1
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Lin TY, Gu SY, Lin YH, Shih JH, Lin JH, Chou TY, Lee YC, Chang SF, Lang YD. Paclitaxel-resistance facilitates glycolytic metabolism via Hexokinase-2-regulated ABC and SLC transporter genes in ovarian clear cell carcinoma. Biomed Pharmacother 2024; 180:117452. [PMID: 39341074 DOI: 10.1016/j.biopha.2024.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian clear cell carcinoma (OCCC) frequently develops resistance to platinum-based therapies, which is regarded as an aggressive subtype. However, metabolic changes in paclitaxel resistance remain unclear. Herein, we present the metabolic alternations of paclitaxel resistance in bioenergetic profiling in OCCC. Paclitaxel-resistant OCCC cells were developed and metabolically active with oxygen consumption rates (OCR) compared to parental cells. Metabolite profiling analysis revealed that paclitaxel-resistant OCCC cells reduced intracellular ATP and GTP influx rates, increasing the NADH/NAD+ ratio. We further demonstrated that paclitaxel-resistant OCCC cells led to characteristic alternations of metabolite levels in energy-requiring and energy-releasing steps of glycolysis and their corresponding glycolytic enzymes. Copy number alterations and RNA sequencing analysis demonstrated that ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporter genes involved in glycolysis metabolism and molecular transport were enriched in paclitaxel-resistant OCCC cells. We first identified that Hexokinase 2 (HK2) expression is upregulated in paclitaxel-resistant OCCC cells to determine the quantity of glucose entering glycolysis. Utilizing proteolysis-targeting chimera (PROTAC) HK2 degraders, we also found that paclitaxel sensitivity, viability, and oxygen consumption rates under paclitaxel treatment were restored by HK2 degraders treatment, and decreased downstream expression of the ABC and SLC transporters was shown in OCCC cells. Taken together, these findings highlight the paclitaxel resistance in OCCC elucidates metabolic alternation, including ABC- and SLC- drug transporters, thereby affecting glycolysis metabolism in response to paclitaxel resistance, and HK2 may become a novel potential therapeutic target for paclitaxel resistance.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Yuan Gu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hui Lin
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yaw-Dong Lang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Precision Health Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Xie Y, Xie D, Chen C. Hsa_circ_0049472 contributed to amyloid-beta peptide-induced neurotoxicity, apoptosis and inflammation via regulating PI3K-AKT signaling pathway by interacting with miR-22-3p/ZNF217 axis. Brain Res Bull 2024; 215:111004. [PMID: 38852653 DOI: 10.1016/j.brainresbull.2024.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) exhibited important roles in Alzheimer's disease (AD). Here, we focused on the dysregulation of hsa_circ_0049472 (circ_0049472) and potential functions in SK-N-SH cells with amyloid-beta peptide (Aβ) treatment in AD. METHODS RNA expression was detected by real-time quantitative PCR. Cell viability and proliferation were measured by MTS and Edu assays. Flow cytometry was used for apoptosis detection, and cell inflammation was assessed using enzyme-linked immunosorbent assay. Target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. Protein expression and phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) pathway were examined by Immunoblotting. RESULTS Aβ treatment inhibited cell viability and proliferation of SK-N-SH cells, but enhanced apoptosis rate, apoptosis protein levels (Bcl2-associated X protein and cleaved-caspase-3) and inflammatory cytokines (interleukin -6, IL-1β, tumor necrosis factor-α). Then, circ_0049472 expression was shown to be upregulated in response to Aβ stimulation and knockdown of circ_0049472 has ameliorated Aβ-induced cell injury. Circ_0049472 was identified as a sponge for miR-22-3p, and miR-22-3p inhibition reversed the regulation of circ_0049472 knockdown in Aβ-treated cells. Furthermore, ZNF217 acted as a target of miR-22-3p and circ_0049472 could regulate ZNF217 expression via binding to miR-22-3p. Overexpression of miR-22-3p abated Aβ-induced apoptosis and inflammation via downregulating ZNF217. Furthermore, Aβ reduced proteins levels of p-PI3K and p-AKT, and this inhibition of PI3K-AKT pathway was restored by the regulation of circ_0049472/miR-22-3p/ZNF217 axis. CONCLUSION Circ_0049472 was involved in Aβ-induced neural injury by regulating miR-22-3p/ZNF217 axis to affect PI3K-AKT pathway. This study has discovered an innovative mechanism for AD.
