1
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
2
|
Dong H, Sun M, Li H, Yue Y. CXCR3 predicts the prognosis of endometrial adenocarcinoma. BMC Med Genomics 2023; 16:20. [PMID: 36750966 PMCID: PMC9903462 DOI: 10.1186/s12920-023-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Currently, endometrial adenocarcinoma lacks an effective prognostic indicator. This study was to develop and validate a gene biomarker and a nomogram to predict the survival of endometrial adenocarcinoma, explore potential mechanisms and select sensitive drugs. METHODS 425 endometrial adenocarcinoma cases with RNA sequencing data from TCGA were used to identify the most immune-related module by WGCNA. As an external test set, 103 cases from GSE17025 were used. Immune-related genes were downloaded from Innate DB. The three sets of data were used to identify the prognostic genes. Based on 397 cases with complete clinical data from TCGA, randomly divided into the training set (n = 199) and test set (n = 198), we identified CXCR3 as the prognostic gene biomarker. Age, grade, FIGO stage, and risk were used to develop and validate a predictive nomogram. AUC, C-index, calibration curve and K-M estimate evaluated the model's predictive performance. KEGG enrichment analysis, immune functions, TMB, the effectiveness of immunotherapy, and drug sensitivity between the high-risk and low-risk groups. RESULTS CXCR3 was identified as a prognostic biomarker. We calculated the risk score and divided the cases into the high-risk and low-risk groups by the median value of the risk score. The OS of the high-risk group was better than the low-risk group. The risk was the prognostic indicator independent of age, grade, and FIGO stage. We constructed the nomogram including age, grade, FIGO stage, and risk to predict the prognosis of endometrial adenocarcinoma. The top five KEGG pathways enriched by the DEGs between the high- and low-risk groups were viral protein interaction with cytokine and cytokine receptors, cytokine-cytokine receptor interaction, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and cell adhesion molecules. We analyzed the difference in immune cells and found that CD8+ T cells, activated CD4+ T cells, T helper cells, monocytes, and M1 macrophages were infiltrated more in the low-risk group. However, M0 macrophages and activated dendritic cells were more in the high-risk group. The immune function including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, HLA, inflammation-promoting, MHC-I, parainflammation, T cell coinhibition, T cell costimulation, type I-IFN-response, and type II-IFN-response were better in the low-risk group. TMB and TIDE scores were both better in the low-risk group. By 'the pRRophetic' package, we found 56 sensitive drugs for different risk groups. CONCLUSION We identified CXCR3 as the prognostic biomarker. We also developed and validated a predictive nomogram model combining CXCR3, age, histological grade, and FIGO stage for endometrial adenocarcinoma, which could help explore the precise treatment.
Collapse
Affiliation(s)
- He Dong
- grid.430605.40000 0004 1758 4110Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China
| | - Mengzi Sun
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, China
| | - Hua Li
- grid.430605.40000 0004 1758 4110Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Yue
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
He J, Jiang Z, Lei J, Zhou W, Cui Y, Luo B, Zhang M. Prognostic Value and Therapeutic Perspectives of CXCR Members in the Glioma Microenvironment. Front Genet 2022; 13:787141. [PMID: 35571062 PMCID: PMC9091590 DOI: 10.3389/fgene.2022.787141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: CXCR (CXC Chemokine Receptor) is a complex of the immune-associated protein involved in tumor activation, invasion, migration, and angiogenesis through various chemical signals in the tumor microenvironment (TME). However, significant prognostic characteristics of CXCR members and their impact on the occurrence and progression of glioma have not yet been fully elucidated. Methods: In this research, we used Oncomine, TCGA, GTEx, and CGGA databases to analyze the transcription and survival data of glioma patients. Afterward, the influence of CXCR members on the TME was explored using comprehensive bioinformatics analysis. Results: The mRNA expression levels of CXCR1/2/3/4/7 were significantly up-regulated in glioma than in normal samples, whereas the mRNA expression level of CXCR5 was decreased. We then summarized the genetic alteration landscape of CXCR and identified two molecular subtypes based on CXCR expression patterns in glioma. The characteristics of CXCRs were also investigated, including the clinicopathological parameters, TME cell infiltration, and prognosis of patients with glioma. After Lasso and multivariable Cox regression, a CR-Score for predicting overall survival (OS) was constructed and the predictive performance of the signature was validated. The high-risk group was a significantly poorer prognostic group than the low-risk group as judged by the CR-Score (TCGA cohort, p < 0.001, CGGA cohort, p < 0.001). Moreover, the CR-Score was significantly correlated to the tumor-immune infiltration and cancer stem cell (CSC) index. A risk scale-based nomogram incorporating clinical factors for individual risk estimation was established thereby. Conclusion: These findings may pave the way for enhancing our understanding of CXCR modification patterns and developing better immune therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biao Luo
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Xie L, Wang Q, Yan Z, Han Y, Ma X, Li H, Zhang L, Li X, Guo X. OSgc: A Web Portal to Assess the Performance of Prognostic Biomarkers in Gastric Cancer. Front Oncol 2022; 12:856988. [PMID: 35371973 PMCID: PMC8965707 DOI: 10.3389/fonc.2022.856988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating the prognostic value of genes of interest in different populations of gastric cancer (GC) is difficult and time-consuming for basic and translational researchers even though many datasets are available in public dataset depositories. In the current study, we developed a robust web-based portal called OSgc (Online consensus Survival analysis of gastric cancer) that enables easy and swift verification of known and novel biomarker candidates in GC. OSgc is composed of gene expression profiling data and clinical follow-up information of 1,824 clinical GC cases, which are collected from 7 public independent datasets derived from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). By OSgc, users input the official gene symbol and will promptly retrieve the Kaplan-Meier survival plot with hazard ratio (HR) and log rank p value on the output webpage, by which users could assess the prognostic value of interesting genes for GC patients. Five survival end points containing overall survival, progression-free survival, progression-free interval, relapse-free survival, and disease-free survival could be measured in OSgc. OSgc can greatly help cancer biologists and clinicians to explore the effect of gene expression on patient survival. OSgc is freely available without restrictions at http://bioinfo.henu.edu.cn/GC/GCList.jsp.
