1
|
Liu X, Chai X, Yu Q, Wang W, Long Q, Gong Y, Zhang Y, Qiao C, Hao J, He G. Clinical features and outcomes in large granular lymphocyte leukemia - associated pure red cell aplasia with STAT3 mutation. Ann Hematol 2025; 104:2351-2360. [PMID: 40266290 PMCID: PMC12053183 DOI: 10.1007/s00277-025-06371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare lymphoproliferative disorder where somatic STAT3 mutation is common. Although LGLL has been described as an underlying condition associated with pure red cell aplasia (PRCA), the clinical characteristics and therapeutic response of LGLL - associated PRCA are largely unclear. We evaluated a set of 81 patients with LGLL - associated PRCA. Comparative analysis was performed on the clinical characteristics, responses to immunosuppressive therapy, and survival outcomes in patients with STAT3 mutation. Among the 81 LGLL - associated PRCA patients, 21 cases (26%) were STAT3 mutant, and 60 were wild - type. Of 21 patients with STAT3 mutation, 15 cases (71%) were positive for exon 21 mutation, 4 cases (19%) for exon 20 mutation, one for dual mutation in exon 20 and 21, and one for exon 13 mutation. The Y640F was the most commonly detected mutation (42.9%). Patients with STAT3 mutations had a higher percentage of reticulocytes (0.88% vs. 0.28%, P = 0.039) and red cell distribution width - coefficient of variation (18.8% vs. 15.8%, P = 0.008) compared to wild - type. Those with the STAT3 Y640F mutation had a younger median age at onset (44 years vs. 65 years, P = 0.007) and a higher peripheral blood lymphocyte ratio (63.7% vs. 34.4%, P = 0.033). The complete response rate (CRR) and overall response rate (ORR) of STAT3 mutated patients treated with cyclosporine (CsA) were 31.3% (5/16) and 56.3% (9/16), respectively, with no difference compared to the STAT3 wild - type (32.8%, 50%) (P = 0.909; P = 0.658). Although no statistical significance was found, the CRR and ORR of the CP regimen (consisted of cyclophosphamide and prednisone) were higher than CsA among STAT3 mutated individuals (53.8% vs. 31.3%, P = 0.274; 84.6% vs. 56.3%, P = 0.130). Reduction or discontinuation of immunosuppressive agents was the main cause of relapse. The relapse rate of the CP regimen was lower than CsA in this whole cohort (24.0% vs. 68.4%, P = 0.001), as well as in the STAT3 mutant group (18.2% vs. 77.8%, P = 0.022). STAT3 Y640F was the most common hotspot mutation in LGLL - associated PRCA. Patients with STAT3 mutation treated with CsA showed comparable responses to wild - type. CP regimen had a lower relapse rate and could be considered as a salvage therapy after CsA failure.
Collapse
MESH Headings
- Humans
- STAT3 Transcription Factor/genetics
- Leukemia, Large Granular Lymphocytic/genetics
- Leukemia, Large Granular Lymphocytic/drug therapy
- Leukemia, Large Granular Lymphocytic/mortality
- Leukemia, Large Granular Lymphocytic/complications
- Leukemia, Large Granular Lymphocytic/diagnosis
- Male
- Female
- Red-Cell Aplasia, Pure/genetics
- Red-Cell Aplasia, Pure/drug therapy
- Red-Cell Aplasia, Pure/mortality
- Red-Cell Aplasia, Pure/diagnosis
- Middle Aged
- Aged
- Adult
- Mutation
- Treatment Outcome
- Immunosuppressive Agents/therapeutic use
- Aged, 80 and over
- Retrospective Studies
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Hematology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xingxing Chai
- Department of Hematology, The Second Lianyungang People's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Qingling Yu
- Department of Hematology, Affiliated Jianhu Hospital of Nantong University Xinglin College, Yancheng, 224000, China
| | - Wei Wang
- Department of Hematology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Qiqiang Long
- Department of Hematology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yuemin Gong
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yawen Zhang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Chun Qiao
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jianping Hao
- Hematology Center, Xinjiang Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| | - Guangsheng He
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
2
|
Yusup M, He G, Qin Y, Tuerxun N, Hao J. Efficacy and influencing factors of immunosuppressive therapy for pure red cell aplasia: meta-analysis and systematic review. Ann Hematol 2025; 104:2189-2206. [PMID: 40105948 PMCID: PMC12052873 DOI: 10.1007/s00277-025-06315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Acquired pure red cell aplasia (aPRCA) is a rare hematological syndrome characterized by anemia and a significant reduction in erythroid progenitor cells. Immunosuppressive therapy (IST), including Corticosteroids (CS), Cyclosporine (CsA), and cyclophosphamide (CYC), is the primary treatment. However, variations in clinical efficacy and limited comparative studies have created uncertainty in therapeutic choices. This study aims to evaluate the efficacy of IST and the factors influencing treatment outcomes. A systematic search was conducted using PubMed, Embase, Cochrane Library, and Web of Science. Two researchers independently screened studies and extracted data. The quality of studies was assessed using the MINORS scale. Meta-analysis was performed using STATA/MP16, and effect size (ES) was calculated using fixed- or random-effects models based on heterogeneity. A total of 33 studies involving 1,193 patients were included. The overall efficacy of IST was significant, with a pooled ES of 0.656 (95% CI: 0.600-0.710). CsA demonstrated the highest efficacy (ES = 0.699; 95% CI: 0.615-0.779), followed by CYC (ES = 0.592; 95% CI: 0.423-0.752) and CS (ES = 0.568; 95% CI: 0.457-0.676). Subgroup analyses revealed that factors such as etiology, combination therapies, first- vs. second-line treatment, and genetic characteristics significantly influenced outcomes. Notably, the response to IST was higher in primary aPRCA (ES = 0.667; 95% CI: 0.598-0.733) compared to LGLL-associated (ES = 0.515; 95% CI: 0.393-0.637) and thymoma-associated (ES = 0.690; 95% CI: 0.492-0.864) aPRCA. The combination of CS and CsA yielded superior efficacy (ES = 0.761; 95% CI: 0.658-0.853) compared to combination of CS and CsA and monotherapy. First-line treatment demonstrated better efficacy than second-line treatment (ES = 0.659; 95% CI: 0.596-0.720) vs. (ES = 0.452; 95% CI: 0.199-0.715). The important finding was that (ES = 0.861; 95% CI: 0.595-1.000) in the STAT3 mutation (+) group and (ES = 0.375; 95% CI: 0.034-0.801) in the STAT3 mutation (-) group. IST demonstrates overall efficacy in aPRCA, with variations influenced by etiology, drug combinations, and genetic mutations such as STAT3. These findings highlight the need for personalized treatment strategies and further research to validate and optimize IST efficacy.
Collapse
Affiliation(s)
- Muyassar Yusup
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | | | - YuTing Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | - Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | - JianPing Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China.
| |
Collapse
|
3
|
Shi M, Morice WG. How I diagnose large granular lymphocytic leukemia. Am J Clin Pathol 2024; 162:433-449. [PMID: 38823032 DOI: 10.1093/ajcp/aqae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES Large granular lymphocytic leukemia (LGLL) represents a rare neoplasm of mature T cells or natural killer (NK) cells, with an indolent clinical course. Diagnosing LGLL can be challenging because of overlapping features with reactive processes and other mimickers. METHODS By presenting 2 challenging cases, we elucidate the differentiation of LGLL from its mimics and highlight potential diagnostic pitfalls. A comprehensive review of the clinicopathologic features of LGLL was conducted. RESULTS Large granular lymphocytic leukemia displays a diverse spectrum of clinical presentations, morphologies, flow cytometric immunophenotypes, and molecular profiles. These features are also encountered in reactive conditions, T-cell clones of uncertain significance, and NK cell clones of uncertain significance. CONCLUSIONS In light of the intricate diagnostic landscape, LGLL workup must encompass clinical, morphologic, immunophenotypic, clonal, and molecular findings. Meeting major and minor diagnostic criteria is imperative for the accurate diagnosis of LGLL.
