1
|
Li H, Zhao C, Yang Y, Zhou Z, Qi J, Li C. The Influence of Gut Microbiota on the Fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:15. [PMID: 34415303 PMCID: PMC8378403 DOI: 10.1093/jisesa/ieab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota of insects usually plays an important role in the development and reproduction of their hosts. The fecundity of Henosepilachna vigintioctopunctata (Fabricius) varies greatly when they develop on different host plants. Whether and how the gut microbiota regulates the fecundity of H. vigintioctopunctata was unknown. To address this question, we used 16S rRNA sequencing to analyze the gut microbiomes of H. vigintioctopunctata adults fed on two host plant species (Solanum nigrum and Solanum melongena) and one artificial diet. The development of the ovaries and testes was also examined. Our results revealed that the diversity and abundance of gut microorganisms varied significantly in insects reared on different diets. The gut microbiota of H. vigintioctopunctata raised on the two host plants was similar, with Proteobacteria being the dominant phylum in both groups, whereas Firmicutes was the dominant phylum in the group reared on the artificial diet. The predominant microbiota in the S. nigrum group were Acinetobacter soli and Acinetobacter ursingii (Acinetobacter, Moraxellaceae); Moraxella osloensis (Enhydrobacter, Moraxellaceae); and Empedobacter brevis (Empedobacter, Weeksellaceae). The microbiota in this group are associated with high lipid metabolism. In addition, the beetles' ovaries and testes were more highly developed in the S. nigrum group than in the other two groups. These findings provide valuable information for elucidating the complex roles the gut microbiota play in the fecundity of H. vigintioctopunctata, and may also contribute to developing future novel control strategies involving this economically important pest.
Collapse
Affiliation(s)
- Hanwen Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yang Yang
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Chuanren Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
2
|
Cytochrome c Oxidase at Full Thrust: Regulation and Biological Consequences to Flying Insects. Cells 2021; 10:cells10020470. [PMID: 33671793 PMCID: PMC7931083 DOI: 10.3390/cells10020470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Collapse
|
3
|
Methoprene-Induced Genes in Workers of Formosan Subterranean Termites ( Coptotermes formosanus Shiraki). INSECTS 2020; 11:insects11020071. [PMID: 31973177 PMCID: PMC7074503 DOI: 10.3390/insects11020071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.
Collapse
|
4
|
Mating triggers an up-regulation of vitellogenin and defensin in ant queens. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:745-753. [PMID: 31414174 DOI: 10.1007/s00359-019-01362-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Mating induces a range of physiological changes in female insects. In species that mate during several reproductive bouts throughout their life, mating causes an increase in oviposition, affects immune function, and decreases female lifespan and receptivity to further mating. Social Hymenoptera (ants, social bees, and wasps) are unique, since queens mate during a single reproductive effort at the beginning of their life. Their reproductive strategy is thus fundamentally different from that of other insects and one might expect the effects of mating on social Hymenoptera queens to be altered. We tested the effect of mating and multiple mating on the expression of six genes likely to be involved in post-mating changes, in queens of the ant Lasius niger L. We show that mating induces oviposition, and is followed by an up-regulation of vitellogenin and defensin expression. The expression of juvenile hormone esterase, insulin receptor 2, Cu-Zn superoxide dismutase 1, and prophenoloxidase is not significantly affected by mating. Queen-mating frequency did not affect the expression of the tested genes. Altogether, our results indicate that certain effects of mating on female insect physiology are generalized across species independent of their mating strategies, while others seem species specific.
Collapse
|
5
|
He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte HJ, McMahon DP. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. INSECT MOLECULAR BIOLOGY 2018; 27:564-576. [PMID: 29663551 DOI: 10.1111/imb.12499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The importance of soldiers to termite society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies.