Collapse
Affiliation(s)
- Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhongyi Yan
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yali Han
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaoyu Ma
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huimin Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xianzhe Li
- Department of Thoracic Surgery, The Affiliated Nanshi Hospital of Henan University, Nanyang, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Zeng Z, Ma C, Chen K, Jiang M, Vasu R, Liu R, Zhao Y, Zhang H. Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:2988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Reshma Vasu
- West China School of Medicine, Sichuan University, Chengdu 410061, China;
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China;
| | - Yinglan Zhao
- Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China;
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| |
Collapse
|
6
|
Contribution of CXCR3-mediated signaling in the metastatic cascade of solid malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188628. [PMID: 34560199 DOI: 10.1016/j.bbcan.2021.188628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
Metastasis is a significant cause of the mortality resulting from solid malignancies. The process of metastasis is complex and is regulated by numerous cancer cell-intrinsic and -extrinsic factors. CXCR3 is a chemokine receptor that is frequently expressed by cancer cells, endothelial cells and immune cells. CXCR3A signaling in cancer cells tends to promote the invasive and migratory phenotype of cancer cells. Indirectly, CXCR3 modulates the anti-tumor immune response resulting in variable effects that can permit or inhibit metastatic progression. Finally, the activity of CXCR3B in endothelial cells is generally angiostatic, which limits the access of cancer cells to key conduits to secondary sites. However, the interaction of these activities within a tumor and the presence of opposing CXCR3 splice variants clouds the picture of the role of CXCR3 in metastasis. Consequently, thorough analysis of the contributions of CXCR3 to cancer metastasis is necessary. This review is an in-depth examination of the involvement of CXCR3 in the metastatic process of solid malignancies.
Collapse
|
7
|
Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. Int J Biol Sci 2021; 17:2683-2702. [PMID: 34345201 PMCID: PMC8326125 DOI: 10.7150/ijbs.61350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation-induced metastases have long been regarded as one of the significant obstacles in treating cancer. Tumor necrosis factor-α (TNF-α), a main inflammation mediator within tumor microenvironment, affects tumor development by inducing multiple chemokines to establish a complex network. Recent reports have revealed that CXCL10/CXCR3 axis affects cancer cells invasiveness and metastases, and Epithelial-mesenchymal transition (EMT) is the main reason for frequent proliferation and distant organ metastases of colon cancer (CC) cells, However, it is unclear whether TNF-α- mediated chronic inflammation can synergically enhance EMT-mediated CC metastasis through promoting chemokine expression. According to this study, TNF-α activated the PI3K/Akt and p38 MAPK parallel signal transduction pathways, then stimulate downstream NF-κB pathway p65 into the nucleus to activate CXCL10 transcription. CXCL10 enhanced the metastases of CC-cells by triggering small GTPases such as RhoA and cdc42. Furthermore, overexpression of CXCL10 significantly enhanced tumorigenicity and mobility of CC cells in vivo. We further clarified that CXCL10 activated the PI3K/Akt pathway through CXCR3, resulting in suppression of GSK-3β phosphorylation and leading to upregulation of Snail expression, thereby regulating EMT in CC cells. These outcomes lay the foundation for finding new targets to inhibit CC metastases.
Collapse
Affiliation(s)
- Zhengcheng Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhilin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chengxiu Pu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianhua Yu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Qingdao University, Qingdao 266000, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
8
|
Wang P, Wang Y, Jiang Y, Li M, Li G, Qiao Q. Immune Cluster and PPI Network Analyses Identified CXCR3 as a Key Node of Immunoregulation in Head and Neck Cancer. Front Oncol 2021; 10:564306. [PMID: 33585188 PMCID: PMC7874192 DOI: 10.3389/fonc.2020.564306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/30/2020] [Indexed: 12/09/2022] Open
Abstract
The tumor microenvironment (TME) is significantly associated with clinical outcomes and therapeutic efficacy. However, the landscape of the head and neck cancer (HNC) microenvironment is not fully understood. Therefore, we divided HNCs into three classes according to differences in the TME to determine effective personalized treatments. We explored the immune landscape of head and neck cancer by analysing the gene expression profile of 501 cases from the Cancer Genome Atlas (TCGA) data portal and validated our findings in 270 cases from the Gene Expression Omnibus (GEO) database. The levels of immune components in the tumor microenvironment were evaluated via single-sample gene set enrichment (ssGSEA) analysis. The HNCs were clustered into an Immunity-H group, Immunity-M group and Immunity-L group according to 40 immune components in the tumor microenvironment. DNA damage and HLA genes play an important role in immune regulation. The patients in the Immunity-H group had a favourable survival compared with patients in the Immunity-M group and the Immunity-L group. The patients in the Immunity-H group and Immunity-M group could benefit from radiotherapy. In addition, the Immunity-L group showed the lowest immunophenoscore and had poor response to anti-PD-1 treatment. CXCR3 was demonstrated to be downregulated in the Immunity-L group, which was related to shorter OS in the TCGA and GEO databases, suggesting CXCR3 as a potential therapeutic target. Taken together, our findings proposed three new microenvironment-related phenotypes of HNCs and suggested that CXCR3 played a major role in immune regulation and could be a novel therapeutic target, providing a reference for clinical decisions and research directions in the future.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanli Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Minghong Li
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Russo E, Santoni A, Bernardini G. Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer. J Leukoc Biol 2020; 108:673-685. [PMID: 32745326 DOI: 10.1002/jlb.5mr0320-205r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor tissue includes cancer cells and normal stromal cells such as vascular endothelial cells, connective tissue cells (cancer associated fibroblast, mesenchymal stem cell), and immune cells (tumor-infiltrating lymphocytes or TIL, dendritic cells, eosinophils, basophils, mast cells, tumor-associated macrophages or TAM, myeloid-derived suppressor cells or MDSC). Anti-tumor activity is mainly mediated by infiltration of NK cells, Th1 and CD8+ T cells, and correlates with expression of NK cell and T cell attracting chemokines. Nevertheless, cancer cells hijack tissue homeostasis through secretion of cytokines and chemokines that mediate not only the induction of an inflamed status that supports cancer cell survival and growth, but also the recruitment and/or activation of immune suppressive cells. CXCL9, CXCL10, and CXCL11 are known for their tumor-inhibiting properties, but their overexpression in several hematologic and solid tumors correlates with disease severity, suggesting a role in tumor promotion. The dichotomous nature of CXCR3 ligands activity mainly depends on several molecular mechanisms induced by cancer cells themselves able to divert immune responses and to alter the whole local environment. A deep understanding of the nature of such phenomenon may provide a rationale to build up a CXCR3/ligand axis targeting strategy. In this review, we will discuss the role of CXCR3 in cancer progression and in regulation of anti-tumor immune response and immunotherapy.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| |
Collapse
|
10
|
Wang X, Zhang J, Zhou G. The CXCL11-CXCR3A axis influences the infiltration of CD274 and IDO1 in oral squamous cell carcinoma. J Oral Pathol Med 2020; 50:362-370. [PMID: 33187013 DOI: 10.1111/jop.13130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The CXCL9/10/11-CXCR3 axis plays pivotal roles in the recruitment of immune cells and the formation of cancer-specific immunity in various cancers. High expression of immune checkpoints, which could be regulated by cytokines, is closely related to the establishment of immune escape in tumor microenvironment. Therefore, the study was tried to provide insights into the influence of the CXCL9/10/11-CXCR3 axis on immune checkpoints in oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs), especially oral leukoplakia (OLK). METHODS The mRNA levels of CXCL9/10/11 and CXCR3 were analyzed in TCGA, GEO and Oncomine and verified in OLK and OSCC. The specimens were used to analysis the relationship between CXCL9/10/11 and CXCR3 variants. The correlation between CXCL9/10/11 and immune checkpoint/ligand in head and neck squamous cell carcinoma was analyzed in TIMER and confirmed in samples. Small interference transfection of CXCL11 in SCC25 cells was used to evaluate the function of CXCL11 on CD274/IDO1 expression. RESULTS CXCL9/10/11 had increase expression trends from normal tissues to OSCC. The proportion of CXCR3A (one variant of CXCR3) was significantly increased in OSCC comparing with normal tissues, while other variants-CXCR3B and CXCR3alt-did not. CXCL9/10/11 was positively correlated with CXCR3A and immune checkpoints/ligand (IDO1, LAG3, and CD274) in OLK and OSCC. CXCL11-knockdown SCC25 cells could directly inhibit the intracellular expression of CD274 and IDO1. CONCLUSION The upregulated CXCL9/10/11-CXCR3A axis may interact with immune checkpoints/their ligands in OLK and OSCC. Furthermore, CXCL11 may affect the expression of CD274 and IDO1 in an autocrine mode in OSCC.