Collapse
Affiliation(s)
- Yuanrun Xie
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Dan Xie
- Department of Otolaryngology, Huangshi No.5 Hospital, Huangshi City, Hubei, China
| | - Chao Chen
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China.
| |
Collapse
|
4
|
Wu T, Du X, Liu HH, Liu LY, Yang YK, Wang SJ, Duan CL. Bioactive solanidane steroidal alkaloids from Solanum lyratum. Fitoterapia 2024; 175:105916. [PMID: 38527590 DOI: 10.1016/j.fitote.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024]
Abstract
Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao Du
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hai-Hui Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang-Yu Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu-Ke Yang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Su-Juan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Chang-Ling Duan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
5
|
Rangel N, Sánchez IL, Valbuena DS, Rondón-Lagos M. ZNF217 Gene Copy Number as a Marker of Response to Standard Therapy Drugs According to ERα Status in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:127-139. [PMID: 38505863 PMCID: PMC10950081 DOI: 10.2147/bctt.s445753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024]
Abstract
Purpose The therapeutic decision for the management of breast cancer (BC) patients is based on the evaluation of prognostic factors alongside clinical and pathological parameters. Despite the use of standard biomarkers, response and resistance to therapy represent a challenge for clinicians. Among the new potential biomarkers for BC the ZNF217 gene have gained importance in recent years. However, while associations between ZNF217 gene copy number and clinicopathological characteristics have been established, its correlation with treatment response remains unclear. Patients and Methods This study aimed to evaluate the ZNF217 gene copy number and establish its associations with treatment response in estrogen receptor positive (ERα+) and ERα negative (ERα-) BC cell lines. In addition, a validation of the relationship between ZNF217 gene copy number and its prognostic value was performed using datasets of BC patients retrieved from the cBioPortal public database. Results Our data show that in ERα+ cells, ZNF217 gene copy number increase (amplification), while cell proliferation decreases in response to standard drug treatments. In contrast, both ZNF217 gene copy number (gain) and cell proliferation increases in response to standard drug treatments in ERα- cells. The results obtained align with findings from the cBioPortal database analysis, demonstrating that ERα+/HER2- low proliferation patients, exhibiting ZNF217 gene amplification or gain, have a significantly higher survival probability after treatment, compared to ERα-/HER2- and HER2+ patients. Conclusion Our results suggest that in ERα+ BC cells, ZNF217 gene amplification could be indicative of a favorable response, while in ERα- BC cells, ZNF217 gene gain could be postulated as a potential predictor of treatment resistance. A broader understanding of the role of ZNF217 gene in treatment response, together with prospective studies in BC patients, could contribute to confirming our data, as well as optimizing existing treatments and exploring novel approaches to improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Iris Lorena Sánchez
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| |
Collapse
|
6
|
Lin LH, Zamuco RD, Shukla PS. Ovarian Clear Cell Carcinoma and Markers of Epithelial-Mesenchymal Transition (EMT): Immunohistochemical Characterization of Tumor Budding. Int J Gynecol Pathol 2023; 42:602-612. [PMID: 36706438 DOI: 10.1097/pgp.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor budding, largely considered a manifestation of epithelial-mesenchymal transition (EMT) is an established prognostic marker for several cancers. In a recent study, tumor budding was associated with poor clinical outcomes in early-stage ovarian clear cell carcinoma. Here, we evaluated the immune expression of 3 proteins shown to be associated with EMT (E-cadherin, β-catenin, and glypican-3) in 72 primary tumors of ovarian clear cell carcinoma with median follow-up of 39.47 mo. E-cadherin and β-catenin expression was further evaluated in tumor buds in 29 (40%) cases. In the tumor mass, diffuse membranous expression of E-cadherin and β-catenin was seen in 83% (60/72) and 81% (58/72) cases, respectively. Nuclear accumulation of E-cadherin was seen in 7 (10%) cases, while none of the cases showed nuclear β-catenin expression. Glypican-3 expression was diffuse in 33.3% (24/72), patchy in 29.2% (21/72), and absent in 37.5% (27/72) cases. Evaluation of tumor buds showed aberrant patterns of expression (complete loss/cytoplasmic accumulation/diminished, discontinuous incomplete membranous staining) of E-cadherin in 29/29 (100%) and of β-catenin in 26/29 (90%) cases. E-cadherin, β-catenin, and glypican-3 expression in the main tumor mass had no association with stage, lymph node status, recurrent/progressive disease, status at last follow-up, survival and histopathologic features ( P >0.05). Our finding of aberrant expression of both E-cadherin and β-catenin in tumor buds indicates involvement of Wnt signaling pathway/EMT in tumor budding and outlines its significance as a prognostic marker especially for early-stage ovarian clear cell carcinoma.
