects cell proliferation, and inhibition of both phosphorylation sites suppresses invasion and metastasis of human pancreatic cancer. Inhibiting nestin phosphorylation at these two sites may represent a novel therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Department of Aging and Carcinogenesis, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Yoshimura
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuya Yamahatsu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshinari Minamoto
- Divisions of Translational and Clinical Oncology and Surgical Oncology, Cancer Research Institute, Kanazawa University and Hospital, Kanazawa, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
21
|
Rezaei M, Hosseini A, Nikeghbalian S, Ghaderi A. Establishment and characterization of a new human acinar cell carcinoma cell line, Faraz-ICR, from pancreas. Pancreatology 2017; 17:303-309. [PMID: 28215484 DOI: 10.1016/j.pan.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. METHODS Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. RESULTS Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. CONCLUSIONS We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Department of Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer 2017; 16:52. [PMID: 28245823 PMCID: PMC5331747 DOI: 10.1186/s12943-017-0624-9] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanical properties of epithelial to mesenchymal transition (EMT) and a pancreatic cancer subpopulation with stem cell properties have been increasingly recognized as potent modulators of the effective of therapy. In particular, pancreatic cancer stem cells (PCSCs) are functionally important during tumor relapse and therapy resistance. In this review we have surveyed recent advances in the role of EMT and PCSCs in tumor progression, metastasis and treatment resistance, and the mechanisms of integrated with biochemical signals and the underlying pathways involved in treatment resistance of pancreatic cancer. These findings highlight the importance of confirming stem-cells markers and complex molecular signaling pathways controlling EMT and cancer stem cells in pancreatic cancer during tumor formation, progression, and response to therapy.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Furao Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathol Int 2016; 66:601-608. [PMID: 27510923 DOI: 10.1111/pin.12447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Despite the development of various therapeutic approaches, recurrence and metastasis remain major problems for patients with advanced cancer. Recent studies have shown that cancer stem cells (CSCs) play an important role in cancer aggressiveness. In cancer tissues, a small number of CSCs are able to self-renew and differentiate into heterogeneous cancer cells. CSCs usually remain in the resting phase of the cell cycle and possess efficient drug efflux pathways. Thus, they are resistant to chemoradiotherapy and surviving CSCs contribute to recurrence. During cancer metastasis, CSCs undergo epithelial-mesenchymal transition (EMT), thereby acquiring mesenchymal features, migrating to adjacent stromal tissues, and invading blood or lymph vessels. Recent studies showed that EMT-inducible factors also enhance or induce CSC-like features in cancer cells. These findings suggest that EMT is closely correlated with cancer recurrence and metastasis. Inhibition of nestin, a CSC marker, reduces the aggressiveness of several types of cancer. Suppression of the mesenchymal variant of fibroblast growth factor (FGFR)-2, FGFR-2 IIIc, and regulation of the EMT using epithelial splicing regulatory protein 1 (ESRP1) are effective in the treatment of immunodeficient mice with pancreatic cancer. The roles of CSCs and EMT in cancer and possible therapies are discussed in this review.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
24
|
Zhong B, Wang T, Zou J, Zheng F, Huang R, Zheng X, Yang W, Chen Z. Association of the intermediate filament nestin with cancer stage: a meta-analysis based on 223 positive/high nestin cases and 460 negative/low case-free controls. Oncotarget 2016; 6:22970-7. [PMID: 26015397 PMCID: PMC4673213 DOI: 10.18632/oncotarget.4042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023] Open
Abstract
Background Nestin, a member of the intermediate filament protein family, has been reported to be associated with several types of neoplastic transformation. However, questions remain, with studies reporting sometimes inconclusive or conflicting data. Thus, the aim of this study was to evaluate literature reports on the relationship between nestin and cancer stage. Methods Relevant articles published as of June 2014 were retrieved from multiple databases. After applying specific inclusion criteria, we chose seven articles relating to nestin expression and cancer stage, which included a total of 223 positive/high nestin cases and 460 negative/low case-free controls. Results Overall, positive/high nestin was significantly associated with median or advanced stages of several types of cancer (nestin and cancer stage: OR = 1.90, 95% CI = 1.30–2.78; nestin and lymph node: OR = 2.17, 95% CI = 1.26–3.72). Notably, studies relating to lung cancer (three qualifying articles) showed a significant association between nestin and lung cancer stage (OR = 2.00, 95% CI = 1.16–3.44). Conclusion These findings indicate that positive/high nestin may be more strongly linked to median or advanced cancer stage and correlated with malignant characteristics that lead to poor prognosis in different cancers, especially lung cancer.