Collapse
Affiliation(s)
- Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Lyu L, Zheng Y, Hong Y, Wang M, Deng Y, Wu Y, Xu P, Yang S, Wang S, Yao J, Zhang D, Guo Y, Lyu J, Dai Z. Comprehensive analysis of the prognostic value and immune function of chemokine-CXC receptor family members in breast cancer. Int Immunopharmacol 2020; 87:106797. [PMID: 32702599 DOI: 10.1016/j.intimp.2020.106797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Recently, immune checkpoint inhibitors (ICIs) have been successfully used for treating melanoma. Unfortunately, many breast cancer (BC) patients show low response to ICIs due to the lack of infiltrating immune cells. Previous studies revealed that chemokine-CXC receptors (CXCRs) play a crucial role in leukocyte infiltration and promote cancer cell proliferation, migration, metastasis, and angiogenesis. However, the underlying functions of CXCRs in cancer-immunity cycle remain unclear. In this study, we firstly found that in comparison to normal tissues, BC tissues, especially basal-like BC, showed increased mRNA levels of CXCR3/4/5/6/8, but decreased CXCR1/2/7 expression using UALCAN and TIMER database. Interestingly, it's was found that the mRNA levels of CXCR3/4/5/6 were decreased in lymphocyte depleted of the BC immune subtype. Subsequently, functional enrichment analysis of distinct CXCRs indicated that CXCR3/4/5/6 were strongly associated to immune-related biological functions. Therefore, further analysis using TIMER and TISIDB database suggested that CXCR3/4/5/6 expression were strongly correlated with tumor-infiltrating lymphocytes (TILs) and immune checkpoints in BC. Finally, Kaplan-Meier Plotter analysis indicated that high mRNA expression of CXCR4 predicted worse relapse-free survival (RFS), whereas CXCR3/5/6 indicated better RFS in BC patients. These findings suggest a therapeutic value for CXCR3/4/5/6 in combination with ICIs for the treatment of BC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Hong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Guo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
CXCR3 from chemokine receptor family correlates with immune infiltration and predicts poor survival in osteosarcoma. Biosci Rep 2020; 39:220768. [PMID: 31696204 PMCID: PMC6851512 DOI: 10.1042/bsr20192134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Chemokine receptors have a crucial role in regulating tumor mediating immunity and are also implicated in the prognosis of some cancers. Here, the association between CXC chemokine receptors (CXCR2–5) and prognosis in osteosarcoma was studied. Methods: Differences between CXCR2, CXCR3, CXCR4, and CXCR5 expression and overall survival (OS) and event-free survival (EFS) were compared using Kaplan–Meier analyses. The associations of CXCR3 expression with clinical features and the prognosis were also analyzed. The signaling pathways modulated by CXCR3 were investigated. The correlations between CXCR3 and immune infiltrates were investigated. Results: The expression of CXCR2, CXCR4, and CXCR5 was not associated with the prognosis, but CXCR3 low expression was correlated with worse OS and EFS of osteosarcoma, especially for female, patients aged less than 15.1 years, or patients without metastasis. Low CXCR3 expression was related to tumor site and histologic response (P<0.05), but not associated with other clinical characteristics. Multivariate Cox analysis revealed that CXCR3 remained independently associated with the prognosis, especially for OS (hazard ratio (HR) = 3.26, 95% CI = 1.15–9.24, P=0.026). The cell adhesion, apoptosis, metabolism, KRAS, P53, NOTCH, reactive oxygen species (ROS), PI3K/Akt/mTOR, vascular endothelial growth factor (VEGF), inflammation, and immune-related pathways such as IL-6/JAK/STAT3, TNF-α via NF-κB, Toll/NOD-like receptor, and complement were modulated by CXCR3. CXCR3 expression showed an especially positive correlation with immune infiltration of T cells CD8, macrophages M1, plasma cells, and NK cells activated. Conclusions: CXCR3 may be an independent risk factor for the prognosis and is most likely to benefit from immunotherapy in osteosarcoma.
Collapse
|
13
|
Maskey N, Chen Q, Liu F, Liu S, Tian S. A rare face of follicular lymphoma: reverse variant of follicular lymphoma. Diagn Pathol 2020; 15:31. [PMID: 32245492 PMCID: PMC7119098 DOI: 10.1186/s13000-020-00932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/05/2020] [Indexed: 01/17/2023] Open
Abstract
Background Reverse Variant of Follicular Lymphoma (RVFL) is one of the rare morphological variants of FL, characterized by dark staining small centrocytes in the center and pale staining large centroblasts at the periphery of the neoplastic follicles. Only rare cases of RVFL have been described to date. The histological appearance of this little known variant of FL may be misinterpreted if pathologists are unaware of its existence. The main purpose of this study is to draw pathologists’ attention to such an uncommon growth pattern of FL so that this variant can be correctly recognized and the clinical significance further studied in the future. Methods Four cases of FL with unusual morphologic features were evaluated for the expression pattern of CD20, CD10, BCL6, BCL2, CD21, CD23, CD3, CD5, Cyclin D1, IgD and Ki67 by immunohistochemistry. Fluorescence in situ hybridization (FISH) with break-apart probes was performed to detect BCL2 gene rearrangement. Results All four cases showed distinctive morphologic pattern of RVFL; in addition, each also exemplified unique morphological features. Immunohistochemical stains confirmed the cells in both the central areas and the peripheral cuffs had the same immunophenotypic profiles, contrasting to the FL with marginal zone differentiation in which only the center of the nodules showed expression of CD10. FISH demonstrated BCL2 gene rearrangement in all cases. Conclusion The growth pattern of this rare FL variant may mimic FL with marginal-zone differentiation and other entities including but not limited to marginal zone lymphoma (MZL), progressive transformation of germinal centers (PTGC) and nodular lymphocyte predominant Hodgkin lymphoma (NLPHL). Pathologists should be familiar with this unusual morphological variant to avoid diagnostic pitfalls.