Collapse
|
7
|
Tong A, Di X, Zhao X, Liang X. Review the progression of ovarian clear cell carcinoma from the perspective of genomics and epigenomics. Front Genet 2023; 14:952379. [PMID: 36873929 PMCID: PMC9978161 DOI: 10.3389/fgene.2023.952379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer with unique molecular characteristics, specific biological and clinical behavior, poor prognosis and high resistance to chemotherapy. Pushed by the development of genome-wide technologies, our knowledge about the molecular features of OCCC has been considerably advanced. Numerous studies are emerging as groundbreaking, and many of them are promising treatment strategies. In this article, we reviewed studies about the genomics and epigenetics of OCCC, including gene mutation, copy number variations, DNA methylation and histone modifications.
Collapse
Affiliation(s)
- An Tong
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangjie Di
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Shen J, Zhu X, Wu Z, Shi Y, Wen T. Uvangoletin, extracted from Sarcandra glabra, exerts anticancer activity by inducing autophagy and apoptosis and inhibiting invasion and migration on hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153793. [PMID: 34736000 DOI: 10.1016/j.phymed.2021.153793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/13/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uvangoletin is a dihydrochalcone extracted from the traditional Chinese medicinal plant Sarcandra glabra. Previous research has showed that uvangoletin could induce leukemia cell death. However, the anticancer effect of uvangoletin on hepatocellular carcinoma (HCC) has not been clarified. AIM OF THE STUDY This study aimed to investigate the anti-cancer effects of uvangoletin on HCC and to explore its underlying mechanisms. MATERIALS AND METHODS We measured the anticancer activities of uvangoletin both in vitro and in vivo by MTT assay and HepG2 xenograft model. The effects of uvangoletin on apoptosis, autophagy, migration and invasion were also determined. Apoptosis was evaluated by flow cytometry method. Autophagy was assessed by immunofluorescence assay. Cell migration and invasion ability were validated by wound healing assay and cultrex® 96 well cell migration/invasion assay. The expression level of relevant proteins and pathways were examined by western blot. RESULTS The results of MTT assay and HepG2 xenograft model showed that uvangoletin could inhibit HCC cells proliferation in vitro and in vivo. Uvangoletin could induce HepG2 cell apoptosis as evidence by the increased expression of cleaved caspase 3, caspase 8 and Bax while decreased Bcl-2 expression. Wound healing assay and transwell assay showed that uvangoletin inhibited HepG2 cells migration and invasion and reduced vimentin, MMP9, MMP2 expression. Uvangoletin also promoted autophagy in HepG2 cells as confirmed by the accumulation of GFP-LC3 puncta. Autophagy inhibitors like 3-MA or CQ could suppress uvangoletin-induced apoptosis. Importantly, uvangoletin-induced anti-EMT effect was also attenuated after autophagy inhibitors added in. Mechanistically, the expressions of p-JNK, p-ERK, p-p38, p-AKT, p-p70S6k and p-mTOR were significantly decreased after uvangoletin treatment. CONCLUSION Our results showed that uvangoletin could induce apoptotic and autophagic cell death, inhibit cell proliferation and metastasis on HepG2 cells through Akt/mTOR, MAPK and TGFβ/Smad2 signal pathways.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, MCH, West China Hospital, Sichuan University, Chengdu, China
| | - Xinrui Zhu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, MCH, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, MCH, West China Hospital, Sichuan University, Chengdu, China.
| | - Tianfu Wen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Chengdu, China.