Collapse
Affiliation(s)
- Beilong Zhong
- Department of Thoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Guangzhou, Guangdong, China.,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fangfang Zheng
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rijiao Huang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaobin Zheng
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Weilin Yang
- Department of Cardiothoracic Surgery of East Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenguang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Lung Cancer Research Center of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Cardiothoracic Surgery of East Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Sumiyoshi H, Matsushita A, Nakamura Y, Matsuda Y, Ishiwata T, Naito Z, Uchida E. Suppression of STAT5b in pancreatic cancer cells leads to attenuated gemcitabine chemoresistance, adhesion and invasion. Oncol Rep 2016; 35:3216-26. [PMID: 27035235 PMCID: PMC4869940 DOI: 10.3892/or.2016.4727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, and there is an urgent need for new therapeutic strategies based on the molecular biology of PDAC. Signal transducers and activators of transcription 5 (STAT5) are known to be activated in a variety of malignancies and involved in tumor proliferation, apoptosis, and invasion, whereas the expression and biological role of STAT5b in PDAC are less clearly defined. In the present study, we examined the expression and role of STAT5b in human pancreatic cancer cell lines. Expressions of STAT5b mRNA and protein were detected in eight kinds of pancreatic cancer cells. Confocal microscopy and western blot analysis indicated that STAT5b is localized in both cytoplasm and nuclei. Immunoprecipitation analysis revealed tyrosine phosphorylation of STAT5b in pancreatic cancer cells. These results indicate that STAT5b in pancreatic cancer cells is constitutively activated. STAT5b shRNA clones in PANC-1 cells, which express relatively high levels of STAT5b, exhibited reduced chemoresistance against gemcitabine, adhesion and invasion compared to sham. On the other hand, AsPC-1 and BxPC3 cells, which express relatively low levels of STAT5b, exhibited reduced chemoresistance compared to PANC-1 cells. Moreover, STAT5b overexpression clones in AsPC-1 cells exhibited increased chemoresistance compared to sham. STAT5b shRNA clones in PANC-1 cells were more sensitive to the proapoptotic actions of gemcitabine, as evidenced by PARP and cleaved caspase-3 activation. Gemcitabine also significantly reduced Bcl-xL levels in the STAT5b shRNA-expressing cells. We also investigated the clinicopathological characteristics of STAT5b expression of PDAC. Although a significant correlation between STAT5b expression and overall survival rates was not observed, a significant correlation with main pancreatic duct invasion was observed. These findings suggest that STAT5b confers gemcitabine chemoresistance and promotes cell adherence and invasiveness in pancreatic cancer cells. Targeting STAT5b may lead to novel therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Hiroki Sumiyoshi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Akira Matsushita
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoshiharu Nakamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Eiji Uchida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
26
|
Matsuda Y, Ishiwata T, Yoshimura H, Yamashita S, Ushijima T, Arai T. Systemic Administration of Small Interfering RNA Targeting Human Nestin Inhibits Pancreatic Cancer Cell Proliferation and Metastasis. Pancreas 2016; 45:93-100. [PMID: 26335012 DOI: 10.1097/mpa.0000000000000427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nestin, a progenitor/stem cell marker, is expressed in human pancreatic cancer, where its expression correlates positively with invasiveness and metastasis. Here, we investigated the inhibition of nestin expression and the regulation of nestin expression. METHODS We analyzed the effects of small interfering RNA (siRNA) targeting nestin using pancreatic cancer cell lines. RESULTS Nestin siRNA inhibited the growth, migration, invasion, and sphere-forming ability of the pancreatic cancer cell lines. Pancreatic cancer cells cotreated with gemcitabine and nestin siRNA exhibited lower cell viability than cells treated with a control siRNA, gemcitabine alone, or nestin siRNA alone. Cells derived from the metastatic nodules of mice showed higher nestin expression than the parental cells, and nestin expression in pancreatic cancer cells was regulated by methylation of the nestin gene. In an orthotopic implantation model using mice, administration of nestin siRNA significantly decreased primary and metastatic tumor formation by human pancreatic cancer cells compared to tumor formation in control siRNA-treated mice. CONCLUSIONS Nestin plays a key role in pancreatic cancer cell metastasis and stemness and that administration of nestin siRNA may offer a novel therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yoko Matsuda
- From the *Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku; †Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Bunkyo-ku; and ‡Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Xue Z, Zhou Y, Wang C, Zheng J, Zhang P, Zhou L, Wu L, Shan Y, Ye M, He Y, Cai Z. Latexin exhibits tumor-suppressor potential in pancreatic ductal adenocarcinoma. Oncol Rep 2015; 35:50-8. [PMID: 26530530 PMCID: PMC4699618 DOI: 10.3892/or.2015.4353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that latexin (Lxn) expression is involved in stem cell regulation and that it plays significant roles in tumor cell migration and invasion. The clinicopathological significance of Lxn expression and its possible correlation with CD133 expression in pancreatic ductal adenocarcinoma (PDAC) is currently unknown. In the present study, immunohistochemical analysis was performed to determine Lxn and CD133 expression in 43 PDAC patient samples and in 32 corresponding adjacent non-cancerous samples. The results were analyzed and compared with patient age, gender, tumor site and size, histological grade, clinical stage and overall mean survival time. Lxn expression was clearly decreased in the PDAC tissues compared with that in the adjacent non-cancerous tissues, while CD133 expression was increased. Low Lxn expression in the PDAC tissues was significantly correlated with tumor size (P=0.002), histological grade (P=0.000), metastasis (P=0.007) and clinical stage (P=0.018), but not with age (P=0.451), gender (P=0.395) or tumor site (P=0.697). Kaplan-Meier survival analysis revealed that low Lxn expression was significantly correlated with reduced overall survival time (P=0.000). Furthermore, Lxn expression was found to be inversely correlated with CD133 expression (r=−0.485, P=0.001). Furthermore, CD133-positive MIA PaCa-2 pancreatic tumor cells were sorted by magnetic-activated cell sorting (MACS), and those that overexpressed Lxn exhibited a significantly higher rate of apoptosis and lower proliferative activity. Our findings suggest that Lxn may function as a tumor suppressor that targets CD133-positive pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuhui Zhou
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cheng Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jihang Zheng
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pu Zhang
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lingling Zhou
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunfeng Shan
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengsi Ye
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yun He
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenzhai Cai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
28
|
Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep 2015; 3:603-610. [PMID: 26405532 DOI: 10.3892/br.2015.494] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration.