Collapse
Affiliation(s)
- Min Shi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, US
| | | |
Collapse
|
4
|
Gorodetskiy V, Sudarikov A. Aleukemic variant of T-cell large granular lymphocyte leukemia in patients with rheumatoid arthritis - diagnostically challenging subtype. Expert Rev Clin Immunol 2024; 20:1323-1330. [PMID: 39049194 DOI: 10.1080/1744666x.2024.2384057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The typical clinical manifestations of T-cell large granular lymphocyte (T-LGL) leukemia are an increase in the number of large granular lymphocytes (LGLs) in the blood > 2000 cells/μL, neutropenia, and splenomegaly. In rare cases of so-called 'aleukemic' T-LGL leukemia, the number of LGLs is <400-500 cells/μL. In patients with rheumatoid arthritis (RA), distinguishing T-LGL leukemia with low tumor burden in the blood and bone marrow from Felty syndrome (FS) poses diagnostic challenges. AREAS COVERED This review aimed to describe the basic characteristics and variants of aleukemic T-LGL leukemia, with a special focus on aleukemic T-LGL leukemia with massive splenomegaly (splenic variant of T-LGL leukemia) and differential diagnosis of such cases with hepatosplenic T-cell lymphoma. The significance of mutations in the signal transducer and activator of transcription 3 (STAT3) gene for distinguishing aleukemic RA-associated T-LGL leukemia from FS is discussed, along with the evolution of the T-LGL leukemia diagnostic criteria. PubMed database was used to search for the most relevant literature. EXPERT OPINION Evaluation of STAT3 mutations in the blood and bone marrow using next-generation sequencing, as well as a comprehensive spleen study, may be necessary to establish a diagnosis of aleukemic RA-associated T-LGL leukemia.
Collapse
|
5
|
Moosic KB, Olson TL, Freijat M, Khalique S, Hamele CE, Shemo B, Boodoo J, Baker W, Khurana G, Schmachtenberg M, Duffy T, Ratan A, Darrah E, Andrade F, Jones M, Olson KC, Feith DJ, Kimpel DL, Loughran TP. Activating STAT3 mutations in CD8+ T-cells correlate to serological positivity in rheumatoid arthritis. Front Immunol 2024; 15:1466276. [PMID: 39497832 PMCID: PMC11532115 DOI: 10.3389/fimmu.2024.1466276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 11/07/2024] Open
Abstract
Objectives Large granular lymphocyte (LGL) leukemia is a rare hematologic malignancy characterized by clonal expansion of cytotoxic T-cells frequent somatic activating STAT3 mutations. Based on the disease overlap between LGL leukemia rheumatoid arthritis (RA)a putative role for CD8+ T-cells in RA we hypothesized that STAT3 mutations may be detected in RA patient CD8+ T-cells correlate with clinical characteristics. Methods Blood samples, clinical parameters, and demographics were collected from 98 RA patients and 9 healthy controls (HCs). CD8+ cell DNA was isolated and analyzed via droplet digital (dd)PCR to detect STAT3 mutations common in LGL leukemia: Y640F, D661Y, and the S614 to G618 region. STAT3 data from 99 HCs from a public dataset supplemented our 9 HCs. Results RA patients had significantly increased presence of STAT3 mutations compared to controls (Y640F p=0.0005, D661Y p=0.0005). The majority of these were low variant allele frequency (VAF) (0.008-0.05%) mutations detected in a higher proportion of the RA population (31/98 Y640F, 17/98 D661Y) vs. HCs (0/108 Y640F, 0/108 D661Y). In addition, 3/98 RA patients had a STAT3 mutation at a VAF >5% compared to 0/108 controls. Serological markers, RF and anti-CCP positivity, were more frequently positive in RA patients with STAT3 mutation relative to those without (88% vs 59% RF, p=0.047; 92% vs 58% anti-CCP, p=0.031, respectively). Conclusions STAT3 activating mutations were detected in RA patient CD8+ cells and associated with seropositivity. Thus, STAT3 activating mutations may play a role in disease pathogenesis in a subset of RA patients.
Collapse
Affiliation(s)
- Katharine B. Moosic
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Thomas L. Olson
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark Freijat
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Samara Khalique
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cait E. Hamele
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Bryna Shemo
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jesse Boodoo
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - William Baker
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Gitanjali Khurana
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Matthew Schmachtenberg
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Tristin Duffy
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Aakrosh Ratan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marieke Jones
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Kristine C. Olson
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Donald L. Kimpel
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
6
|
Gorodetskiy V, Sidorova Y, Biderman B, Kupryshina N, Ryzhikova N, Sudarikov A. Gamma-delta T-cell large granular lymphocytic leukemia in the setting of rheumatologic diseases. Front Cell Dev Biol 2024; 12:1434676. [PMID: 39161592 PMCID: PMC11331004 DOI: 10.3389/fcell.2024.1434676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Background T-cell leukemia originating from large granular lymphocytes (T-LGL leukemia) is a rare lymphoid neoplasia characterized by clonal proliferation of large granular T lymphocytes expressing αβ or γδ T-cell receptor (TCR) on the cell membrane. γδT-LGL leukemia, accounting for approximately 17% of all T-LGL leukemia cases, is associated with autoimmune diseases. However, the features of γδT-LGL leukemia in patients with rheumatologic diseases are still insufficiently characterized. Methods In this retrospective study, 15 patients with rheumatologic disease-associated γδT-LGL leukemia were included. The patients were obtained from a single center from 2008 to 2023. Data related to clinical characteristics and rheumatologic diagnoses were collected. Immunophenotype evaluations as well as T-lymphocyte clonality (based on TCR-γ, TCR-β, and TCR-δ gene rearrangements), and signal transducer and activator of transcription (STAT) three and STAT5B mutation analyses (by next-generation sequencing) were performed on blood, bone marrow, and spleen samples. Results All but one patient had rheumatoid arthritis (RA). In 36% of patients, manifestations of γδT-LGL leukemia were present before or concurrently with clinical manifestations of RA. Splenomegaly was observed in 60% of patients and neutropenia (<1.5 × 109/L) was detected in 93% of cases. CD4-/CD8- and CD4-/CD8+ subtypes were detected in seven cases each. Mutations in STAT3 were detected in 80% of patients; however, STAT5B mutations were not detected. Evaluations of T-cell clonality and variant allele frequencies at STAT3 in the blood, bone marrow, and spleen tissue revealed an unusual variant of CD4-/CD8- γδT-LGL leukemia with predominant involvement of the spleen, involvement of the bone marrow to a less extent, and no tumor cells in peripheral blood. Conclusion The mechanism by which γδT-LGL leukemia may induce the development of RA in some patients requires further investigation. Cases of RA-associated γδT-LGL leukemia with neutropenia and splenomegaly but no detectable tumor-associated lymphocytes in peripheral blood (the so-called splenic variant of T-LGL leukemia) are difficult to diagnose and may be misdiagnosed as Felty syndrome or hepatosplenic T-cell lymphoma.