| |
Collapse
|
9
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
10
|
Wei L, He Y, Bi S, Li X, Zhang J, Zhang S. miRNA‑199b‑3p suppresses growth and progression of ovarian cancer via the CHK1/E‑cadherin/EMT signaling pathway by targeting ZEB1. Oncol Rep 2021; 45:569-581. [PMID: 33416170 PMCID: PMC7757082 DOI: 10.3892/or.2020.7895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies and its pathogenesis and progression are regulated by multiple genes. MicroRNAs (miRNAs) are endogenous non‑coding RNAs that regulate body function by altering post‑transcriptional gene expression. Previous studies have suggested that miRNAs are closely associated with the pathogenesis and progression of several malignancies, including breast cancer, hepatocellular carcinoma and glioma, among others. Therefore, miRNAs are promising novel targets for the diagnosis, treatment and determination of prognostic factors in patients with ovarian cancer. In the present study, the role of miRNA‑133b‑3p in ovarian cancer progression and its possible mechanism of action were investigated. The results demonstrated that the expression of miRNA‑199b‑3p and zinc finger E‑box binding homeobox (ZEB)1 were increased in patients with ovarian cancer. The overall survival (OS) and disease‑free survival (DFS) of patients with ovarian cancer and high miRNA‑199b‑3p expression were prolonged compared with those of patients with low miRNA‑199b‑3p expression. Additionally, the OS and DFS of patients with ovarian cancer and low ZEB1 expression were longer compared with those of patients with high ZEB1 expression. Furthermore, miRNA‑199b‑3p overexpression reduced cell proliferation and promoted apoptosis in an in vitro model of ovarian cancer. miRNA‑199b‑3p overexpression also suppressed ZEB1 and checkpoint kinase 1 expression and induced E‑cadherin expression and epithelial‑to‑mesenchymal transition in this model. Furthermore, the effects of miRNA‑199b‑3p‑mediated apoptosis and migration were attenuated by ZEB1 and E‑cadherin, respectively. The results of the present study indicated that miRNA‑199b‑3p suppressed ovarian cancer progression by targeting ZEB1, which may represent a promising therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liqun Wei
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Yuanqi He
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Shuhong Bi
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Xiaoxiao Li
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Jianzhong Zhang
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Shihong Zhang
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| |
Collapse
|
11
|
Gao CT, Ren J, Yu J, Li SN, Guo XF, Zhou YZ. KIF23 enhances cell proliferation in pancreatic ductal adenocarcinoma and is a potent therapeutic target. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1394. [PMID: 33313139 PMCID: PMC7723550 DOI: 10.21037/atm-20-1970] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background In recent research, high expression of kinesin family member 23 (KIF23), one of the kinesin motor proteins involved in the regulation of cytokinesis, has been shown to be related to poor prognosis in glioma and paclitaxel-resistant gastric cancer, as a results of the enhancement of proliferation, migration, and invasion. In this study, we analyzed the role of KIF23 in the progression of pancreatic ductal adenocarcinoma. Methods A bioinformatic method was used to analyze the KIF23 mRNA level in pancreatic tumor tissues compared with normal pancreatic tissues and to analyze the connection between high KIF23 expression and prognosis. We examined the expression of KIF23 using immunohistochemistry and analyzed the connection between the expression of KIF23 and clinicopathological features in pancreatic ductal adenocarcinoma patients. In addition, a colony formation assay, MTT assay, and western blot assay were performed in vitro, along with a mouse xenograft model in vivo, to analyze the effect of KIF23 on proliferation. Further, the correlation between KIF23 and CDCA8 was analyzed by TCGA and immunohistochemical data. Results Bioinformatic results showed that KIF23 mRNA expression was higher in pancreatic tumor tissues than in normal pancreatic tissues and a poor prognosis has been linked to the high expression of KIF23. Immunohistochemistry revealed that KIF23 was highly expressed at the protein level and high expression of KIF23 correlated with adverse clinicopathological features. Our experimental results demonstrated that knockdown of KIF23 could inhibit the proliferation of pancreatic cells. Further, a positive correlation between KIF23 and CDCA8 expression existed, and KIF23 might promote pancreatic cancer proliferation by affecting CDCA8 expression. Conclusions Our data showed that high expression of KIF23 is associated with a poor prognosis, and KIF23 might be a potential therapeutic target for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Chun-Tao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jin Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Jie Yu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Nan Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Fan Guo