Collapse
Affiliation(s)
- B O Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yantian Fang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
29
|
Shan YS, Chen YL, Lai MD, Hsu HP. Nestin predicts a favorable prognosis in early ampullary adenocarcinoma and functions as a promoter of metastasis in advanced cancer. Oncol Rep 2014; 33:40-8. [PMID: 25371063 PMCID: PMC4254676 DOI: 10.3892/or.2014.3588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
Nestin exhibits stemness characteristics and is over-expressed in several types of cancers. Downstream signaling of nestin [cyclin-dependent kinase 5 (CDK5) and Ras-related C3 botulinum toxin substrate 1 (Rac1)] functions in cancer to modulate cellular behaviors. We studied the function of nestin in ampullary adenocarcinoma. Immunohistochemistry (IHC), reverse transcription-polymerase chain reaction, and cDNA microarray of nestin in ampullary adenocarcinoma was compared with normal duodenum. CDK5 and Rac1 were assessed by western blotting. We hypothesized that nestin/CDK5/Rac1 signaling behaves different in early and advanced cancer. We found that the presence of nestin mRNA was increased in the early stages of cancer (T2N0 or T3N0) and advanced cancer with lymph node metastasis (T4N1). A total of 102 patients were enrolled in the IHC staining. Weak nestin expression was correlated with favorable characteristics of cancer, decreased incidence of local recurrence and lower risk of recurrence within 12 months after surgery. Patients with weak nestin expression had the most favorable recurrence-free survival rates. Patients with mild to strong nestin expression exhibited an advanced behavior of cancer and increased possibility of cancer recurrence. The reciprocal expression of nestin and RAC1 were explored using a cDNA microarray analysis in the early stages of ampullary adenocarcinoma. Increased level of CDK5 with simultaneously decreased expression of Rac1 was detected by western blotting of ampullary adenocarcinoma in patients without cancer recurrence. The activation of multiple oncogenic pathways, combined with the stemness characteristics of nestin, formed a complex network in advanced ampullary adenocarcinoma. Our study demonstrated that nestin performs a dual role in ampullary adenocarcinoma. Appropriate amount of nestin enhances CDK5 function to suppress Rac1 and excessive nestin/CDK5 participates in multiple oncogenic pathways to promote cancer invasiveness. Inhibiting nestin in patients who exhibit nestin-overexpressed ampullary adenocarcinoma may be a method of preventing cancer recurrence.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| |
Collapse
|
30
|
Prognostic significance of neural stem cell markers, Nestin and Musashi-1, in oral squamous cell carcinoma: expression pattern of Nestin in the precancerous stages of oral squamous epithelium. Clin Oral Investig 2014; 19:1251-60. [PMID: 25352468 DOI: 10.1007/s00784-014-1341-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Besides the tissue-specific stem cell markers, neural and hematopoietic stem cell markers were found to play an important role in carcinogenesis. Based on this background, we have investigated the expression pattern and prognostic significance of neural stem cell markers, Nestin and Musashi-1, in oral cancer. METHODS We used immunohistochemistry and immunofluorescence analyses to study the expression pattern and correlation between Nestin and Musashi-1 in oral squamous cell carcinoma. The Kaplan-Meier method was used to construct overall and disease-free survival curves, and the differences were calculated using log-rank test. RESULTS Nestin expression was gradually increased in the transformation stages of oral cancer. Both Nestin and Musashi-1 expressions were associated with higher stage and poorly differentiated status of oral carcinoma. Interestingly, Nestin and Musashi-1 double positive cases showed statistically highly significant correlation with poorer survival of oral carcinoma patients. CONCLUSIONS Expression of Nestin in the preneoplastic lesions indicates its role in the transformation of oral squamous epithelium. Clinicopathological and survival analyses suggest that Nestin and Musashi-1 might be associated with invasion, differentiation and poorer survival in oral squamous cell carcinoma. In addition to their role as independent prognostic indicators, Nestin and Musashi-1 double positivity can be used to select high-risk cases for effective therapy and this is the novel finding of this study. CLINICAL RELEVANCE Nestin and Musashi-1 are found to be independent prognostic markers of oral cancer, and they might be used as molecular targets for effective therapy.