Collapse
Affiliation(s)
| | - Yulia Sidorova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Bella Biderman
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Natalia Kupryshina
- Hematopoiesis Immunology Laboratory, Russian Cancer Research Center N.N. Blokhin, Moscow, Russia
| | - Natalya Ryzhikova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Andrey Sudarikov
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
7
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
8
|
Semenzato G, Calabretto G, Teramo A, Gasparini VR, Rampazzo E, Barilà G, Zambello R. The constitutive activation of STAT3 gene and its mutations are at the crossroad between LGL leukemia and autoimmune disorders. Blood Cancer J 2024; 14:13. [PMID: 38238319 PMCID: PMC10796758 DOI: 10.1038/s41408-024-00977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Type T Large Granular Lymphocyte Leukemia (T-LGLL) is a chronic disorder characterized by the abnormal proliferation of clonal cytotoxic T cells. The intriguing association of T-LGLL with autoimmune and inflammatory diseases, the most prominent example being rheumatoid arthritis, raises questions about the underlying pathophysiologic relationships between these disorders which share several biological and clinical features, most notably neutropenia, which is considered as a clinical hallmark. Recent progress in molecular genetics has contributed to a better understanding of pathogenetic mechanisms, thus moving our knowledge in the field of LGL leukemias forward. Focusing on the constitutive activation of STAT3 pathway and the well-established role of STAT3 mutations in T-LGLL, we herein discuss whether the T cell clones occurring in comorbid conditions are the cause or the consequence of the immune-inflammatory associated events. Overall, this review sheds light on the intricate relationships between inflammation and cancer, emphasizing the importance of the STAT3 gene and its activation in the pathophysiology of these conditions. Gaining a deeper understanding of these underlying mechanisms seeks to pave the way for the development of novel targeted therapies for patients affected by inflammation-related cancers.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Elisa Rampazzo
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Hematology Unit, Ospedale S. Bortolo, Vicenza, Italy
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
9
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
11
|
Park S, Yun J, Choi SY, Jeong D, Gu JY, Lee JS, Seong MW, Chang YH, Yun H, Kim HK. Distinct mutational pattern of T-cell large granular lymphocyte leukemia combined with pure red cell aplasia: low mutational burden of STAT3. Sci Rep 2023; 13:7280. [PMID: 37142644 PMCID: PMC10160083 DOI: 10.1038/s41598-023-33928-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
T-cell large granular lymphocyte leukemia (T-LGL) is often accompanied by pure red cell aplasia (PRCA). A high depth of next generation sequencing (NGS) was used for detection of the mutational profiles in T-LGL alone (n = 25) and T-LGL combined with PRCA (n = 16). Beside STAT3 mutation (41.5%), the frequently mutated genes included KMT2D (17.1%), TERT (12.2%), SUZ12 (9.8%), BCOR (7.3%), DNMT3A (7.3%), and RUNX1 (7.3%). Mutations of the TERT promoter showed a good response to treatment. 3 of 41 (7.3%) T-LGL patients with diverse gene mutations were revealed as T-LGL combined with myelodysplastic syndrome (MDS) after review of bone marrow slide. T-LGL combined with PRCA showed unique features (low VAF level of STAT3 mutation, low lymphocyte count, old age). Low ANC was detected in a STAT3 mutant with a low level of VAF, suggesting that even the low mutational burden of STAT3 is sufficient for reduction of ANC. In retrospective analysis of 591 patients without T-LGL, one MDS patient with STAT3 mutation was revealed to have subclinical T-LGL. T-LGL combined with PRCA may be classified as unique subtype of T-LGL. High depth NGS can enable sensitive detection of concomitant MDS in T-LGL. Mutation of the TERT promoter may indicate good response to treatment of T-LGL, thus, its addition to an NGS panel may be recommended.
Collapse
Affiliation(s)
- Sooyong Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung Yoon Choi
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Brandstoetter T, Schmoellerl J, Grausenburger R, Kollmann S, Doma E, Huuhtanen J, Klampfl T, Eder T, Grebien F, Hoermann G, Zuber J, Mustjoki S, Maurer B, Sexl V. SBNO2 is a critical mediator of STAT3-driven hematological malignancies. Blood 2023; 141:1831-1845. [PMID: 36630607 PMCID: PMC10646773 DOI: 10.1182/blood.2022018494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Gain-of-function mutations in the signal transducer and activator of transcription 3 (STAT3) gene are recurrently identified in patients with large granular lymphocytic leukemia (LGLL) and in some cases of natural killer (NK)/T-cell and adult T-cell leukemia/lymphoma. To understand the consequences and molecular mechanisms contributing to disease development and oncogenic transformation, we developed murine hematopoietic stem and progenitor cell models that express mutated STAT3Y640F. These cells show accelerated proliferation and enhanced self-renewal potential. We integrated gene expression analyses and chromatin occupancy profiling of STAT3Y640F-transformed cells with data from patients with T-LGLL. This approach uncovered a conserved set of direct transcriptional targets of STAT3Y640F. Among these, strawberry notch homolog 2 (SBNO2) represents an essential transcriptional target, which was identified by a comparative genome-wide CRISPR/Cas9-based loss-of-function screen. The STAT3-SBNO2 axis is also present in NK-cell leukemia, T-cell non-Hodgkin lymphoma, and NPM-ALK-rearranged T-cell anaplastic large cell lymphoma (T-ALCL), which are driven by STAT3-hyperactivation/mutation. In patients with NPM-ALK+ T-ALCL, high SBNO2 expression correlates with shorter relapse-free and overall survival. Our findings identify SBNO2 as a potential therapeutic intervention site for STAT3-driven hematopoietic malignancies.
Collapse
Affiliation(s)
- Tania Brandstoetter
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eszter Doma
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Thorsten Klampfl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
All that glitters is not LGL Leukemia. Leukemia 2022; 36:2551-2557. [PMID: 36109593 DOI: 10.1038/s41375-022-01695-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
LGL disorders are rare hematological neoplasias with remarkable phenotypic, genotypic and clinical heterogeneity. Despite these constraints, many achievements have been recently accomplished in understanding the aberrant pathways involved in the LGL leukemogenesis. In particular, compelling evidence implicates STAT signaling as a crucial player of the abnormal cell survival. As interest increases in mapping hematological malignancies by molecular genetics, the relevance of STAT gene mutations in LGL disorders has emerged thanks to their association with discrete clinical features. STAT3 and STAT5b mutations are recognized as the most common gain-of-function genetic lesions up to now identified in T-LGL leukemia (T-LGLL) and are actually regarded as the hallmark of this disorder, also contributing to further refine its subclassification. However, from a clinical perspective, the relationships between T-LGLL and other borderline and overlapping conditions, including reactive cell expansions, clonal hematopoiesis of indeterminate potential (CHIP) and unrelated clonopathies are not fully established, sometimes making the diagnosis of T cell malignancy challenging. In this review specifically focused on the topic of clonality of T-LGL disorders we will discuss the rationale of the appropriate steps to aid in distinguishing LGLL from its mimics, also attempting to provide new clues to stimulate further investigations designed to move this field forward.
Collapse
|
16
|
Gorodetskiy V, Vasilyev V, Sidorova Y, Biderman B, Kupryshina N, Vagida M, Ryzhikova N, Sudarikov A. Clinical Study of the Relationship between Sjögren Syndrome and T-Cell Large Granular Lymphocytic Leukemia: Single-Center Experience. Int J Mol Sci 2022; 23:13345. [PMID: 36362126 PMCID: PMC9656665 DOI: 10.3390/ijms232113345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 08/30/2023] Open
Abstract
The relationship between Sjögren syndrome (SS) and T-cell large granular lymphocytic (T-LGL) leukemia remains unclear. In this paper, we report for the first time a large case series of 21 patients with primary and secondary SS associated with T-LGL leukemia. Our results suggest the importance of considering T-LGL leukemia in the diagnostic evaluation of SS patients, particularly when neutropenia occurs. We also postulate that elevated antinuclear antibody titers in patients with T-LGL leukemia indicate the need for the clinical assessment of SS. To assess whether SS affects the frequency of the signal transducer and activator of transcription 3 (STAT3) gene mutations in T-LGL leukemia, we examined STAT3 mutations by next-generation sequencing in two cohorts of patients: with SS-associated T-LGL leukemia and T-LGL leukemia in the setting of rheumatic diseases but without SS. While our results suggest that SS, per se, is not associated with an increased frequency of STAT3 mutations in T-LGL leukemia, further studies are needed to better assess the role of the STAT pathway in the development of concomitant SS and T-LGL leukemia.