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yi-Zhang Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
12
|
Tian W, Zhang W, Zhang Y, Zhu T, Hua Y, Li H, Zhang Q, Xia M. FABP4 promotes invasion and metastasis of colon cancer by regulating fatty acid transport. Cancer Cell Int 2020; 20:512. [PMID: 33088219 PMCID: PMC7574203 DOI: 10.1186/s12935-020-01582-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background The prognosis of colon cancer is poor for metastasis, while the mechanism, especially adipocytes related, is not yet clear. The purpose of this study is to determine the effects of fatty acid binding protein 4 (FABP4), a transporter for lipids, on colon cancer progression. Methods The distribution of lipids and FABP4 was tested in the colon cancer tissues and adjacent normal tissues, and their relationship was also verified in vitro. Experiments about cellular invasion, migration and proliferation were performed to detect the impacts of FABP4 on the biological behaviors of colon cancer, and the positive results were checked in vivo. Meanwhile, the regulatory role of FABP4 in the energy and lipid metabolism was evaluated by the levels of triglyceride, ATP, LDH, glycerol and NEFA. At last, GO and KEGG analysis based on FABP4 overexpressed cells was performed, and the AKT pathway and epithelial-mesenchymal transition (EMT)-related proteins were determined by Western blot. Results Higher accumulation of lipids and stronger FABP4 transcription were observed in colon cancer tissues. Having been incubated with adipose tissue extract and overexpressed FABP4, colon cancer cells demonstrated enhanced lipid accumulation. In functional experiments, co-culture with adipose tissue extract significantly enhanced the invasion and migration of colon cancer cells, as well as the energy and lipid metabolism, and all these processes were reversed by FABP4 inhibitor. In addition, the metastasis of FABP4-overexpressed colon cancer cells was also significantly enhanced in vitro and in vivo. In terms of mechanism, the bioinformatics analysis showed that FABP4 was enriched in 11 pathways related to metabolic processes in FABP4 overexpressed cells. Finally, FABP4 overexpression improved EMT progression of colon cancer, as evidenced by the upregulation of Snail, MMP-2 and MMP-9, the downregulation of E-cadherin. The expression of p-Akt was also elevated. Conclusion FABP4 overexpression could increase FAs transport to enhance energy and lipid metabolism, and activate AKT pathway and EMT to promote the migration and invasion of colon cancer cells.
Collapse
Affiliation(s)
- Wenying Tian
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Wenjia Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Tianyue Zhu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yuting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Hui Li
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Qinglin Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| |
Collapse
|
13
|
Shao Q, Zhang Z, Cao R, Zang H, Pei W, Sun T. CPA4 Promotes EMT in Pancreatic Cancer via Stimulating PI3K-AKT-mTOR Signaling. Onco Targets Ther 2020; 13:8567-8580. [PMID: 32922037 PMCID: PMC7457871 DOI: 10.2147/ott.s257057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Carboxypeptidase A4 (CPA4), as a novel tumor biomarker, is prevalently observed in various cancers. However, the potential role of CPA4 in pancreatic cancer (PC), to our knowledge, has not been fully clarified. Materials and Methods We systematically explored the detailed function of CPA4 in epithelial to mesenchymal transition (EMT) stimulated PC in human clinical samples and in vitro. Results CPA4 was overexpressed in clinical PC samples that was positively related with tumor size (P=0.026), T stage (P=0.011), lymph-node metastasis (P=0.026) and a worse prognosis for PC patients (P=0.001). Interestingly, CPA4 was inversely correlated with E-cadherin (r=−0.372, P=0.003) in clinical samples and PC cell lines which cooperatively contributed to a worse prognosis (P=0.005) for PC patients. CPA4 overexpression enhanced EMT in AsPC-1 and Capan-2 cells, which promoted EMT-like cellular morphology and cell invasion and migration. Meanwhile, CPA4 overexpression activated EMT and PI3K-AKT-mTOR signaling, following with the downregulation of E-cadherin and β-catenin, and the upregulation of N-cadherin, vimentin, p-PI3K (Tyr458), p-AKT (Ser473) and p-mTOR (Ser2448). However, PI3K inhibitor LY294002 reversed CPA4 overexpression-stimulated EMT in vitro. Moreover, CPA4 was co-immunoprecipitated with AKT in two PC cells with CPA4 high expression. Conversely, CPA4 silencing inhibited EMT in PANC-1 cells. CPA4 overexpression or silencing promoted or inhibited cell proliferation and drug resistance in Capan-2 and PANC-1 cells via regulating Bcl2/Bax and cleaved-caspase3 signaling. However, LY294002 reversed CPA4 overexpression-stimulated cell proliferation and drug resistance in vitro in Bcl2/Bax and caspase3-dependent apoptosis. Conclusion CPA4 overexpression contributes to aggressive clinical stage of PC patients and promotes EMT in vitro via activation of PI3K-AKT-mTOR signaling.