Collapse
|
31
|
Tampaki EC, Nakopoulou L, Tampakis A, Kontzoglou K, Weber WP, Kouraklis G. Nestin involvement in tissue injury and cancer--a potential tumor marker? Cell Oncol (Dordr) 2014; 37:305-15. [PMID: 25164879 DOI: 10.1007/s13402-014-0193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In eukaryotic cells, the cytoskeleton contains three major filamentous components: actin microfilaments, microtubules and intermediate filaments. Nestin represents one of the class VI intermediate filament proteins. Clinical and molecular analyses have revealed substantial information regarding the presence of Nestin in cells with progenitor or stem cell properties. During tissue injury Nestin is expressed in cells with progenitor cell-like properties. These cells may serve as a tissue reserve and, as such, may contribute to tissue repair. Based on currently available data, Nestin also appears to be implicated in two oncogenic processes. First, Nestin has been found to be expressed in cancer stem-like cells and poorly differentiated cancer cells and, as such, Nestin is thought to contribute to the aggressive behavior of these cells. Second, Nestin has been found to be involved in tumor angiogenesis through an interaction of cancer cells and blood vessel endothelial cells and, as such, Nestin is thought to facilitate tumor growth. CONCLUSIONS We conclude that Nestin may serve as a promising tumor marker and as a potential therapeutic target amenable to tumor suppression and angiogenesis inhibition.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
32
|
Tabata KI, Matsumoto K, Minami S, Ishii D, Nishi M, Fujita T, Saegusa M, Sato Y, Iwamura M. Nestin is an independent predictor of cancer-specific survival after radical cystectomy in patients with urothelial carcinoma of the bladder. PLoS One 2014; 9:e91548. [PMID: 24785714 PMCID: PMC4008365 DOI: 10.1371/journal.pone.0091548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 02/12/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES To investigate the association between the expression of nestin, a class VI intermediate filament protein, and pathologic features or survival in patients with urothelial carcinoma of the bladder (UCB). METHODS Nestin expression in tumor cells was immunohistochemically studied in 93 patients with UCB who underwent radical cystectomy with pelvic lymphadenectomy. The associations with clinicopathologic parameters were evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of nestin expression on survival. RESULTS Nestin expression in cystectomy specimens was observed in 13 of 93 patients (14.0%). Nestin expression was associated with pathologic tumor stage (p = 0.006). Nestin-negative patients had better overall survival compared with nestin-positive patients (log-rank p = 0.0148). Univariable analysis indicated that nestin expression, lymphovascular invasion, and lymph node status were significantly associated with cancer-specific survival (hazard ratios, 2.78, 2.15, and 2.80, respectively). On multivariable analysis, nestin expression and lymph node status were independent prognostic factors in cancer-specific survival (hazard ratios, 2.45 and 2.65, respectively). CONCLUSIONS The results suggest that nestin expression is a novel independent prognostic indicator for patients with UCB and a potentially useful marker to select patients who may be candidates for adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ken-ichi Tabata
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
- * E-mail:
| | - Kazumasa Matsumoto
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Sho Minami
- Department of Applied Tumor Pathology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Daisuke Ishii
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Morihiro Nishi
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tetsuo Fujita
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yuichi Sato
- Department of Applied Tumor Pathology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
33
|
Jazieh KA, Foote MB, Diaz LA. The clinical utility of biomarkers in the management of pancreatic adenocarcinoma. Semin Radiat Oncol 2014; 24:67-76. [PMID: 24635863 DOI: 10.1016/j.semradonc.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and survival rates have seen minimal improvement over the past few decades. Although results are poor, surgical resection is considered the only curative therapeutic intervention for pancreatic cancer, thereby emphasizing the significance of effective diagnostic and prognostic tools to improve outcomes. As such, biomarkers play a promising role in the development of personalized treatments for patients with pancreatic cancer. Prognostic biomarkers, such as serum carbohydrate antigen 19-9 in particular, as well as cancer stem cell markers, provide valuable insight into the biological processes of an individual and their likely course of disease. This, consequently, allows for the assessment of optimal therapeutic intervention. Furthermore, current efforts target putative predictive biomarkers such as BRCA2, PALB2, and SPARC so as to determine their influence on tumor response on targeted therapies. As research progresses, more evidence will provide clinicians with guidelines on the utilization of biomarkers to accurately stage and tailor personalized treatment to the needs of specific patients with pancreatic cancer.
Collapse
Affiliation(s)
- Khalid A Jazieh
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Michael B Foote
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Luis A Diaz
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD.