Collapse
Affiliation(s)
- Vadim Gorodetskiy
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
| | | | - Yulia Sidorova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Bella Biderman
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalia Kupryshina
- Hematopoiesis Immunology Laboratory, Russian Cancer Research Center N.N. Blokhin, 115478 Moscow, Russia
| | - Murad Vagida
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalya Ryzhikova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Andrey Sudarikov
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
17
|
Gorodetskiy V, Sidorova Y, Biderman B, Kupryshina N, Ryzhikova N, Sudarikov A. STAT3 mutations in "gray-zone" cases of T-cell large granular lymphocytic leukemia associated with autoimmune rheumatic diseases. Front Med (Lausanne) 2022; 9:1000265. [PMID: 36117975 PMCID: PMC9471006 DOI: 10.3389/fmed.2022.1000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
A persistently increased T-cell large granular lymphocyte (T-LGL) count in the blood of more than 2 × 109/L for at least 6 months is necessary for a reliable diagnosis of T-LGL leukemia. In cases with LGL counts of approximately 0.5-2 × 109/L, a diagnosis of T-LGL leukemia can be made if clonal rearrangement of T-cell receptor (TCR) genes is present and if the patient shows typical manifestations of T-LGL leukemia, such as cytopenia, splenomegaly, or concomitant autoimmune disease. However, in cases with LGL counts of less than 0.5 × 109/L, the diagnosis of T-LGL leukemia is questionable (termed as "gray-zone" cases). Although mutations in signal transducer and activator of transcription 3 (STAT3) gene are the molecular hallmark of T-LGL leukemia, their diagnostic value in the "gray-zone" cases of T-LGL leukemia has not been evaluated - our study has been aimed to examine the prevalence of STAT3 mutations in these cases. Herein, we describe 25 patients with autoimmune rheumatic diseases, neutropenia, clonal rearrangement of TCR genes, and circulating LGL count of less than 0.5 × 109/L. Splenomegaly was observed in 19 (76%) patients. Mutations in the STAT3 were detected in 56% of patients using next-generation sequencing. Importantly, in 3 patients, no involvement of the blood and bone marrow by malignant LGLs was noted, but examination of splenic tissue revealed infiltration by clonal cytotoxic T-lymphocytes within the red pulp, with greater prominence in the cords. We suggest using the term "splenic variant of T-LGL leukemia" for such cases.
Collapse
Affiliation(s)
- Vadim Gorodetskiy
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Yulia Sidorova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Bella Biderman
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Natalia Kupryshina
- Hematopoiesis Immunology Laboratory, Russian Cancer Research Center N.N. Blokhin, Moscow, Russia
| | - Natalya Ryzhikova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Andrey Sudarikov
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
18
|
Kawakami T, Nakazawa H, Ishida F. Somatic mutations in acquired pure red cell aplasia. Semin Hematol 2022; 59:131-136. [DOI: 10.1053/j.seminhematol.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022]
|
19
|
Menter T, Dirnhofer S, Tzankov A. [Differential diagnosis of reactive cytopenias]. PATHOLOGIE (HEIDELBERG, GERMANY) 2022; 43:263-270. [PMID: 35925221 DOI: 10.1007/s00292-022-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Reactive cytopenias are a frequent cause for bone marrow investigations, including bone marrow trephine biopsies, especially if clinical examination and laboratory analyses (e.g., detection of substrate deficiencies) cannot provide a sufficient explanation. The evaluation of such biopsies is primarily concerned with the exclusion of diseases that displace the normal hematopoiesis (infiltrates of acute leukemias or lymphomas and metastases), the exclusion of a myelodysplastic syndrome that classically results in ineffective hematopoiesis, or the detection of specific diseases, particularly infectious or histiocytic diseases (e.g., hemophagocytic lymphohistiocytosis).In this review, we describe characteristic morphologic changes of reactive cytopenias, focus on specific infectious and noninfectious clinical pictures, and distinguish them from malignant changes, especially myelodysplastic syndrome and underlying leukemia of large granular T lymphocytes. Drug-induced changes in hematopoiesis are described in another article in this issue.
Collapse
Affiliation(s)
- Thomas Menter
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz
| | - Stefan Dirnhofer
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz
| | - Alexandar Tzankov
- Pathologie, Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Universität Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz.
| |
Collapse
|
20
|
Moosic KB, Ananth K, Andrade F, Feith DJ, Darrah E, Loughran TP. Intersection Between Large Granular Lymphocyte Leukemia and Rheumatoid Arthritis. Front Oncol 2022; 12:869205. [PMID: 35646651 PMCID: PMC9136414 DOI: 10.3389/fonc.2022.869205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia, a rare hematologic malignancy, has long been associated with rheumatoid arthritis (RA), and the diseases share numerous common features. This review aims to outline the parallels and comparisons between the diseases as well as discuss the potential mechanisms for the relationship between LGL leukemia and RA. RA alone and in conjunction with LGL leukemia exhibits cytotoxic T-cell (CTL) expansions, HLA-DR4 enrichment, RA-associated autoantibodies, female bias, and unknown antigen specificity of associated T-cell expansions. Three possible mechanistic links between the pathogenesis of LGL leukemia and RA have been proposed, including LGL leukemia a) as a result of longstanding RA, b) as a consequence of RA treatment, or c) as a driver of RA. Several lines of evidence point towards LGL as a driver of RA. CTL involvement in RA pathogenesis is evidenced by citrullination and granzyme B cleavage that modifies the repertoire of self-protein antigens in target cells, particularly neutrophils, killed by the CTLs. Further investigations of the relationship between LGL leukemia and RA are warranted to better understand causal pathways and target antigens in order to improve the mechanistic understanding and to devise targeted therapeutic approaches for both disorders.
Collapse
Affiliation(s)
- Katharine B. Moosic
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kusuma Ananth
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Felipe Andrade
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Erika Darrah
- Department of Medicine, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
21
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
22
|
Karati D, Mahadik KR, Trivedi P, Kumar D. The Emerging Role of Janus Kinase Inhibitors in the Treatment of Cancer. Curr Cancer Drug Targets 2022; 22:221-233. [PMID: 35232350 DOI: 10.2174/1568009622666220301105214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a leading cause of death worldwide. The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signalling pathway is activated abnormally, which promotes carcinogenesis. Several cytokines are important cancer drivers. These proteins bind to receptors and use the Janus kinase (JAK) and STAT pathways to communicate their responses. Cancer risks are linked to genetic differences in the JAK-STAT system. JAK inhibitors have shown to reduce STAT initiation, tissue propagation, and cell existence in preclinical investigations in solid tumour cell line models. JAK inhibitors, notably ruxolitinib, a, JAK1 or 2 blockers, make cell lines and mouse models more susceptible to radiotherapy, biological response modifier therapy, and oncolytic viral treatment. Numerous JAK antagonists have been or are now being evaluated in cancerous patients as monotherapy or by combining with other drugs in clinical studies. In preclinical investigations, certain JAK inhibitors showed promise anticancer effects; however, clinical trials explicitly evaluating their effectiveness against the JAK/STAT system in solid tumours have yet to be completed. JAK inhibition is a promising strategy to target the JAK/STAT system in solid tumours, and it deserves to be tested further in clinical studies. The function of directing Janus kinases (JAKs), an upstream accelerator of STATs, as a technique for lowering STAT activity in various malignant circumstances is summarized in this article, which will help scientists to generate more specific drug molecules in future.