Collapse
Affiliation(s)
- Qingliang Shao
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Rongxian Cao
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Hui Zang
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Wanting Pei
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Tian Sun
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
14
|
Abstract
This review is an appraisal of the current state of knowledge of 2 enigmatic histotypes of ovarian carcinoma: endometrioid and clear cell carcinoma. Both show an association endometriosis and the hereditary nonpolyposis colorectal cancer (Lynch) syndrome, and both typically present at an early stage. Pathologic and immunohistochemical features that distinguish these tumors from high-grade serous carcinomas, each other, and other potential mimics are discussed, as are staging, grading, and molecular pathogenesis.
Collapse
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, CA, USA.
| | - Vinita Parkash
- Department of Pathology, Yale School of Medicine, 20 York Street, EP2-607, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Ramírez-Ramírez R, Gutiérrez-Angulo M, Peregrina-Sandoval J, Moreno-Ortiz JM, Franco-Topete RA, Cerda-Camacho FDJ, Ayala-Madrigal MDLL. Somatic deletion of KDM1A/LSD1 gene is associated to advanced colorectal cancer stages. J Clin Pathol 2019; 73:107-111. [PMID: 31471467 PMCID: PMC7027028 DOI: 10.1136/jclinpath-2019-206128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Aims KDM1A/LSD1 and ZNF217 are involved in a protein complex that participates in transcriptional regulation. ZNF217 has been analysed in numerous cancers and its amplification has been associated with advanced stages of disease; however, a similar role for KDM1A/LSD1 has not been uncovered. In this study, we estimated the number of KDM1A/LSD1 and ZNF217 gene copies in tissue samples from patients diagnosed with colorectal cancer (CRC), as well as its association with clinicopathological features in patients with CRC. Methods Paraffin-embedded tumour samples from 50 patients with CRC with a histopathological diagnosis of CRC were included. The number of copies of KDM1A/LSD1 and ZNF217 genes was determined by fluorescence in situ hybridisation (FISH). We also analysed the association between copy numbers of selected genes and clinicopathological data based on multivariate analysis. Results Deletion of the KDM1A/LSD1 gene occurred in 19 samples (38%), whereas ZNF217 gene amplification was identified in 11 samples (22%). We found a significant association between lymph node metastasis or advanced tumour stage and KDM1A/LSD1 gene deletion (p value=0.0003 and p value=0.011, respectively). Conclusions KDM1A/LSD1 gene deletion could be considered a novel prognostic biomarker of late-stage CRC.
Collapse
Affiliation(s)
- Ruth Ramírez-Ramírez
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | - Melva Gutiérrez-Angulo
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México.,Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México.,Laboratorio de Patología Clínica, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, México
| | - José Miguel Moreno-Ortiz
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México.,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Ramon Antonio Franco-Topete
- Servicio de Anatomía Patológica, Hospital Civil de Guadalajara "Dr. Juan I Menchaca", Guadalajara, México.,Departamento de Microbiología y Patología, Universidad de Guadalajara, Guadalajara, México
| | | | - Maria de la Luz Ayala-Madrigal
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México .,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
16
|
Karimi Roshan M, Soltani A, Soleimani A, Rezaie Kahkhaie K, Afshari AR, Soukhtanloo M. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie 2019; 165:229-234. [PMID: 31401189 DOI: 10.1016/j.biochi.2019.08.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process in the development of many tissues and organs in multicellular organisms that its important role in the pathogenesis of metastasis and tumor cell migration has been firmly established. Decreased adhesive capacity, cytoskeletal reorganization, and increased mobility are hallmarks of the EMT. Several molecular mechanisms promote EMT, Including regulation of the levels of specific cell-surface proteins, ECM-degrading enzymes, and altering the expression of certain transcription factors and microRNAs. EMT process is modulated through multiple signaling pathways including the AKT/mTOR pathway. AKT is a key component in numerous processes which was recently shown to regulate the EMT through suppression of the expression of E-cadherin via EMT transcription factors. On the other hand, mTOR complexes can also regulate the EMT through the regulation of cell's actin cytoskeleton by altering the PKC phosphorylation state and direct phosphorylation and activation of Akt. Here we review the effect of AKT and mTOR on EMT and consequently metastasis and cell motility.