| |
Collapse
|
34
|
Hyder CL, Lazaro G, Pylvänäinen JW, Roberts MWG, Qvarnström SM, Eriksson JE. Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins. J Cell Sci 2014; 127:2161-73. [PMID: 24610946 DOI: 10.1242/jcs.125062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nestin, an intermediate filament protein and marker of undifferentiated cells, is expressed in several cancers. Nestin is important for neuronal survival and is a regulator of myogenesis but its function in malignancy is ambiguous. We show that nestin downregulation leads to a redistribution of phosphorylated focal adhesion kinase (pFAK, also known as PTK2) to focal adhesions and alterations in focal adhesion turnover. Nestin downregulation also leads to an increase in the protein levels of integrin α5β1 at the cell membrane, activation of integrin β1 and an increase in integrin clustering. These effects have striking consequences for cell invasion, as nestin downregulation leads to a significant increase in pFAK- and integrin-dependent matrix degradation and cell invasion. Our results indicate that nestin regulates the localisation and functions of FAK and integrin. Because nestin has been shown to be prevalent in a number of specific cancers, our observations have broad ramifications for the roles of nestin in malignant transformation.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Glorianne Lazaro
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Joanna W Pylvänäinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Maxwell W G Roberts
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Susanna M Qvarnström
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| |
Collapse
|
35
|
Narita K, Matsuda Y, Seike M, Naito Z, Gemma A, Ishiwata T. Nestin regulates proliferation, migration, invasion and stemness of lung adenocarcinoma. Int J Oncol 2014; 44:1118-30. [PMID: 24481417 DOI: 10.3892/ijo.2014.2278] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/07/2014] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the most common cancer and the most common cause of cancer-related death in the world. Nestin, a class VI intermediate filament, is known to be a cancer stem cell (CSC) marker as well as a neuroepithelial stem cell marker. High expression levels of nestin are reported in several types of cancers including lung, pancreatic and prostate cancers. Nestin is thought to regulate tumor cell proliferation, migration, invasion and CSC properties. Here, we confirmed nestin expression in non-small cell lung cancer (NSCLC): Immunohistochemical analysis in surgical specimens detected nestin protein expression in the cytoplasm of 20 of 48 adenocarcinoma (AD) cases (41.7%) and 25 of 47 squamous cell carcinoma cases (53.2%). Nestin immunoreactivity significantly correlated with not only tumor size and lymph node metastasis in NSCLC, but also poor survival in surgical patients with AD. High and moderate expression levels of nestin were confirmed in several lung AD cell lines including H1975 and PC-3. Nestin inhibition by shRNA decreased proliferation, migration, invasion and sphere formation in AD cells. Correspondingly, nestin upregulation by nestin gene transfection resulted in the opposite changes. Moreover, Akt inhibitor IV effectively decreased nestin expression via SRY-box containing protein 2 (Sox2) downregulation and overcame the enhanced sphere formation induced by nestin upregulation. Overall, our results show that nestin correlates with the aggressiveness and stemness of AD. Regulation of nestin via Akt/Sox2 is, thus, a promising candidate for novel therapeutic approaches to eradicate CSCs in lung AD.
Collapse
Affiliation(s)
- Kosuke Narita
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoko Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Zenya Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Toshiyuki Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
36
|
Serra-Guillén C, Llombart B, Nagore E, Requena C, Traves V, Llorca D, Kindem S, Alcalá R, Guillén C, Sanmartín O. High immunohistochemical nestin expression is associated with greater depth of infiltration in dermatofibrosarcoma protuberans: a study of 71 cases. J Cutan Pathol 2013; 40:871-8. [PMID: 23962157 DOI: 10.1111/cup.12203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/05/2013] [Accepted: 07/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dermatofibrosarcoma protuberans (DFSP) was recently shown to express nestin, a marker that has been associated with poorer prognosis when present in high levels in certain tumors. The objective of this study is to explore the association between high nestin expression and deep invasion. METHODS We performed a retrospective, observational study in which we evaluated the degree of nestin expression in 71 DFSP. The odds of fascial involvement was calculated before and after adjusting for the following confounders: age, sex, tumor size, time to diagnosis, tumor site, the presence of fibrosarcomatous areas, pleomorphism, number of mitotic figures and predominant histopathologic pattern. We also calculated the Spearman Rho correlation coefficient between nestin staining intensity and depth of invasion. RESULTS Nestin immunopositivity was found in 98.6% of the tumors, and high expression levels were significantly associated with invasion of the fascia. The odds of fascial involvement in tumors with strong nestin staining was 6.56 (p = 0.001) before adjustment for confounders and 14.86 after adjustment (p = 0.007). The Spearman rho correlation coefficient between nestin expression and deep invasion was 0.287 (p = 0.015). CONCLUSION High inmunohistochemical nestin expression appears to be associated with deeper invasion in DFSP.
Collapse
|
37
|
Yazdani S, Miki Y, Tamaki K, Ono K, Iwabuchi E, Abe K, Suzuki T, Sato Y, Kondo T, Sasano H. Proliferation and maturation of intratumoral blood vessels in non–small cell lung cancer. Hum Pathol 2013; 44:1586-96. [DOI: 10.1016/j.humpath.2013.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/29/2022]
|
38
|
Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL, Chen YW, Kuo KK, Cheng KH. Stem cell marker nestin is critical for TGF-β1-mediated tumor progression in pancreatic cancer. Mol Cancer Res 2013; 11:768-79. [PMID: 23552743 DOI: 10.1158/1541-7786.mcr-12-0511] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stem cell marker nestin is an intermediate filament protein that plays an important role in cell integrity, migration, and differentiation. Nestin expression occurs in approximately one third of pancreatic ductal adenocarcinoma (PDAC), and its expression strongly correlates with tumor staging and metastasis. Little is known about the mechanisms by which nestin influences PDAC progression. Here, nestin overexpression in PDAC cells increased cell motility and drove phenotypic changes associated with the epithelial-mesenchymal transition (EMT) in vitro; conversely, knockdown of endogenous nestin expression reduced the migration rate and reverted cells to a more epithelial phenotype. Mouse xenograft studies showed that knockdown of nestin significantly reduced tumor incidence and volume. Nestin protein expression was associated with Smad4 status in PDAC cells; hence, nestin expression might be regulated by the TGF-β1/Smad4 pathway in PDAC. We examined nestin expression after TGF-β1 treatment in human pancreatic cancer PANC-1 and PANC-1 shSmad4 cells. The TGF-β1/Smad4 pathway induced nestin protein expression in PDAC cells in a Smad4-dependent manner. Moreover, increased nestin expression caused a positive feedback regulator of the TGF-β1 signaling system. In addition, hypoxia was shown to induce nestin expression in PDAC cells, and the hypoxia-induced expression of nestin is mediated by the TGF-β1/Smad4 pathway. Finally, the antimicrotubule inhibitors, cytochalasin D and withaferin A, exhibited anti-nestin activity; these inhibitors might be potential antimetastatic drugs. Our findings uncovered a novel role of nestin in regulating TGF-β1-induced EMT. Anti-nestin therapeutics may serve as a potential treatment for PDAC metastasis.