Collapse
Affiliation(s)
- Dipanjan Karati
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| | - Kakasaheb Ramoo Mahadik
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Piyush Trivedi
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Dileep Kumar
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| |
Collapse
|
23
|
Isolated anemia in patients with large granular lymphocytic leukemia (LGLL). Blood Cancer J 2022; 12:30. [PMID: 35194022 PMCID: PMC8863822 DOI: 10.1038/s41408-022-00632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with large granular lymphocytic leukemia (LGLL) frequently present with neutropenia. When present, anemia is usually accompanied by neutropenia and/or thrombocytopenia and isolated anemia is uncommon. We evaluated a cohort of 244 LGLL patients spanning 15 years and herein report the clinicopathologic features of 34 (14%) with isolated anemia. The patients with isolated anemia showed a significantly male predominance (p = 0.001), a lower level of hemoglobulin (p < 0.0001) and higher MCV (p = 0.017) and were less likely to have rheumatoid arthritis (p = 0.023) compared to the remaining 210 patients. Of the 34 LGLL patients with isolated anemia, 13 (38%) presented with pure red cell aplasia (PRCA), markedly decreased reticulocyte count and erythroid precursors, and more transfusion-dependence when compared to non-PRCA patients. There was no other significant clinicopathologic difference between PRCA and non-PRCA patients. 32 patients were followed for a median duration of 51 months (6-199). 24 patients were treated (11/11 PRCA and 13/21 non-PRCA patients, p < 0.02). The overall response rate to first-line therapy was 83% [8/11 (72.7%) for PRCA, 12/13 (92.3%) for non-PRCA], including 14 showing complete response and 6 showing partial response with a median response duration of 48 months (12-129). Half of non-PRCA patients who were observed experienced progressive anemia. During follow-up, no patients developed neutropenia; however, 5/27 (18.5%) patients developed thrombocytopenia. No significant difference in overall survival was noted between PRCA and non-PRCA patients. In summary, this study demonstrates the unique features of LGLL with isolated anemia and underscores the importance of recognizing LGLL as a potential cause of isolated anemia, which may benefit from disease-specific treatment. LGLL patients with PRCA were more likely to require treatment but demonstrated similar clinicopathologic features, therapeutic responses, and overall survival compared to isolated anemia without PRCA, suggesting PRCA and non-PRCA of T-LGLL belong to a common disease spectrum.
Collapse
|
24
|
Zawit M, Gurnari C, Pagliuca S, Awada H, Maciejewski JP, Saunthararajah Y. A non-cytotoxic regimen of decitabine to treat refractory T-cell large granular lymphocytic leukemia. Clin Case Rep 2021; 9:e04533. [PMID: 34552731 PMCID: PMC8443408 DOI: 10.1002/ccr3.4533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
We report on a novel, successful, non-cytotoxic therapy to treat multiply-refractory T-LGL in an elderly patient.
Collapse
Affiliation(s)
- Misam Zawit
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
- Department of Biomedicine and Prevention & Ph.D in Immunology, Molecular Medicine and Applied BiotechnologyUniversity of Rome Tor VergataRomeItaly
| | - Simona Pagliuca
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
- Université de ParisParisFrance
| | - Hassan Awada
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Jaroslaw P. Maciejewski
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| |
Collapse
|
25
|
[Clinical characteristics of T-cell large granular lymphoblastic leukemia with STAT3 gene mutation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:495-501. [PMID: 34384156 PMCID: PMC8295617 DOI: 10.3760/cma.j.issn.0253-2727.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨携带STAT3基因突变的T细胞大颗粒淋巴细胞白血病(T-LGLL)患者的临床特征,为此类患者的临床管理提供参考。 方法 回顾性分析2009至2019年就诊于江苏省人民医院的T-LGLL患者的临床资料,比较STAT3突变患者与未突变患者的基线临床数据、治疗反应及生存结局。 结果 共纳入80例患者,STAT3未突变组66例,STAT3突变组14例(17.5%),其中Y640F突变发生频率最高(42.9%)。STAT3突变组与STAT3未突变组相比,HGB减低(67.5 g/L对82.5 g/L,P=0.018),中性粒细胞计数减少(0.665×109/L对1.465×109/L,P<0.001),乳酸脱氢酶升高(229 U/L对198 U/L,P=0.041),铁蛋白升高(402.5 g/L对236.0 g/L,P=0.029),TCR Vβ亚家族表达率升高(89.2%对65.4%,P=0.014),具备治疗指征患者比例升高(100%对74%,P=0.033)。STAT3突变组与未突变组一线免疫抑制治疗的完全缓解率分别为38.5%和32.7%,差异无统计学意义(P=0.748)。STAT3突变组与未突变组一线免疫抑制治疗的总有效率分别为69.2%和69.4%,差异无统计学意义(P=1.000)。中位随访63(2~121)个月,两组总生存时间(均未达到)的差异无统计学意义(P=0.170)。 结论 STAT3基因突变的T-LGLL患者可能有更高的肿瘤负荷和治疗需求,一线应用免疫抑制剂疗效良好。STAT3基因突变对T-LGLL患者预后的意义尚需进一步验证。
Collapse
|
26
|
Horna P, Olteanu H, Jevremovic D, Otteson GE, Corley H, Ding W, Parikh SA, Shah MV, Morice WG, Shi M. Single-Antibody Evaluation of T-Cell Receptor β Constant Chain Monotypia by Flow Cytometry Facilitates the Diagnosis of T-Cell Large Granular Lymphocytic Leukemia. Am J Clin Pathol 2021; 156:139-148. [PMID: 33438036 DOI: 10.1093/ajcp/aqaa214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The diagnosis of T-cell large granular lymphocytic leukemia (T-LGLL) is challenging because of overlapping immunophenotypic features with reactive T cells and limitations of T-cell clonality assays. We studied whether adding an antibody against T-cell receptor β constant region 1 (TRBC1) to a comprehensive flow cytometry panel could facilitate the diagnosis of T-LGLL. METHODS We added TRBC1 antibody to the standard T-cell and natural killer (NK) cell panel to assess T-cell clonality in 56 T-LGLLs and 34 reactive lymphocytoses. In addition, 20 chronic lymphoproliferative disorder of NK cells (CLPD-NKs) and 10 reactive NK-cell lymphocytoses were analyzed. RESULTS Clonal T cells were detected in all available T-LGLLs by monotypic TRBC1 expression and clonal/equivocal T-cell receptor gene rearrangement (TCGR) studies, compared with only 27% of T-LGLLs by killer-cell immunoglobulin-like receptor (KIR) restriction. Overall, 85% of T-LGLLs had a blood tumor burden greater than 500 cells/µL. Thirty-four reactive cases showed polytypic TRBC1 expression, except for 5 that revealed small T-cell clones of uncertain significance. All CLPD-NKs showed expected clonal KIR expression and negative TRBC1 expression. CONCLUSIONS Addition of TRBC1 antibody to the routine flow cytometry assay could replace the TCGR molecular study and KIR flow cytometric analysis to assess clonality, simplifying the diagnosis of T-LGLL.