Collapse
Affiliation(s)
- Ninu Maskey
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University Center for Pathology and Molecular Diagnostics, 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Fang Liu
- Department of Pathology, Foshan Hospital, Sun Yat-sen University, 81 North Lingnan Avenue, Chancheng District, Foshan, Guangdong Province, People's Republic of China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, People's Republic of China.
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University Center for Pathology and Molecular Diagnostics, 169 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Chronic inflammation and fibrosis can result from inappropriately activated immune responses that are mediated by macrophages. Macrophages can acquire memory-like characteristics in response to antigen exposure. Here, we show the effect of BCG or low-dose LPS stimulation on macrophage phenotype, cytokine production, chromatin and metabolic modifications. Low-dose LPS training alleviates fibrosis and inflammation in a mouse model of systemic sclerosis (SSc), whereas BCG-training exacerbates disease in this model. Adoptive transfer of low-dose LPS-trained or BCG-trained macrophages also has beneficial or harmful effects, respectively. Furthermore, coculture with low-dose LPS trained macrophages reduces the fibro-inflammatory profile of fibroblasts from mice and patients with SSc, indicating that trained immunity might be a phenomenon that can be targeted to treat SSc and other autoimmune and inflammatory fibrotic disorders. Innate immune cells can be trained by some stimuli or pathogen exposures to be metabolically and epigenetically altered such that they have different responses to subsequent exposures. Here the authors show that low-dose LPS trained macrophages and BCG-trained macrophages have opposing effects on fibrosis and inflammation in the context of systemic sclerosis.
Collapse
|
15
|
Kundu N, Ma X, Brox R, Fan X, Kochel T, Reader J, Tschammer N, Fulton A. The Chemokine Receptor CXCR3 Isoform B Drives Breast Cancer Stem Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419873628. [PMID: 31619923 PMCID: PMC6777055 DOI: 10.1177/1178223419873628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/04/2022]
Abstract
We are seeking to identify molecular targets that are relevant to breast cancer
cells with stem-like properties. There is growing evidence that cancer stem
cells (CSCs) are supported by inflammatory mediators expressed in the tumor
microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible,
ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have
co-opted this receptor to promote tumor cell migration and invasion. There are 2
major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from
alternative splicing and results in a protein with a longer N-terminal domain.
CXCR3 isoform A is generally considered to play a major role in tumor
metastasis. When the entire tumor cell population is examined, CXCR3 isoform B
is usually detected at much lower levels than CXCR3A and for this, and other
reasons, was not considered to drive tumor progression. We have shown that
CXCR3B is significantly upregulated in the subpopulation of breast CSCs in
comparison with the bulk tumor cell population in 3 independent breast cancer
cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock
in strategies increases CSC populations identified by aldehyde dehydrogenase
activity or CD44+CD24− phenotype as well as
tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced.
CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3
allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103
inhibited experimental metastasis. This protective effect is associated with the
reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1
pathways. We propose that CXCR3B, expressed on CSC, should be explored further
as a novel therapeutic target.
Collapse
Affiliation(s)
- Namita Kundu
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xinrong Ma
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Regine Brox
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nurnberg, Erlangen, Germany
| | - Xiaoxuan Fan
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Tyler Kochel
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jocelyn Reader
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nurnberg, Erlangen, Germany
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Maskey N, Thapa N, Maharjan M, Shrestha G, Maharjan N, Cai H, Liu S. Infiltrating CD4 and CD8 lymphocytes in HPV infected uterine cervical milieu. Cancer Manag Res 2019; 11:7647-7655. [PMID: 31616181 PMCID: PMC6698604 DOI: 10.2147/cmar.s217264] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Tumor infiltrating lymphocytes (TILs) have been extensively described in anti-tumor immunity, but their functional alterations in the immunoediting processes during neoplastic progression in the uterine cervix are still not clear. Our aim was to gain insight into cervical tissue T cell populations, determine if there are any differences in the localization and quantity distribution of T lymphocytes, and to evaluate their role in disease regression or progression in the cervical neoplastic milieu. PATIENTS AND METHODS Serial section analysis of immunohistochemically stained CD4 and CD8 lymphocytes was performed on a total number of 72 samples, categorized into four cohorts: 23 HPV non-infected (HPV-) normal cervix, 20 HPV infected (HPV+) normal cervix, 17 HPV+ low grade cervical intraepithelial neoplasia (CIN), and 12 HPV+ high grade CIN. RESULTS Low infiltrating lymphocytes (ILs) in normal cervix and high ILs in CIN were observed, while the trend of ILs increased with increasing grade of CIN, which was statistically significant (P<0.0001). Quantitative and localization analysis between the subsets of T cells showed that, in the epithelial layer, infiltrating CD8+ lymphocytes (CD8+ILs) were significantly higher than CD4+ILs in HPV+ normal cervix, while the trend decreased with increasing grade of CIN (P=0.011). Whereas, in the stromal layer, CD4+ILs were predominant in all study groups and no statistical difference was found between these groups. However, tumor infiltrating CD8+ lymphocytes (CD8+TILs) were noted to be significantly higher than CD4+TILs in severe dysplastic cases. CONCLUSION T cell infiltrates were predominant as the grade of the lesion progressed into more advanced lesions, which likely represent the lesions that have persisted over time. The variation in the infiltration rate and the location of CD4+ILs and CD8ILs may suggest the efficacious role of CD8 T cells in eliminating HPV infected cervical epithelial cells and also provides insight into the complex role of TILs in facilitating and mediating sustained anti-tumor responses, hence preventing tumor outgrowth.