Collapse
Affiliation(s)
- Huei-Ting Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424
| | | | | | | | | | | | | | | |
Collapse
|
39
|
AKIYAMA MICHIKO, MATSUDA YOKO, ISHIWATA TOSHIYUKI, NAITO ZENYA, KAWANA SEIJI. Nestin is highly expressed in advanced-stage melanomas and neurotized nevi. Oncol Rep 2013; 29:1595-9. [DOI: 10.3892/or.2013.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/04/2013] [Indexed: 11/05/2022] Open
|
40
|
Kim HS, Yoo SY, Kim KT, Park JT, Kim HJ, Kim JC. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:754-761. [PMID: 23071857 PMCID: PMC3466976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND To evaluate the prognostic implication of cancer stem cell markers in pancreac ductal adenocarcinoma (PDAC), the expression of CD133 and nestin were investigated in a series of PDAC patients in relation to the survival rate. METHODS This series included 42 cases of PDAC patients and evaluated the stem cell markers CD133 and nestin expression detected by immunohistochemistry. The presence of immunopositive tumor cells considering intensity and area was evaluated and interpreted in comparison to the patients' clinicopathological and survival data. RESULTS Twenty eight cases (66.7%) showed high CD133 expression. The CD133 expression was mainly identified in the apical border of the tumor cell, but aberrant expression in the cytoplasmic or perinuclear location was also noted. High nestin expression in tumor cells were found in only 2 cases, but high nestin expression along perinuerial or stromal region was found in 15 cases (35.7%). There was no correlation between CD133, nestin expression and gemcitabine resistance. Statistically significant difference was found in patient survival in N stage (p=0.007), and CD133 expression (p= 0.014) in univariate analysis. Nestin expression wan not statistically significant, but it was helpful to identify the perineurial invasion. In Cox-regression hazard model stratified by age and sex for multivariable analysis, AJCC stage and CD133 were independent prognostic factors for overall survival. CONCLUSIONS CD133 expression is upregulated in PDAC that is related to poor prognosis, and treatment targeted the CD133 positive cancer/cancer stem cells might be a promising therapeutic strategy for this patients.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School Gwangju, South Korea.
| | | | | | | | | | | |
Collapse
|
41
|
Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: Markers, pathways and therapy. Cytometry A 2012; 83:62-71. [DOI: 10.1002/cyto.a.22206] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/25/2022]
|
42
|
Ryuge S, Sato Y, Jiang SX, Wang G, Matsumoto T, Katono K, Inoue H, Iyoda A, Satoh Y, Yoshimura H, Masuda N. Prognostic impact of nestin expression in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 2012; 77:415-20. [DOI: 10.1016/j.lungcan.2012.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/13/2012] [Accepted: 03/21/2012] [Indexed: 11/15/2022]
|
43
|
Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T. Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol 2012; 41:1314-24. [PMID: 22824809 DOI: 10.3892/ijo.2012.1565] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/28/2012] [Indexed: 01/13/2023] Open
Abstract
Cancer stem cells (CSCs) play pivotal roles in cancer growth, invasion, metastasis and recurrence. Several proteins have been reported as CSC markers for pancreatic ductal adenocarcinoma (PDAC). In the present study, we examined the correlation between pancreatic intraepithelial neoplasias (PanINs) and CSC markers including CD24, CD44, CD133, CXCR4, ESA and nestin using immunohistochemical analysis. Furthermore, we examined the roles and clinical significance of these CSC markers in PDAC. CD24-, CD44-, CXCR4-, ESA- and nestin-positive cells were detected in the following tissues, listed in order of increasing percentage: normal ducts < low-grade PanINs < high-grade PanINs < PDACs. CD133 did not increase according to the malignancy grade. In PDAC, cells positive for each of the following CSC markers were detected, listed according to increasing percentage: nestin < CD133 < CD44 < CD24 < CXCR4 < ESA. CXCR4 and ESA expression correlated with well-differentiated PDAC. Venous invasion was positively associated with CD133 and inversely associated with ESA. CSC marker expression levels detected in PDAC cell lines using flow cytometry showed lowest expression of CD133 and highest of CD44, differing from the results obtained using immunohistochemistry. In two PDAC subtypes, adenosquamous carcinoma and anaplastic carcinoma, ESA was expressed more abundantly in adenocarcinoma components, whereas CD44 and nestin showed high expression in anaplastic components. Together, these results suggest that most CSC markers correlate with pancreatic carcinogenesis through the PanIN-to-PDAC sequence. Each CSC marker was related in a different manner with proliferation, differentiation, invasiveness or tissue type of PDAC.