Collapse
Affiliation(s)
- Mostafa Karimi Roshan
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Rezaie Kahkhaie
- Department of Medical Biochemistry, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran; Medical Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Liu Z, Xu Z, Tian Y, Yan H, Lou Y. ZNF277 regulates ovarian cancer cell proliferation and invasion through inhibition of PTEN. Onco Targets Ther 2019; 12:3031-3042. [PMID: 31114246 PMCID: PMC6476229 DOI: 10.2147/ott.s192553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background ZNF277 is a transcription factor that is overexpressed in several cancers. However, its clinical role in ovarian cancer (OC) has not been reported yet. The present study aims to investigate the expression of ZNF277 in patients with OC, and to reveal the effects of ZNF277 on the proliferation, migration, and invasion of OC cells. Methods Using The Cancer Genome Atlas database, we found that higher expression of ZNF277 was correlated with poorer survival times of OC patients. This study used functional experiments, such as Cell Counting Kit-8 assay, colony formation assay, wound healing assay, and transwell invasion assay. Mechanistically, using quantitative chromatin immunoprecipitation assay, luciferase reporter assay, quantitative reverse-transcription PCR, and Western blot we identified the potential mechanism. Results We confirmed for the first time that the expression of ZNF277 is significantly increased in OC tissues and cell lines and that it is closely associated with the adverse clinical features of OC patients. We demonstrated that overexpression of ZNF277 potentiated the proliferation, migration, and invasion of SKOV3 and OVCAR3 loss-of-function experiments showed that the silencing of ZNF277 reduced the proliferation, migration, and invasion of OC cells. Mechanistically, using quantitative chromatin immunoprecipitation assay, luciferase reporter assay, quantitative reverse-transcription PCR, and Western blot we identified that PTEN was a direct downstream target for ZNF277. PTEN expression antagonized the tumor-promoting function of ZNF277. Conclusion Taken together, the results of the current study demonstrated that ZNF277 exerted a promoting role in the progression of OC and might act as a promising biomarker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Zhengling Liu
- Department of Gynaecology, Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China,
| | - Zonglan Xu
- Department of Gynaecology, Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China,
| | - Yonghui Tian
- Department of Gynaecology, Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China,
| | - Hua Yan
- Department of Gynaecology, Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China,
| | - Yanyan Lou
- Department of Gynaecology, Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China,
| |
Collapse
|
18
|
Jiang W, Ye S, Xiang L, Yang W, He T, Pei X, Guo L, Yang H. Establishment and molecular characterization of a human ovarian clear cell carcinoma cell line (FDOV1). J Ovarian Res 2018; 11:58. [PMID: 29986747 PMCID: PMC6038259 DOI: 10.1186/s13048-018-0429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian clear cell carcinoma is a distinct histologic subtype with grave survival. The underlying molecular mechanism is not fully elucidated. However, we don’t have many cell lines, which are useful experimental tools for research. We describe the establishment and characterization of a new ovarian clear cell carcinoma cell line from a Chinese patient. Results FDOV1 has been subcultured for more than 80 generations. Monolayer cultured cells are polygonal in shape, showing a transparent cytoplasm full of vacuoles. The number of chromosomes ranges from 45 to 90. FDOV1 cells produces CA-125, but not CA-199. The cells could be transplanted and produced tumors mimicking the donor tumor morphologically and immunohistochemically. Whole exome sequence showed both FDOV1 and tissue block harbored PIK3CA H1047R mutation and ARID1A frameshift mutations (p.L2106 fs, p.N201 fs). More interestingly, we observed SPOP mutation (p.D82H) and ZNF217 (chromosome 20q13) amplification in FDOV1, which are quite novel. Conclusions Only a few patient-derived ovarian clear cell carcinoma cell lines have been reported in the literature. FDOV1 is the very first one, to the best of our knowledge, from a Mainland Chinese patient. It showed infinite multiplication until now and tumorigenicity in vivo. FDOV1 has co-existing PIK3CA and ARID1A mutations. It also harbored SPOP mutation and ZNF217 amplification, which would probably be a good model for exploring the molecular mechanism of ovarian clear cell carcinoma. Electronic supplementary material The online version of this article (10.1186/s13048-018-0429-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuang Ye
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Libing Xiang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tiancong He
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuan Pei
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Huijuan Yang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