Collapse
Affiliation(s)
- Ninu Maskey
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei430071, People’s Republic of China
| | - Niresh Thapa
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan430071, People’s Republic of China
- Karnali Academy of Health Sciences, Jumla, Nepal
| | - Muna Maharjan
- Zhongnan Hospital of Wuhan University, Hope School of Nursing, Wuhan, Hubei, People’s Republic of China
| | - Girishma Shrestha
- Department of Pathology, Patan Hospital, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Narayani Maharjan
- Department of Clinical Laboratory Science, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan430071, People’s Republic of China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei430071, People’s Republic of China
| |
Collapse
|
17
|
Yu C, Zhang Y. Characterization of the prognostic values of CXCR family in gastric cancer. Cytokine 2019; 123:154785. [PMID: 31344595 DOI: 10.1016/j.cyto.2019.154785] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The role of CXC chemokine receptors (CXCRs) in gastric cancer (GC) has been an increasing focus. However, comprehensive prognostic values of CXCR members in GC are yet to be clearly defined. METHODS Multiple public available datasets, including Kaplan-Meier (KM) plotter, oncomine, the cancer genome atlas (TCGA), SurvExpress platform and the tumor immune estimation resource (TIMER), were used for mRNA expression and prognostic characterization. Nomogram method was used for clinical model prediction. RESULTS CXCR3, CXCR4 and CXCR5 displayed significantly up-regulated expression in tumor compared to normal. High mRNA expression of CXCR2 (HR = 0.77, 95%CI: 0.62-0.95, p = 0.014), CXCR3 (HR = 0.74, 95%CI: 0.61-0.90, p = 0.0024), CXCR4 (HR = 0.7, 95%CI: 0.58-0.86, p = 0.00048), CXCR5 (HR = 0.72, 95%CI: 0.59-0.87, p = 0.00093) and CXCR6 (HR = 0.66, 95%CI: 0.54-0.81, p = 4.9e-05) was significantly associated with favorable overall survival (OS). The prognostic values of CXCR members were also explored in subtypes, including HER2 status, Lauren classification, pathological stages. The low risk group of CXCR signature displayed a significantly favorable OS compared to the high risk group (HR = 3.22, 95% CI = 2.21-4.69, p = 1.057e-09). Nomogram clinical models were established for both OS (C-index: 0.692; 95%CI: 0.648-0.736) and recurrence free survival (C-index: 0.731; 95%CI: 0.675-0.786). In addition, CXCR6 and CD8+T cells featured the highest correlation (partial-cor = 0.781, p = 4.17e-77). CONCLUSION This study identified distinct expression and prognostic values of CXCR members in GC using public databases.
Collapse
Affiliation(s)
- Chaoran Yu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200025, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200025, PR China; Department of Gastrointestinal Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, PR China.
| | - Yujie Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
BioTarget: A Computational Framework Identifying Cancer Type Specific Transcriptional Targets of Immune Response Pathways. Sci Rep 2019; 9:9029. [PMID: 31227749 PMCID: PMC6588588 DOI: 10.1038/s41598-019-45304-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Transcriptome data can provide information on signaling pathways active in cancers, but new computational tools are needed to more accurately quantify pathway activity and identify tissue-specific pathway features. We developed a computational method called “BioTarget” that incorporates ChIP-seq data into cellular pathway analysis. This tool relates the expression of transcription factor TF target genes (based on ChIP-seq data) with the status of upstream signaling components for an accurate quantification of pathway activity. This analysis also reveals TF targets expressed in specific contexts/tissues. We applied BioTarget to assess the activity of TBX21 and GATA3 pathways in cancers. TBX21 and GATA3 are TF regulators that control the differentiation of T cells into Th1 and Th2 helper cells that mediate cell-based and humoral immune responses, respectively. Since tumor immune responses can impact cancer progression, the significance of our pathway scores should be revealed by effective patient stratification. We found that low Th1/Th2 activity ratios were associated with a significantly poorer survival of stomach and breast cancer patients, whereas an unbalanced Th1/Th2 response was correlated with poorer survival of colon cancer patients. Lung adenocarcinoma and lung squamous cell carcinoma patients had the lowest survival rates when both Th1 and Th2 responses were high. Our method also identified context-specific target genes for TBX21 and GATA3. Applying the BioTarget tool to BCL6, a TF associated with germinal center lymphocytes, we observed that patients with an active BCL6 pathway had significantly improved survival for breast, colon, and stomach cancer. Our findings support the effectiveness of the BioTarget tool for transcriptome analysis and point to interesting associations between some immune-response pathways and cancer progression.
Collapse
|
19
|
Lv F, Jin WH, Zhang XL, Wang ZR, Sun AJ. Tamoxifen therapy benefit predictive signature combining with prognostic signature in surgical-only ER-positive breast cancer. J Cell Physiol 2018; 234:11140-11148. [PMID: 30537139 DOI: 10.1002/jcp.27756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Tamoxifen treatment is important assistant for estrogen-receptor-positive breast cancer (BRCA) after resection. This study aimed to identify signatures for predicting the prognosis of patients with BRCA after tamoxifen treatment. Data of gene-specific DNA methylation (DM), as well as the corresponding clinical data for the patients with BRCA, were obtained from The Cancer Genome Atlas and followed by systematic bioinformatics analyses. After mapping these DM CPG sites onto genes, we finally obtained 352 relapse-free survival (RFS) associated DM genes, with which 61,776 gene pairs were combined, including 1,614 gene pairs related to RFS. An 11 gene-pair signature was identified to cluster the 189 patients with BRCA into the surgical low-risk group (136 patients) and high-risk group (53 patients). Then, we further identified a tamoxifen-predictive signature that could classify surgical high-risk patients with significant differences on RFS. Combining surgical-only prognostic signature and tamoxifen-predictive signature, patients were clustered into surgical-only low-risk group, tamoxifen nonbenefit group, and tamoxifen benefit group. In conclusion, we identified that the gene pair PDHA2-APRT could serve as a potential prognostic biomarker for patients with BRCA after tamoxifen treatment.