Collapse
Affiliation(s)
- S He
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - P R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - B Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - S Lokatis
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - R Plarre
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - H-J Kunte
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - D P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
6
|
Calkins TL, Chen ME, Arora AK, Hawkings C, Tamborindeguy C, Pietrantonio PV. Brain gene expression analyses in virgin and mated queens of fire ants reveal mating-independent and socially regulated changes. Ecol Evol 2018; 8:4312-4327. [PMID: 29721300 PMCID: PMC5916306 DOI: 10.1002/ece3.3976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 02/05/2023] Open
Abstract
Transcriptomes of dissected brains from virgin alate and dealate mated queens from polygyne fire ants (Solenopsis invicta) were analyzed and compared. Thirteen genes were upregulated in mated queen brain, and nine were downregulated. While many of the regulated genes were either uncharacterized or noncoding RNAs, those annotated genes included two hexamerin proteins, astakine neuropeptide, serine proteases, and serine protease inhibitors. We found that for select differentially expressed genes in the brain, changes in gene expression were most likely driven by the changes in physiological state (i.e., age, nutritional status, or dominance rank) or in social environment (released from influence of primer pheromone). This was concluded because virgins that dealated after being separated from mated queens showed similar patterns of gene expression in the brain as those of mated queens for hexamerin 1, astakine, and XR_850909. Abaecin (XR_850725), however, appears upregulated only after mating. Therefore, our findings contribute to distinguish how specific gene networks, especially those influenced by queen primer pheromone, are regulated in queen ants. Additionally, to identify brain signaling pathways, we mined the fire ant genome and compiled a list of G-protein-coupled receptors (GPCRs). The expression level of GPCRs and other genes in the "genetic toolkit" in the brains of virgin alates and mated dealate queens is reported.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology Texas A&M University College Station TX USA
| | - Mei-Er Chen
- Department of Entomology Texas A&M University College Station TX USA.,Department of Entomology National Chung Hsing University Taichung City Taiwan
| | - Arinder K Arora
- Department of Entomology Texas A&M University College Station TX USA.,Department of Entomology Cornell University Ithaca NY USA
| | - Chloe Hawkings
- Department of Entomology Texas A&M University College Station TX USA
| | | | | |
Collapse
|
7
|
Gotoh A, Shigenobu S, Yamaguchi K, Kobayashi S, Ito F, Tsuji K. Transcriptome profiling of the spermatheca identifies genes potentially involved in the long-term sperm storage of ant queens. Sci Rep 2017; 7:5972. [PMID: 28729606 PMCID: PMC5519678 DOI: 10.1038/s41598-017-05818-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Females of social Hymenoptera only mate at the beginning of their adult lives and produce offspring until their death. In most ant species, queens live for over a decade, indicating that ant queens can store large numbers of spermatozoa throughout their long lives. To reveal the prolonged sperm storage mechanisms, we identified enriched genes in the sperm-storage organ (spermatheca) relative to those in body samples in Crematogaster osakensis queens using the RNA-sequencing method. The genes encoding antioxidant enzymes, proteases, and extracellular matrix-related genes, and novel genes that have no similar sequences in the public databases were identified. We also performed differential expression analyses between the virgin and mated spermathecae or between the spermathecae at 1-week and 1-year after mating, to identify genes altered by the mating status or by the sperm storage period, respectively. Gene Ontology enrichment analyses suggested that antioxidant function is enhanced in the spermatheca at 1-week after mating compared with the virgin spermatheca and the spermatheca at 1-year after mating. In situ hybridization analyses of 128 selected contigs revealed that 12 contigs were particular to the spermatheca. These genes have never been reported in the reproductive organs of insect females, suggesting specialized roles in ant spermatheca.