Collapse
Affiliation(s)
- Pedro Horna
- Departments of Laboratory Medicine and Pathology, Rochester, MN
| | - Horatiu Olteanu
- Departments of Laboratory Medicine and Pathology, Rochester, MN
| | | | | | - Heidi Corley
- Departments of Laboratory Medicine and Pathology, Rochester, MN
| | - Wei Ding
- Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | - Min Shi
- Departments of Laboratory Medicine and Pathology, Rochester, MN
| |
Collapse
|
27
|
Gorodetskiy VR, Sidorova YV, Kupryshina NA, Vasilyev VI, Probatova NA, Ryzhikova NV, Sudarikov AB. Analysis of a single-institution cohort of patients with Felty's syndrome and T-cell large granular lymphocytic leukemia in the setting of rheumatoid arthritis. Rheumatol Int 2021; 41:147-156. [PMID: 33280072 PMCID: PMC7806571 DOI: 10.1007/s00296-020-04757-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
T-cell large granular lymphocytic leukemia (T-LGLL) is a lymphoproliferative disorder characterized by a persistent increase in the number of large granular lymphocytes (LGLs), neutropenia, and splenomegaly. Clinical manifestations of T-LGLL in the setting of rheumatoid arthritis (RA) are often identical to those in which one would suspect Felty's syndrome (FS). These disorders are distinguished by the presence of T-cell clonality, which is present in T-LGLL but not in FS. Mutations in the signal transducer and activator of transcription 3 (STAT3) and 5b (STAT5b) genes can be used as molecular markers of T-LGLL, but their prevalence in FS is unknown.Eighty-one patients with RA and unexplained neutropenia or/and an increase in the number of LGLs above 2 × 109/L were stratified into RA-associated T-LGLL (N = 56) or FS (N = 25) groups based on the presence or absence of T-cell clonality. STAT3 and STAT5b gene mutations were assessed in each group by means of allele-specific polymerase chain reaction assays. Clinical, immunological, laboratory data and the results of immunophenotyping of blood and bone marrow lymphocytes were also evaluated.Mutations of the STAT3 gene and an increase in the number of LGLs above 2 × 109/L were detected in RA-associated T-LGLL, but not in FS (39% vs 0% and 21% vs 0%, respectively). Mutations in the STAT5b gene were not observed in either group. Expression of CD57, CD16, and CD5-/dim on CD3+CD8+ T-lymphocytes was observed in both RA-associated T-LGLL and FS.STAT3 gene mutations or LGL counts over 2 × 109/L in RA patients are indicative of T-LGLL.
Collapse
Affiliation(s)
- Vadim Romanovich Gorodetskiy
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Kashirskoye shosse 34A, Moscow, 115522 Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Muñoz-García N, Jara-Acevedo M, Caldas C, Bárcena P, López A, Puig N, Alcoceba M, Fernández P, Villamor N, Flores-Montero JA, Gómez K, Lemes MA, Hernández JC, Álvarez-Twose I, Guerra JL, González M, Orfao A, Almeida J. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers (Basel) 2020; 12:cancers12123508. [PMID: 33255665 PMCID: PMC7760806 DOI: 10.3390/cancers12123508] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary STAT3 and STAT5B mutations have been identified in a subset of T and NK large granular lymphocytic leukemia (T/NK-LGLL). The aim of our study was to evaluate the frequency and type of these mutations in all different subtypes of T/NK-LGL expansions (n = 100 patients), as well as to analyze its association with biological and clinical features of the disease. We show for the first time that STAT3/5B mutations were present in all different T/NK-cell LGLL categories here studied; further, STAT3 mutations were associated with overall reduced counts of almost all normal residual populations of immune cells in blood, together with a shorter time-to-therapy vs. wild type T/NK-LGLL. These findings contribute to support the utility of the STAT3 mutation analysis for diagnostic and prognostic purposes in LGLL. Abstract STAT3 and STAT5B (STAT3/STAT5B) mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of STAT3/STAT5B mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls. STAT3 (n = 30) and STAT5B (n = 1) mutations were detected in 28/82 clonal T/NK-LGLL patients (34%), while absent (0/18, 0%) among oligoclonal/polyclonal LGL-lymphocytosis. Mutations were found across all diagnostic subgroups: TCD8+-LGLL, 36%; CLPD-NK, 38%; TCD4+-LGLL, 7%; Tαβ+DP-LGLL, 100%; Tαβ+DN-LGLL, 50%; Tγδ+-LGLL, 44%. STAT3-mutated T-LGLL/CLPD-NK showed overall reduced (p < 0.05) blood counts of most normal leukocyte subsets, with a higher rate (vs. nonmutated LGLL) of neutropenia (p = 0.04), severe neutropenia (p = 0.02), and cases requiring treatment (p = 0.0001), together with a shorter time-to-therapy (p = 0.0001), particularly in non-Y640F STAT3-mutated patients. These findings confirm and extend on previous observations about the high prevalence of STAT3 mutations across different subtypes of LGLL, and its association with a more marked decrease of all major blood-cell subsets and a shortened time-to-therapy.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Antonio López
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Noemí Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Paula Fernández
- Institut für Labormedizin, Kantonsspital, 5001 Aarau, Switzerland;
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Juan A. Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Karoll Gómez
- Hematology Service, Juan Ramón Jiménez Hospital, 21005 Huelva, Spain;
| | - María Angelina Lemes
- Hematology Service, Dr. Negrín Hospital, 35010 Las Palmas de Gran Canaria, Spain;
| | | | - Iván Álvarez-Twose
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, 45071 Toledo, Spain
| | - Jose Luis Guerra
- Hematology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain;
| | - Marcos González
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
- Department of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Correspondence: ; Tel.: +34-923-294-811 (ext. 5816)
| |
Collapse
|
29
|
T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics. Mod Pathol 2020; 33:2046-2057. [PMID: 32404954 DOI: 10.1038/s41379-020-0568-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
Abstract
Benign clonal T-cell expansions in reactive immune responses often complicate the laboratory diagnosis T-cell neoplasia. We recently introduced a novel flow cytometry assay to detect T-cell clones in blood and bone marrow, based on the identification of a monophasic T-cell receptor (TCR) β chain constant region-1 (TRBC1) expression pattern within a phenotypically distinct TCRαβ T-cell subset. In routine laboratory practice, T-cell clones of uncertain significance (T-CUS) were detected in 42 of 159 (26%) patients without T-cell malignancy, and in 3 of 24 (13%) healthy donors. Their phenotype (CD8+/CD4-: 78%, CD4-/CD8-: 12%, CD4+/CD8+: 9%, or CD4+/CD8-: 2%) closely resembled that of 26 cases of T-cell large granular lymphocytic leukemia (T-LGLL) studied similarly, except for a much smaller clone size (p < 0.0001), slightly brighter CD2 and CD7, and slightly dimmer CD3 expression (p < 0.05). T-CUS was not associated with age, gender, comorbidities, or peripheral blood counts. TCR-Vβ repertoire analysis confirmed the clonality of T-CUS, and identified additional clonotypic CD8-positive subsets when combined with TRBC1 analysis. We hereby report the phenotypic features and incidence of clonal T-cell subsets in patients with no demonstrable T-cell neoplasia, providing a framework for the differential interpretation of T-cell clones based on their size and phenotypic properties.