Collapse
Affiliation(s)
- Feng Lv
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Wei-Hua Jin
- Hubei Three Gorges Polytechnic, Yichang, Hubei, China
| | - Xian-Lin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhong-Rui Wang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ai-Jun Sun
- Department of General Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
20
|
Li H, Rong S, Chen C, Fan Y, Chen T, Wang Y, Chen D, Yang C, Yang J. Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells. Mol Carcinog 2018; 58:171-184. [PMID: 30302818 DOI: 10.1002/mc.22917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Hai Li
- Department of Colorectal Surgery; General Hospital of Ningxia Medical University; Yinchuan China
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Shikuo Rong
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chao Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Yayun Fan
- Department of Gynaecology; Jingzhou Central Hospital; Jingzhou China
| | - Tuo Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Yong Wang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Dongmei Chen
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chun Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Jiali Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Ningxia Key Laboratory of Clinical and Pathological Microbiology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| |
Collapse
|
21
|
Hueso L, Ortega R, Selles F, Wu-Xiong NY, Ortega J, Civera M, Ascaso JF, Sanz MJ, Real JT, Piqueras L. Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis. Int J Obes (Lond) 2018; 42:1406-1417. [PMID: 29795466 DOI: 10.1038/s41366-018-0102-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Impaired angiogenesis is linked to adipose tissue (AT) dysfunction, inflammation, and insulin resistance in human obesity. Chemokine (C-X-C motif) receptor. (CXCR3) ligands are important regulators of angiogenesis in different disease contexts such as cancer; however, their role in human morbid obesity is unknown. We investigated the role of the CXCR3 axis in AT angiogenesis in morbidly obese patients. SUBJECTS/METHODS The study group comprised 50 morbidly obese patients (mean age 44 ± 1 years, body mass index 44 ± 1 kg/m2) who had undergone laparoscopic Roux-Y-gastric bypass surgery, and 25 age-matched non-obese control subjects. We measured the circulating levels of the CXCR3 ligands monokine induced by interferon-γ (MIG/CXCL9), interferon-γ inducible protein 10 (IP-10/CXCL10), and interferon-γ-inducible T-cell alpha chemoattractant (I-TAC/CXCL11) in all studied subjects. Additionally, the expression of CXCR3 ligands was analyzed in paired biopsies of subcutaneous and visceral AT obtained during the laparoscopic procedure in morbidly obese patients. Additionally, we explored the functional role of CXCR3 ligands on angiogenesis in AT from morbidly obese patients using an ex vivo assay. RESULTS Plasma levels of CXCL10 and CXCL11 were significantly higher in morbidly obese patients than in controls (p < 0.01). In ex vivo assays, angiogenic growth was markedly lower in visceral AT than in subcutaneous AT (p < 0.05), which was related to significant tissue upregulation of CXCL10, CXCL11 and CXCR3 (p < 0.05). CXCL10 or CXCL11 inhibited AT angiogenesis (p < 0.05), and blockade of CXCR3 function significantly increased capillary sprouting in visceral fat deposits (p < 0.05). Western blot analysis showed that the p38 mitogen-activated protein kinase signaling pathway was implicated in the angiostatic effects of CXCR3 in AT. CONCLUSIONS CXCL10 and CXCL11 may play. deleterious role in obesity as potential inhibitors of AT angiogenesis. Accordingly, pharmacological blockade of CXCR3 could represent. therapy to prevent AT dysfunction in obesity.
Collapse
Affiliation(s)
- Luisa Hueso
- Institute of Health Research-INCLIVA, Valencia, Spain
| | - Rebeca Ortega
- Institute of Health Research-INCLIVA, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | - Ning Yun Wu-Xiong
- Institute of Health Research-INCLIVA, Valencia, Spain.,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Joaquin Ortega
- Surgery Service, University Clinic Hospital of Valencia, Valencia, Spain.,Department of Surgery, University of Valencia, Valencia, Spain
| | - Miguel Civera
- Institute of Health Research-INCLIVA, Valencia, Spain.,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Juan F Ascaso
- Institute of Health Research-INCLIVA, Valencia, Spain.,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- ISCIII, Madrid, Spain
| | - Maria-Jesus Sanz
- Institute of Health Research-INCLIVA, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - José T Real
- Institute of Health Research-INCLIVA, Valencia, Spain. .,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain. .,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- ISCIII, Madrid, Spain.
| | - Laura Piqueras
- Institute of Health Research-INCLIVA, Valencia, Spain. .,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
22
|
Zhang Y, Xu L, Peng M. CXCR3 is a prognostic marker and a potential target for patients with solid tumors: a meta-analysis. Onco Targets Ther 2018; 11:1045-1054. [PMID: 29520155 PMCID: PMC5833761 DOI: 10.2147/ott.s157421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To deeply verify the clinical significance of CXCR3 in prediction of cancer patients' prognosis. DATA SOURCES We performed a meta-analysis including 12 studies searched from PubMed, Web of Science, Embase, and Cochrane databases. A total of 1,751 patients were used to analyze the association between CXCR3 and patients' prognosis, based on either overall survival or time to tumor progression. STUDY SELECTION Studies evaluating CXCR3 expression for predicting prognosis in human solid tumors were included. RESULTS It showed that patients with higher expression of CXCR3 had significantly shorter OS (pooled hazard ratio =2.315, 95% CI: 1.162-4.611, P=0.017). In addition, higher CXCR3 expression was associated with distant metastasis (yes vs no: pooled relative ratio [RR] =1.828, 95% CI: 1.140-2.931, P=0.012) in solid tumors and indicated advanced tumor stage (III/IV vs I/II, RR =2.656, 95% CI: 1.809-3.900, P<0.001) and lymph node metastasis (yes vs no: RR =2.28, 95% CI: 1.61-3.25, P<0.001) in colorectal cancer. CONCLUSION Our study highlights the role of CXCR3 as a potential prognostic marker and a promising therapeutic target in solid tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjuan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minggang Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Chen F, Yin S, Niu L, Luo J, Wang B, Xu Z, Yang G. Expression of the Chemokine Receptor CXCR3 Correlates with Dendritic Cell Recruitment and Prognosis in Gastric Cancer. Genet Test Mol Biomarkers 2017; 22:35-42. [PMID: 29266971 DOI: 10.1089/gtmb.2017.0125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study was to investigate whether CXCR3 expression is associated with: infiltration of dendritic cells (DCs) and CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs); various clinical features; and overall survival (OS) of patients diagnosed with gastric cancer (GC). MATERIALS AND METHODS The study included 169 GC specimens and 91 corresponding paracancerous tissues. Immunohistochemistry was conducted to determine the expression of CXCR3 and the presence of DCs and CD4+ and CD8+ TILs. Statistical analyses were done using SPSS 17.0 software. RESULTS CXCR3 expression in GC tissues was significantly higher than in paracancerous tissues (p < 0.001). Higher CXCR3 expression was associated with increased DC and both CD8+ and CD4+ TIL infiltration (p = 0.003, p = 0.008, and p = 0.016, respectively). In contrast, low CXCR3 expression was correlated with greater tumor invasion depth, III/IV TNM stage, lymph node metastasis, and more poorly differentiated tumor cells in GC patients (p = 0.001, p = 0.005, p = 0.037, and p = 0.004, respectively). Univariate analysis indicated that patients with high CXCR3 expression and high DC and CD8+ TIL infiltration had longer OS (log-rank test, p < 0.001, p = 0.018, and p = 0.001, respectively). Univariate and multivariate analyses indicated that CXCR3 expression was an independent prognostic factor for OS (p < 0.001, in both cases). CONCLUSION The results of this study indicate that CXCR3 overexpression in GC is associated with increased DC and TIL infiltration and improved OS, and thus could be further exploited as a biomarker of favorable prognosis and a therapeutic target in GC.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Shuai Yin
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Li Niu
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Bicheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University , Wuhan, China
| |
Collapse
|
24
|
Urra S, Fischer MC, Martínez JR, Véliz L, Orellana P, Solar A, Bohmwald K, Kalergis A, Riedel C, Corvalán AH, Roa JC, Fuentealba R, Cáceres CJ, López-Lastra M, León A, Droppelmann N, González HE. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis? Oncotarget 2017; 9:2445-2467. [PMID: 29416784 PMCID: PMC5788652 DOI: 10.18632/oncotarget.23502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies.