Collapse
Affiliation(s)
- Shoko Kure
- Department of Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Matsuda Y, Kure S, Ishiwata T. Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol 2012; 45:59-65. [PMID: 22718289 DOI: 10.1007/s00795-012-0571-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis. Recent studies have shown that cancer stem cells (CSCs), which have the potential to self-renew and are pluripotent, are crucially important in cancer cell growth, invasion, metastasis, and recurrence. Recently, several CSC-specific markers for pancreatic cancer have been reported, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin, but their use is controversial. Nestin is one of the class VI intermediate filament proteins and a marker of exocrine progenitors of normal pancreatic tissue. Activated mutations of K-ras in nestin-positive progenitors of pancreatic tissue have been reported to induce cell growth in vitro and induce the formation of precancerous pancreatic lesions. We have reported that downregulation of nestin in PDAC cells inhibits liver metastasis in vivo. Nestin may modulate the invasion and metastasis of nestin-positive progenitor cells during PDAC development and may serve as a novel target for suppressing invasion and metastasis in PDAC. In this review, we summarize what is known about the correlation between PDAC and CSC markers, including nestin.
Collapse
Affiliation(s)
- Yoko Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | | | | |
Collapse
|
45
|
Sato A, Ishiwata T, Matsuda Y, Yamamoto T, Asakura H, Takeshita T, Naito Z. Expression and role of nestin in human cervical intraepithelial neoplasia and cervical cancer. Int J Oncol 2012; 41:441-8. [PMID: 22580387 PMCID: PMC3582985 DOI: 10.3892/ijo.2012.1473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/02/2012] [Indexed: 01/31/2023] Open
Abstract
Nestin expression reportedly correlates with aggressive growth, metastasis, poor prognosis and presence of cancer stem cells (CSCs) in various tumors. In this study, we determined the expression and role of nestin in cervical intraepithelial neoplasia (CIN) and cervical cancer. We performed immunohistochemical and in situ hybridization analyses of nestin in 26 cases for each stage of CIN and 55 cervical cancer tissue samples. To examine the role of nestin in cervical cancer cells, we stably transfected expression vectors containing nestin cDNA into ME-180 cells. We studied the effects of increased nestin expression on cell proliferation, cell motility, invasion as well as sphere and soft agar formation. Nestin was not localized in the squamous epithelium in normal cervical tissues, but it was weakly expressed in the basal squamous epithelium of CIN 1. In CIN 2, nestin was localized to the basal to lower 2/3 of the squamous epithelium, whereas in CIN 3, it was localized to the majority of the squamous epithelium. Nestin was detected in all cases of invasive cervical cancer. Nestin mRNA was expressed in both ME-180 and CaSki cells. Growth rate, cell motility and invasion ability of stably nestin-transfected ME-180 cells were not different from empty vector-transfected ME-180 (mock cells). However, the nestin-transfected ME-180 cells formed more colonies and spheres compared to the mock cells. These findings suggest that nestin plays important roles in carcinogenesis and tumor formation of cervical cancer cells. Nestin may closely correlate with regulation of CSCs.
Collapse
Affiliation(s)
- Atsuki Sato
- Department of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Ishiwata T, Matsuda Y, Yamamoto T, Uchida E, Korc M, Naito Z. Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1928-41. [PMID: 22440254 DOI: 10.1016/j.ajpath.2012.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 01/06/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), the fibroblast growth factor receptor 1 (FGFR-1) IIIb isoform correlates with the inhibition of cancer cell proliferation, migration, and invasion, whereas FGFR-1 IIIc enhances cancer cell proliferation. The FGFR-2 IIIb isoform is expressed in PDAC, and its expression correlates with increased venous invasion. We examined the role of FGFR-2 IIIc in PDAC. FGFR-2 IIIc was expressed in all six pancreatic cancer cell lines examined and was highest in PANC-1 cells. FGFR-2 IIIc was abundant in the cancer cells from 83 of 117 PDAC cases, which correlated with decreased duration to development of liver metastasis after surgery. FGFR-2 IIIc-transfected cells exhibited increased proliferation in vitro and formed larger subcutaneous and orthotopic tumors, the latter producing more liver metastases. Moreover, FGF-2 exerted a more rapid stimulatory effect on the levels of phosphorylated extracellular signal-regulated kinase (p-ERK) in FGFR-2 IIIc stably transfected PANC-1 cells, compared with control cells. FGFR-2 IIIc-transfected cells also formed more spheres and contained more side population cells. Suppression of FGFR-2 IIIc expression inhibited the proliferation of PANC-1 cells, whereas an anti-FGFR-2 IIIc antibody inhibited the proliferation and migration of PANC-1 cells. Thus, high FGFR-2 IIIc levels in PDAC contribute to disease aggressiveness and confer to pancreatic cancer cells features suggestive of cancer stem cells, indicating that FGFR-2 IIIc may be a novel and important therapeutic target in PDAC.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/secondary
- Adult
- Aged
- Aged, 80 and over
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Real-Time Polymerase Chain Reaction/methods