Collapse
|
30
|
Olson KC, Moosic KB, Jones MK, Larkin PMK, Olson TL, Toro MF, Fox TE, Feith DJ, Loughran TP. Large granular lymphocyte leukemia serum and corresponding hematological parameters reveal unique cytokine and sphingolipid biomarkers and associations with STAT3 mutations. Cancer Med 2020; 9:6533-6549. [PMID: 32710512 PMCID: PMC7520360 DOI: 10.1002/cam4.3246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia is a rare hematological disorder with expansion of the T-cell or natural killer (NK) cell lineage. Signal transducer and activator of transcription 3 (STAT3) exhibits somatic activating mutations in 30%-40% of LGL leukemia cases. Transcriptional targets of STAT3 include inflammatory cytokines, thus previous studies have measured cytokine levels of LGL leukemia patients compared to normal donors. Sphingolipid metabolism is a growing area of cancer research, with efforts focused on drug discovery. To date, no studies have examined serum sphingolipids in LGL leukemia patients, and only one study compared a subset of cytokines between the T-LGL and NK-LGL subtypes. Therefore, here, we included both LGL leukemia subtypes with the goals of (a) measuring serum sphingolipids for the first time, (b) measuring cytokines to find distinctions between the subtypes, and (c) establishing relationships with STAT3 mutations and clinical data. The serum analyses identified cytokines (EGF, IP-10, G-CSF) and sphingolipids (SMC22, SMC24, SMC20, LysoSM) significantly different in the LGL leukemia group compared to normal donors. In a mixed STAT3 mutation group, D661Y samples exhibited the highest mean corpuscular volume (MCV) values. We explored this further by expanding the cohort to include larger groups of single STAT3 mutations. Male D661Y STAT3 samples had lower Hgb and higher MCV compared to wild type (WT) or Y640F counterparts. This is the first report examining large groups of individual STAT3 mutations. Overall, our results revealed novel serum biomarkers and evidence that D661Y mutation may show different clinical manifestation compared to WT or Y640F STAT3.
Collapse
Affiliation(s)
- Kristine C. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Katharine B. Moosic
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Marieke K. Jones
- Health Sciences LibraryUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Paige M. K. Larkin
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Present address:
Department of Pathology and Laboratory MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Thomas L. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Mariella F. Toro
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Todd E. Fox
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - David J. Feith
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Thomas P. Loughran
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| |
Collapse
|
31
|
Yamane T, Kawakami T, Sekiguchi N, Kobayashi J, Ueki T, Kobayashi H, Kawakami F, Nishina S, Sakai H, Oshimi K, Higuchi Y, Nakazawa H, Ishida F. High frequency of STAT3 gene mutations in T-cell receptor (TCR)γδ-type T-cell large granular lymphocytic leukaemia: implications for molecular diagnostics. Br J Haematol 2020; 190:e301-e304. [PMID: 32478405 DOI: 10.1111/bjh.16820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Taku Yamane
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Toru Kawakami
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nodoka Sekiguchi
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Kobayashi
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan.,Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Toshimitsu Ueki
- Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan
| | - Hikaru Kobayashi
- Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan
| | - Fumihiro Kawakami
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sayaka Nishina
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hitoshi Sakai
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuo Oshimi
- Division of Hematology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Yumiko Higuchi
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideyuki Nakazawa
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan.,Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
32
|
Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front Oncol 2020; 10:152. [PMID: 32133291 PMCID: PMC7040228 DOI: 10.3389/fonc.2020.00152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαβ, CD4+ Tαβ, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.
Collapse
Affiliation(s)
- Antonella Teramo
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
33
|
STAT3 Activation and Oncogenesis in Lymphoma. Cancers (Basel) 2019; 12:cancers12010019. [PMID: 31861597 PMCID: PMC7016717 DOI: 10.3390/cancers12010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an important and the most studied transcription factor in the Janus kinase (JAK)/STAT signaling pathway. STAT3 mediates the expression of various genes that play a critical role in many cellular and biological processes, such as cell proliferation, survival, differentiation, migration, angiogenesis, and inflammation. STAT3 and associated JAKs are activated and tightly regulated by a variety of cytokines and growth factors and their receptors in normal immune responses. However, abnormal expression of STAT3 leads to its constitutive activation, which promotes malignant transformation and tumor progression through oncogenic gene expression in numerous human cancers. Human lymphoma is a heterogeneous malignancy of T and B lymphocytes. Constitutive signaling by STAT3 is an oncogenic driver in several types of B-cell lymphoma and most of T-cell lymphomas. Aberrant STAT3 activation can also induce inappropriate expression of genes involved in tumor immune evasion such as PD-L1. In this review, we focus on the oncogenic role of STAT3 in human lymphoma and highlight potential therapeutic intervention by targeting JAK/STAT3 signaling.
Collapse
|
34
|
Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: a single-center experience of 205 patients. Leukemia 2019; 34:1116-1124. [PMID: 31740810 DOI: 10.1038/s41375-019-0644-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare and chronic lymphoproliferative disorder characterized by the clonal expansion of LGLs. LGLL patients can be asymptomatic or develop cytopenia, mostly neutropenia. Somatic STAT3 and STAT5b mutations have been recently reported in approximately 40% of patients. The aim of this study is to analyze clinical and biological features of a large cohort of LGLL patients to identify prognostic markers affecting patients' outcome. In 205 LGLL patients, neutropenia (ANC < 1500/mm3) was the main feature (38%), with severe neutropenia (ANC < 500/mm3) being present in 20.5% of patients. STAT3 mutations were detected in 28.3% patients and were associated with ANC < 500/mm3 (p < 0.0001), Hb < 90 g/L (p = 0.0079) and treatment requirement (p < 0.0001) while STAT5b mutations were found in 15/152 asymptomatic patients. By age-adjusted univariate analysis, ANC < 500/mm3 (p = 0.013), Hb < 90 g/L (p < 0.0001), treatment requirement (p = 0.001) and STAT3 mutated status (p = 0.011) were associated to reduced overall survival (OS). By multivariate analysis, STAT3 mutated status (p = 0.0089) and Hb < 90 g/L (p = 0.0011) were independently associated to reduced OS. In conclusion, we identified clinical and biological features associated to reduced OS in LGLL and we demonstrated the adverse impact of STAT3 mutations in patients' survival, suggesting that this biological feature should be regarded as a potential target of therapy.
Collapse
|
35
|
de Araujo ED, Orlova A, Neubauer HA, Bajusz D, Seo HS, Dhe-Paganon S, Keserű GM, Moriggl R, Gunning PT. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers (Basel) 2019; 11:E1757. [PMID: 31717342 PMCID: PMC6895964 DOI: 10.3390/cancers11111757] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of STAT proteins although the functional impact for the vast majority of these mutations remains poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins, structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5 SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result in either activating or deactivating mutations at the same site in the domain, underscoring the delicate evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular activity. Understanding the molecular and biophysical impact of these disease-associated mutations can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain to facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
36
|
Song H, Yang Z, Jiang M, Zhang G, Gao Y, Shen Z, Wu ZS, Lou Y. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Talanta 2019; 204:29-35. [DOI: 10.1016/j.talanta.2019.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
|
37
|
Qiu ZY, Qin R, Tian GY, Wang Y, Zhang YQ. Pathophysiologic Mechanisms And Management Of Large Granular Lymphocytic Leukemia Associated Pure Red Cell Aplasia. Onco Targets Ther 2019; 12:8229-8240. [PMID: 31632073 PMCID: PMC6781944 DOI: 10.2147/ott.s222378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Large granular lymphocytic leukemia (LGLL) is a chronic clonal lymphoproliferative disease of mature T or NK cells, and produces a variety of hematological abnormalities. Pure red cell aplasia (PRCA) is a rare haematological disease and is one of the most common complications of LGLL. LGLL-associated PRCA may represent a relatively indolent type and may be more common than reported, but its natural history and clinical course have not been well described. The ethnic origin of the patients is an important consideration in determining the relationship between PRCA and LGLL. Guidelines and progresses for management of LGLL-associated PRCA rely on accumulation of empirical experiences, integrative analyses of several cases and clinical trials. The purpose of this review is to evaluate occurrence, possible mechanisms, diagnosis, clinical features, treatments and outcomes of LGLL-associated PRCA.