Collapse
Affiliation(s)
- Soledad Urra
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin C Fischer
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Martínez
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Orellana
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonieta Solar
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Riedel
- Millennium Institute of Immunology and Immunotherapy, Department of Cell Biology, Faculty of Biological Science and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fuentealba
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - C Joaquin Cáceres
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Augusto León
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Droppelmann
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hernán E González
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Lee YZ, Dedieu S, Constantin M, Bello L, Rossi M, Bjerkvig R, Sue SC, Bikfalvi A, Billottet C. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 2017; 8:1571. [PMID: 29146996 PMCID: PMC5691136 DOI: 10.1038/s41467-017-01686-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/10/2017] [Indexed: 11/09/2022] Open
Abstract
CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion. Here we report that agonist stimulation induces an anisotropic response with conformational changes of CXCR3-A along its longitudinal axis. CXCR3-A is internalized via clathrin-coated vesicles and recycled by retrograde trafficking. We demonstrate that CXCR3-A interacts with LRP1. Silencing of LRP1 leads to an increase in the magnitude of ligand-induced conformational change with CXCR3-A focalized at the cell membrane, leading to a sustained receptor activity and an increase in tumor cell migration. This was validated in patient-derived glioma cells and patient samples. Our study defines LRP1 as a regulator of CXCR3, which may have important consequences for tumor biology.
Collapse
Affiliation(s)
- Kevin Boyé
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Nadège Pujol
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | | | - Ya-Ping Chen
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Thomas Daubon
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France.,K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Stephane Dedieu
- CNRS UMR 7369 MEDyC, Université de Reims Champagne-Ardenne, Reims, 51687, France
| | - Marion Constantin
- INSERM U1029, Pessac, 33615, France.,Université de Bordeaux, Pessac, 33615, France
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Resarch Hospital, Milan, 20089, Italy
| | - Rolf Bjerkvig
- K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, L-1526, Luxembourg
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, NTHU, Hsinchu, 30055, Taiwan
| | - Andreas Bikfalvi
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| | - Clotilde Billottet
- INSERM U1029, Pessac, 33615, France. .,Université de Bordeaux, Pessac, 33615, France.
| |
Collapse
|
26
|
Boyé K, Billottet C, Pujol N, Alves ID, Bikfalvi A. Ligand activation induces different conformational changes in CXCR3 receptor isoforms as evidenced by plasmon waveguide resonance (PWR). Sci Rep 2017; 7:10703. [PMID: 28878333 PMCID: PMC5587768 DOI: 10.1038/s41598-017-11151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptor CXCR3 plays important roles in angiogenesis, inflammation and cancer. Activation studies and biological functions of CXCR3 are complex due to the presence of spliced isoforms. CXCR3-A is known as a pro-tumor receptor whereas CXCR3-B exhibits anti-tumor properties. Here, we focused on the conformational change of CXCR3-A and CXCR3-B after agonist or antagonist binding using Plasmon Waveguide Resonance (PWR). Agonist stimulation induced an anisotropic response with very distinct conformational changes for the two isoforms. The CXCR3 agonist bound CXCR3-A with higher affinity than CXCR3-B. Using various concentrations of SCH546738, a CXCR3 specific inhibitor, we demonstrated that low SCH546738 concentrations (≤1 nM) efficiently inhibited CXCR3-A but not CXCR3-B’s conformational change and activation. This was confirmed by both, biophysical and biological methods. Taken together, our study demonstrates differences in the behavior of CXCR3-A and CXCR3-B upon ligand activation and antagonist inhibition which may be of relevance for further studies aimed at specifically inhibiting the CXCR3A isoform.
Collapse
Affiliation(s)
- K Boyé
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - C Billottet
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - N Pujol
- INSERM, U1029, Pessac, France.,Université de Bordeaux, Pessac, France
| | - I D Alves
- Université de Bordeaux, Pessac, France. .,CBMN, UMR 5248 CNRS, Pessac, France.
| | - A Bikfalvi
- INSERM, U1029, Pessac, France. .,Université de Bordeaux, Pessac, France.
| |
Collapse
|
27
|
Xue L, Mao X, Ren L, Chu X. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med 2017; 6:1424-1436. [PMID: 28544785 PMCID: PMC5463074 DOI: 10.1002/cam4.1085] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The whole outcome for patients with gastric carcinoma (GC) is very poor because most of them remain metastatic disease during survival even at diagnosis or after surgery. Despite many improvements in multiple strategies of chemotherapy, immunotherapy, and targeted therapy, exploration of novel alternative therapeutic targets is still warranted. Chemokine receptor 4 (CXCR4) and its chemokine ligand 12 (CXCL12) have been identified with significantly elevated levels in various malignancies including GC, which correlates with the survival, proliferation, angiogenesis, and metastasis of tumor cells. Increasing experimental evidence suggests an implication of inhibition of CXCL12/CXCR4 axis as a promising targeted therapy, although there are rare trials focused on the therapeutic efficacy of CXCR4 inhibitors in GC until recently. Therefore, it is reasonable to infer that specific antagonists or antibodies targeting CXCL12/CXCR4 axis alone or combined with chemotherapy will be effective and worthy of further translational studies as a potential treatment strategy in advanced GC.