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Transfection
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Department of Pathology and Integrative Oncological Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Matsuda Y. Effectiveness of Nestin-targeting Therapy in Pancreatic Cancer. J NIPPON MED SCH 2012. [DOI: 10.1272/jnms.79.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yoko Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School
| |
Collapse
|
48
|
Quispe-Salcedo A, Ida-Yonemochi H, Nakatomi M, Ohshima H. Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res 2012; 33:119-32. [DOI: 10.2220/biomedres.33.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Piras F, Ionta MT, Lai S, Perra MT, Atzori F, Minerba L, Pusceddu V, Maxia C, Murtas D, Demurtas P, Massidda B, Sirigu P. Nestin expression associates with poor prognosis and triple negative phenotype in locally advanced (T4) breast cancer. Eur J Histochem 2011; 55:e39. [PMID: 22297445 PMCID: PMC3284241 DOI: 10.4081/ejh.2011.e39] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022] Open
Abstract
Nestin, an intermediate filament protein, has traditionally been noted for its importance as a neural stem cell marker. However, in recent years, expression of nestin has shown to be associated with general proliferation of progenitor cell populations within neoplasms. There is no reported study addressing nestin expression in T4 breast cancer patients. Thus, the aim of the present study was to investigate, through immunohistochemistry, the expression and distribution of nestin in T4 breast cancer, in order to determine its association with clinical and pathological parameters as well as with patients' outcome. Nestin was detectable in tumoral cells and in endothelial cells of blood microvessels, and it is significantly expressed in triple-negative and in inflammatory breast cancer (IBC) subgroups of T4 breast tumours. The Kaplan-Meier analysis showed that the presence of nestin in tumoral cells significantly predicted poor prognosis at 5-years survival (P=0.02) and with borderline significance at 10-years of survival (P=0.05) in T4 breast cancer patients. On the basis of these observations, we speculate that nestin expression may characterize tumours with an aggressive clinical behavior, suggesting that the presence of nestin in tumoral cells and vessels may be considered an important factor that leads to a poor prognosis. Further studies are awaited to define the biological role of nestin in the etiology of these subgroups of breast cancers.
Collapse
Affiliation(s)
- F Piras
- Department of Cytomorphology, University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dhingra S, Feng W, Brown RE, Zhou Z, Khoury T, Zhang R, Tan D. Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:733-741. [PMID: 22135720 PMCID: PMC3225784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/27/2011] [Indexed: 05/31/2023]
Abstract
Cancer stem cells (CSC) are unique subpopulations that have the capacity to drive malignant progression and mediate radio/chemoresistance. The role of nestin as a CSC marker in gastric adenocarcinoma is largely unknown. Our objective was to evaluate immunoexpression of CSC markers CD44 and nestin in gastric adenocarcinoma versus non-neoplastic gastric mucosae (NNGM) and correlate it with various clinicopathologic factors. Tissue microarray blocks from 174 cases of gastric adenocarcinoma and 41 samples of adjacent NNGM were assembled. Clinical data including patient's age and sex, tumor histologic subtype and grade, and disease stage were obtained. Expression of CD44 and nestin was assessed by immunohistochemistry. Expression of membranous CD44 (51%, 78/152) and cytoplasmic nestin (25%, 43/174) was significantly greater in gastric adenocarcinoma than in NNGM (P<0.001). A subset of cases (n=15) that co-expressed membranous CD44 and cytoplasmic nestin were significantly more frequent in Lauren intestinal histologic subtype than in diffuse subtype (P<0.05). Foci of intestinal metaplasia (n=6) showed either CD44 (3/6) or nestin (2/6) expression. This is the first study to report the clinicopathologic significance of nestin expression in gastric cancers, and to correlate the nestin expression with CD44, another stem cell marker. The study shows that nestin and CD44, are significantly expressed in a subset of gastric adenocarcinoma, particularly co-expression of nestin and CD44 is significantly revealed in Lauren intestinal histologic subtype. Their expression is also increased in intestinal metaplasia, a premalignant lesion. These findings suggest that CSCs may have a pathogenetic role in the pathway of intestinal metaplasia-intestinal type gastric adenocarcinoma.
Collapse
Affiliation(s)
- Sadhna Dhingra
- Pathology and Laboratory Medicine, University of Texas Health Science CenterHouston, TX United States
| | - Wei Feng
- Department of Pathology, North Cypress Medical CenterCypress TX, United States
| | - Robert E Brown
- Pathology and Laboratory Medicine, University of Texas Health Science CenterHouston, TX United States
| | - Zhongren Zhou
- Pathology, University of RochesterRochester, United States
| | - Thaer Khoury
- Pathology, Roswell Park Cancer InstituteBuffalo, USA
| | - Rongzhen Zhang
- Pathology and Laboratory Medicine, University of Texas Health Science CenterHouston, TX United States
| | - Dongfeng Tan
- Department of Pathology, University of Texas MD Anderson Cancer CenterHouston, TX, United States
| |
Collapse
|