Collapse
Affiliation(s)
- Zhi-Yuan Qiu
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Rong Qin
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Guang-Yu Tian
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Ye-Qing Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, People's Republic of China
| |
Collapse
|
38
|
Frequent STAT3 mutations in CD8 + T cells from patients with pure red cell aplasia. Blood Adv 2019; 2:2704-2712. [PMID: 30337298 DOI: 10.1182/bloodadvances.2018022723] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of T-cell-mediated immunity is responsible for acquired pure red cell aplasia (PRCA). Although STAT3 mutations are frequently detected in patients with T-cell large granular lymphocytic leukemia (T-LGLL), which is often complicated by PRCA and which is also reported to be associated with acquired aplastic anemia (AA) and myelodysplastic syndrome (MDS), whether STAT3-mutated T cells are involved in the pathophysiology of PRCA and other types of bone marrow failure remains unknown. We performed STAT3 mutation analyses of the peripheral blood mononuclear cells from PRCA patients (n = 42), AA (n = 54), AA-paroxysmal nocturnal hemoglobinuria (AA-PNH; n = 7), and MDS (n = 21) using an allele-specific polymerase chain reaction and amplicon sequencing. STAT3 mutations were not detected in any of the 82 patients with AA/PNH/MDS but were detected in 43% of the 42 PRCA patients. In all 7 STAT3-mutation-positive patients who were studied, the STAT3 mutations were restricted to sorted CD8+ T cells. The prevalence of STAT3 mutation in idiopathic, thymoma-associated, autoimmune disorder-associated, and T-LGLL-associated PRCA was 33% (5 of 15), 29% (2 of 7), 20% (1 of 5), and 77% (10 of 13), respectively. The STAT3-mutation-positive patients were younger (median age, 63 vs 73 years; P= .026) and less responsive to cyclosporine (46% [6 of 13] vs 100% [8 of 8]; P= .0092) in comparison with STAT3-mutation-negative patients. The data suggest that STAT3-mutated CD8+ T cells may be closely involved in the selective inhibition of erythroid progenitors in PRCA patients.
Collapse
|
39
|
Moosic KB, Paila U, Olson KC, Dziewulska K, Wang TT, Xing JC, Ratan A, Feith DJ, Loughran TP, Olson TL. Genomics of LGL leukemia and select other rare leukemia/lymphomas. Best Pract Res Clin Haematol 2019; 32:196-206. [PMID: 31585620 PMCID: PMC6779335 DOI: 10.1016/j.beha.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
Abstract
Genomic analysis of cancer offers the hope of identifying new treatments or aiding in the selection of existing treatments. Rare leukemias pose additional challenges in this regard as samples may be hard to acquire and when found the underlying pathway may not be attractive to drug development since so few individuals are affected. In this case, it can be useful to identify common mutational overlap among subsets of rare leukemias to increase the number of individuals that may benefit from a targeted therapy. This chapter examines the current mutational landscape of large granular lymphocyte (LGL) leukemia with a focus on STAT3 mutations, the most common mutation in LGL leukemia to date. We examined the linkage between these mutations and autoimmune symptoms and disorders, in cases of obvious and suspected LGL leukemia. We then summarized and compared mutations in a set of other rare leukemias that also have JAK/STAT signaling pathway activation brought about by genomic changes. These include T-cell acute lymphoblastic leukemia (T-ALL), T-cell prolymphocytic leukemia (T-PLL), cutaneous T-cell lymphoma (CTCL), select peripheral T-cell lymphoma (PTCL), and adult T-cell leukemia/lymphoma (ATLL). Though STAT3 activation is common in these leukemias, the way in which it is achieved, such as the activating cytokine pathway and/or the co-mutational background, is quite diverse.
Collapse
Affiliation(s)
- Katharine B Moosic
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Pathology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - Umadevi Paila
- Center for Public Health Genomics, MSB-6111A, West Complex, 1335 Lee Street, Charlottesville, VA, 22908, USA.
| | - Kristine C Olson
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - Karolina Dziewulska
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Pathology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - T Tiffany Wang
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Microbiology, Immunology, and Cancer Biology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - Jeffrey C Xing
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Aakrosh Ratan
- Center for Public Health Genomics, MSB-6131F, West Complex, 1300 JPA, Charlottesville, VA, 22908, USA.
| | - David J Feith
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - Thomas P Loughran
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| | - Thomas L Olson
- University of Virginia Cancer Center, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA; Department of Medicine, Division of Hematology/Oncology, 345 Crispell Dr, PO Box 801378, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Abstract
Unexplained cytopenia is one of the most common indications for performing trephine bone marrow (BM) biopsy (BMB). The histopathological examination in this regard must be seen in the broader context of a multimodal approach in order to reach an as entity-specific as possible diagnosis, considering medical history, physical examination, laboratory data, peripheral blood morphology, BM aspiration smear, flow cytometry results and, if indicated, cytogenetics and molecular genetics. The particular irreplaceability of the histopathological work-up and the expectations to the BMB lie especially in the detection of fibrosing and/or focal processes (e.g. localized islets of blasts) and disorders extrinsic to the BM such as e.g. metastases, thrombotic microangiopathies, granulomatous myelitides etc. We propose a systematic combined histopathological pattern-based and blood count-based approach that can be applied in such circumstances to achieve a precise diagnosis or, at least, a clinically useful differential diagnosis, particularly taking into consideration specific morphologic pitfalls and application of ancillary techniques. Constitutional BM failure syndromes will not be profoundly addressed.
Collapse
|
41
|
Neff JL, Rangan A, Jevremovic D, Nguyen PL, Chiu A, Go RS, Chen D, Morice WG, Shi M. Mixed-phenotype large granular lymphocytic leukemia: a rare subtype in the large granular lymphocytic leukemia spectrum. Hum Pathol 2018; 81:96-104. [PMID: 29949739 DOI: 10.1016/j.humpath.2018.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Large granular lymphocytic leukemia (LGLL) is a chronic proliferation of cytotoxic lymphocytes in which more than 70% of patients develop cytopenia(s) requiring therapy. LGLL includes T-cell LGLL and chronic lymphoproliferative disorder of natural killer (NK) cells. The neoplastic cells in LGLL usually exhibit a single immunophenotype in a patient, with CD8-positive/αβ T-cell type being the most common, followed by NK-cell, γδ T-cell, and CD4-positive/αβ T-cell types. We investigated a total of 220 LGLL cases and identified 12 mixed-phenotype LGLLs (5%): 7 cases with coexistent αβ T-cell and NK-cell clones and 5 with coexistent αβ and γδ T-cell clones. With a median follow-up of 48 months, the clinicopathological characteristics of these patients seemed similar to those of typical LGLL patients. Treatment was instituted in 9 patients, and 5 patients (55%) attained complete hematologic response or partial response. The therapeutic response rate of this cohort is comparable to the reported overall response rate of 40% to 60% in typical LGLL patients. Three patients who did not receive any treatment had progressive or persistent cytopenias. Interestingly, inverted proportions of 2 clones at disease recurrence were identified in 4 patients (36%) and stable clonal proportions in 7 patients (64%). Mixed-phenotype LGLL is rare, and this study underscores the importance of recognizing this rare type of LGLL in patients who may benefit from LGLL treatment.
Collapse
Affiliation(s)
- Jadee L Neff
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Aruna Rangan
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Phuong L Nguyen
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - April Chiu
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - William G Morice
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Sharma A, Oishi N, Boddicker RL, Hu G, Benson HK, Ketterling RP, Greipp PT, Knutson DL, Kloft-Nelson SM, He R, Eckloff BW, Jen J, Nair AA, Davila JI, Dasari S, Lazaridis KN, Bennani NN, Wu TT, Nowakowski GS, Murray JA, Feldman AL. Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood 2018; 131:2262-2266. [PMID: 29592893 PMCID: PMC5958657 DOI: 10.1182/blood-2018-01-830968] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Naoki Oishi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan; and
| | | | - Guangzhen Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Hailey K Benson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Darlene L Knutson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Jin Jen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | - Tsung-Teh Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Grzegorz S Nowakowski
- Center for Individualized Medicine, and
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|