Collapse
Affiliation(s)
- Li‐Jun Xue
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Bei Mao
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Li‐Li Ren
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Yuan Chu
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| |
Collapse
|
28
|
Qiu Z, Chu Y, Xu B, Wang Q, Jiang M, Li X, Wang G, Yu P, Liu G, Wang H, Kang H, Liu J, Zhang Y, Jin JP, Wu K, Liang J. Increased expression of calponin 2 is a positive prognostic factor in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:56428-56442. [PMID: 28915602 PMCID: PMC5593573 DOI: 10.18632/oncotarget.17701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 02/06/2023] Open
Abstract
Calponin 2 plays an important role in regulating actin cytoskeleton, which is critical for cell division and migration. Previous studies have demonstrated that calponin 2 inhibits prostate cancer cell proliferation and metastasis. However, the role of calponin 2 in pancreatic tumor growth, metastasis and patient survival remains unclear. Here, we demonstrate that the level of calponin 2 is a positive prognostic factor for patients with pancreatic ductal adenocarcinoma (PDAC). Patients with high calponin 2 expression in the tumor presented less lymph node metastasis and longer survival. Knockdown of calponin 2 facilitated pancreatic cancer cell proliferation and metastasis. Further experiments suggested that PI3K/AKT, NF-κB, Vimentin, Fibronectin, Snail and Slug were upregulated and E-cadherin was downregulated after calponin 2 was knocked down, implicating altered functions in PDAC proliferation and metastasis. In addition, we verified that calponin 2 functioned through inhibiting PI3K/AKT and NF-κB pathways. Our study suggests that the upregulation of calponin 2 in PDAC correlates to lower malignancy and presents a novel target for the development of new treatment.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guoxiao Liu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hua Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huijie Kang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayu Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yu Zhang
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military Area Command, Lanzhou, China
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Petrelli F, Berenato R, Turati L, Mennitto A, Steccanella F, Caporale M, Dallera P, de Braud F, Pezzica E, Di Bartolomeo M, Sgroi G, Mazzaferro V, Pietrantonio F, Barni S. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis. J Gastrointest Oncol 2017; 8:148-163. [PMID: 28280619 DOI: 10.21037/jgo.2017.01.10] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are two distinct types of gastric carcinoma (GC), intestinal, more frequently sporadic and linked to environmental factors, and diffuse (undifferentiated) that is highly metastatic and characterized by rapid disease progression and a poor prognosis. However, there are many conflicting data in the literature concerning the association between histology and prognosis in GC. This meta-analysis was performed to provide demonstration if histology according to Lauren classification is associated with different prognosis in patients with GC. METHODS We searched PubMed, the Cochrane Library, SCOPUS, Web of Science, CINAHL, and EMBASE for all eligible studies. The combined hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) in terms of overall survival (OS) were evaluated. RESULTS A total of 73 published studies including 61,468 patients with GC were included in this meta-analysis. Our analysis indicates that GC patients with diffuse-type histology have a worst prognosis than those with intestinal subgroup in all studies (HR 1.23; 95% CI, 1.17-1.29; P<0.0001), in both loco-regional confined (HR 1.21; 95% CI, 1.12-1.30; P<0.0001) and advanced disease (HR 1.25; 95% CI, 1.046-1.50; P=0.014), in Asiatic (HR 1.2; 95% CI, 1.14-1.27; P<0.0001) and Western patients (HR 1.3; 95% CI, 1.19-1.41; P<0.0001), and in those not exposed (HR 1.15; 95% CI, 1.07-1.24; P<0.0001) or exposed (HR 1.27; 95% CI, 1.17-1.37; P<0.0001) to (neo)adjuvant therapy. CONCLUSIONS Our results indicated that histology might be a useful prognostic marker for both early and advanced GC patients, with intestinal-type associated with a better outcome. This information could be used for stratification purpose in future clinical trials.
Collapse
Affiliation(s)
- Fausto Petrelli
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Rosa Berenato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Turati
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Alessia Mennitto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Steccanella
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Marta Caporale
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pierpaolo Dallera
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ezio Pezzica
- Pathology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Sgroi
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Vincenzo Mazzaferro
- Hepatobiliopancreatic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Barni
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| |
Collapse
|
30
|
Yang C, Zheng W, Du W. CXCR3A contributes to the invasion and metastasis of gastric cancer cells. Oncol Rep 2016; 36:1686-92. [PMID: 27461521 DOI: 10.3892/or.2016.4953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/07/2016] [Indexed: 11/06/2022] Open
Abstract
CXCR3, belonging to CXC chemokine receptors, has been identified to be overexpressed in various kinds of tumors. There are three mRNA variants of CXCR3 (CXCR3A, CXCR3B and CXCR3alt) in human cells. The functions of major CXCR3 isoforms (CXCR3A, CXCR3B) have been reported in some tumors including prostate and breast cancer. However, the effects of CXCR3A and CXCR3B on gastric cancer cell progression remain unknown. The present investigation found that CXCR3A mRNA level was upregulated but CXCR3B mRNA level was downregulated in gastric cancer cells and tissues. In vitro growth analysis showed that CXCR3A acted as a positive mediator in regulating cell growth, whereas CXCR3B exerted the opposite effect. In vitro invasion and migration assays showed that CXCL10 promoted gastric cancer cell invasion and migration via CXCR3A, but not CXCR3B. Moreover, knockdown of CXCR3A inhibited cell growth and metastasis in vivo. Additionally, CXCR3A knockdown attenuated matrix metalloproteinase (MMP)‑13 and IL‑6 expression, and reduced ERK1/2 activation. Together, these data suggest that CXCR3A contributes to the growth, invasion and metastasis of gastric cancer cells in vitro and in vivo, and thus may be a key mediator of gastric cancer progression.
Collapse
Affiliation(s)
- Chenggang Yang
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Wanlei Zheng
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Wenfeng Du
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
31
|
CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomed Pharmacother 2016; 82:479-88. [PMID: 27470388 DOI: 10.1016/j.biopha.2016.04.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
CXCR3, a G-protein coupled chemokine receptor, has been found to be overexpressed in many tumors and act as an independent prognostic marker. However, it is still unclear whether CXCR3 is involved in gastric cancer progression. In this study, we found that CXCR3 was markedly expressed in gastric cancer cells and tissues. High CXCR3 expression correlated with advanced tumor stage, vascular invasion, lymph node metastasis and poor survival of gastric cancer patients. Activation of CXCR3 by one of its ligands CXCL10 promoted the invasion and migration of gastric cancer BGC-823 and MGC-803 cells, and increased the secretion and activities of MMP-2 and MMP-9. However, the effects of CXCL10 on gastric cancer cells were attenuated by CXCR3 siRNA transfection. Furthermore, overexpression of CXCR3 enhanced CXCL10-mediated cell invasion and migration of gastric cancer MKN28 cells. In addition, CXCR3 time-dependently induced activation of AKT. PI3K/AKT pathway was required for CXCR3-mediated gastric cancer cell invasion, migration and MMP-2/9 production. Together, our findings suggest that CXCL10/CXCR3 axis promotes gastric cancer cell invasion and migration by upregulating MMP-2 and MMP-9 production via PI3K/AKT pathway. Thus, CXCR3 could be a potential target for the gastric cancer treatment.
Collapse
|