E-cadherin expression as a prognostic factor in patients with ovarian cancer: a meta-analysis. Oncotarget 2017; 8:81052-81061. [PMID: 29113366 PMCID: PMC5655261 DOI: 10.18632/oncotarget.18898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/12/2017] [Indexed: 01/11/2023] Open
Abstract
The prognostic role of epithelial cadherin (E-cadherin) downregulation in ovarian cancer has been assessed for years while the results remain inconclusive. The aim of our study was to assess this issue. Eligible studies were identified through searches of PubMed, EMBASE and Cochrane Database. In total, 1562 patients from 17 studies were included to assess the association between E-cadherin expression and overall survival/progression-free survival and clinicopathological characteristics of ovarian cancer patients. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence interval (95% CI) were calculated to estimate the effect. The quality of 17 studies was evaluated using the Newcastle Ottawa Quality Assessment Scale. We also performed subgroup analysis, publication bias and sensitivity analysis in this meta-analysis. The results showed that negative E-cadherin expression significantly predicted poor overall survival of ovarian cancer patients (HR = 1.90, 95% CI = 1.50–2.40). However, negative E-cadherin was not associated with poor progression-free survival (HR = 1.19, 95% CI = 0.86–1.64). Moreover, Negative E-cadherin expression was distinctly associated with FIGO stage (OR = 0.42, 95% CI = 0.31–0.57), tumor grade (OR = 0.48, 95% CI = 0.34–0.67), metastasis (OR = 0.13, 95% CI = 0.07–0.26) and recurrence (OR = 0.48, 95% CI = 0.29–0.79). This meta-analysis revealed that negative E-cadherin expression might be a predicative factor of poor prognosis in ovarian cancer patients.
Collapse
|
20
|
|
21
|
Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget 2016; 6:41566-81. [PMID: 26431164 PMCID: PMC4747174 DOI: 10.18632/oncotarget.5893] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
The recently described oncogene ZNF217 belongs to a chromosomal region that is frequently amplified in human cancers. Recent findings have revealed that alternative mechanisms such as epigenetic regulation also govern the expression of the encoded ZNF217 protein. Newly discovered molecular functions of ZNF217 indicate that it orchestrates complex intracellular circuits as a new key regulator of tumorigenesis. In this review, we focus on recent research on ZNF217-driven molecular functions in human cancers, revisiting major hallmarks of cancer and highlighting the downstream molecular targets and signaling pathways of ZNF217. We also discuss the exciting translational medicine investigating ZNF217 expression levels as a new powerful biomarker, and ZNF217 as a candidate target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Pascale A Cohen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Nhan T Nguyen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
22
|
Yanaihara N, Noguchi Y, Saito M, Takenaka M, Takakura S, Yamada K, Okamoto A. MicroRNA Gene Expression Signature Driven by miR-9 Overexpression in Ovarian Clear Cell Carcinoma. PLoS One 2016; 11:e0162584. [PMID: 27612152 PMCID: PMC5017778 DOI: 10.1371/journal.pone.0162584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Previous studies have identified microRNA (miRNA) involvement in human cancers. This study aimed to elucidate potential clinical and biological associations of ovarian cancer-related miRNA gene expression profiles in high-grade serous carcinoma (HGSC) and ovarian clear cell carcinoma (OCCC). Accordingly, we investigated 27 patients with ovarian cancer (12 HGSC and 15 OCCC cases) using quantitative real-time reverse transcription polymerase chain reaction to determine the cancer-related miRNA expressions. Gene Cluster 3.0 was used for hierarchical clustering analysis, and differentially expressed miRNAs between HGSC and OCCC were identified by the class comparison analysis using BRB-ArrayTools. An unsupervised hierarchical clustering analysis identified two distinct miRNA expression clusters, with histological subtype-related significant differences in the associations between clusters and clinicopathological features. A comparison of miRNA expression in HGSCs and OCCCs identified five miRNAs (miR-132, miR-9, miR-126, miR-34a, and miR-21), with OCCCs demonstrating a statistically higher expression. Further investigation of the biological significance of miR-9 overexpression in OCCC revealed that miR-9 inhibition reduced the cell invasion ability and upregulated E-cadherin expression. Using a luciferase reporter assay, we further demonstrated the direct binding of miR-9 to E-cadherin. Global cancer-related miRNA expression analysis identified statistically unique profiles that could discriminate ovarian cancer histotypes. In OCCC, miR-9 overexpression may affect pathogenesis by targeting E-cadherin, thereby inducing an epithelial–mesenchymal transition. Therefore, miR-9 may be a promising therapeutic target strategy for OCCC.
Collapse
Affiliation(s)
- Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yukiko Noguchi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Misato Saito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Takakura
- Department of Obstetrics and Gynecology, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Kyosuke Yamada
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|