Collapse
Affiliation(s)
- Ayako Gotoh
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, 658-8501, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Fuminori Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, 761-0795, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
8
|
Pang R, Qiu J, Li T, Yang P, Yue L, Pan Y, Zhang W. The regulation of lipid metabolism by a hypothetical P-loop NTPase and its impact on fecundity of the brown planthopper. Biochim Biophys Acta Gen Subj 2017; 1861:1750-1758. [PMID: 28315769 DOI: 10.1016/j.bbagen.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/25/2017] [Accepted: 03/14/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Insect fecundity can be regulated by multiple genes in several important signaling pathways which form an extremely complicated regulatory network. However, there are still many genes that have significant impact on insect fecundity but their action mode are still unknown. METHODS Quantitative real-time PCR (qRT-PCR), immunofluorescence and western blot were used to study the expression profile of Nl23867 in the brown planthopper, Nilaparvata lugens. RNA interference (RNAi), RNA-seq and isobaric tags for relative and absolute quantification (iTRAQ) were performed to investigate the action mode of Nl23867 in the regulation of fecundity. High performance liquid chromatography (HPLC) analysis was performed to detect the fatty acid contents. RESULTS We show that knockdown of Nl23867, a gene encoding a hypothetical P-loop NTPase, significantly decreased fecundity of N. lugens. Underdeveloped ovaries, fewer eggs laid and reduction in vitellogenin (Vg) protein expression were observed after RNAi knockdown of Nl23867, and most of the affected genes and pathways are fatty acid metabolism-related. We further determined that Nl23867 directly impacts the palmitic acid biosynthesis by regulating the expression of palmitoyl-protein thioesterase (PPT), subsequently affecting the content of total lipids in N. lugens. CONCLUSIONS Nl23867 regulates the fecundity of N. lugens by modulating the biosynthetic pathway of palmitic acid and affecting lipid metabolism during vitellogenesis and oocyte development. GENERAL SIGNIFICANCE The presented study pioneers the exploration into how a function-unknown gene takes part in the regulation of fecundity in an insect, and will contribute to the construction of gene regulatory network for insect fecundity.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jieqi Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tengchao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pan Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yixin Pan
- ZhiXin High School, Guangzhou, 510080, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AFG. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp Gerontol 2016; 77:52-61. [PMID: 26883339 DOI: 10.1016/j.exger.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 02/03/2023]
Abstract
Eusocial insects provide special insights into the genetic pathways influencing aging because of their long-lived queens and flexible aging schedules. Using qRT-PCR in the primitively eusocial bumble bee Bombus terrestris (Linnaeus), we investigated expression levels of four candidate genes associated with taxonomically widespread age-related pathways (coenzyme Q biosynthesis protein 7, COQ7; DNA methyltransferase 3, Dnmt3; foraging, for; and vitellogenin, vg). In Experiment 1, we tested how expression changes with queen relative age and productivity. We found a significant age-related increase in COQ7 expression in queen ovary. In brain, all four genes showed higher expression with increasing female (queen plus worker) production, with this relationship strengthening as queen age increased, suggesting a link with the positive association of fecundity and longevity found in eusocial insect queens. In Experiment 2, we tested effects of relative age and social environment (worker removal) in foundress queens and effects of age and reproductive status in workers. In this experiment, workerless queens showed significantly higher for expression in brain, as predicted if downregulation of for is associated with the cessation of foraging by foundress queens following worker emergence. Workers showed a significant age-related increase in Dnmt3 expression in fat body, suggesting a novel association between aging and methylation in B. terrestris. Ovary activation was associated with significantly higher vg expression in fat body and, in younger workers, in brain, consistent with vitellogenin's ancestral role in regulating egg production. Overall, our findings reveal a mixture of novel and conserved features in age-related genetic pathways under primitive eusociality.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Edward J Almond
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Joel D Parker
- School of Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
10
|
Morandin C, Dhaygude K, Paviala J, Trontti K, Wheat C, Helanterä H. Caste-biases in gene expression are specific to developmental stage in the ant Formica exsecta. J Evol Biol 2015; 28:1705-18. [PMID: 26172873 DOI: 10.1111/jeb.12691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023]
Abstract
Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co-opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of 'toolkit' genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA-Seq to compare caste-biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste-biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste-biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste-biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste-biased at least in some life stages in F. exsecta, and the caste-biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.
Collapse
Affiliation(s)
- C Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - K Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - J Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - K Trontti
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland
| | - C Wheat
- Department of Zoology, Population Genetics, Stockholm University, Stockholm, Sweden
| | - H Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, Helsinki University, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
11
|
Azevedo DO, de Paula SO, Zanuncio JC, Martinez LC, Serrão JE. Juvenile hormone downregulates vitellogenin production in Ectatomma tuberculatum (Hymenoptera: Formicidae) sterile workers. J Exp Biol 2015; 219:103-8. [DOI: 10.1242/jeb.127712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022]
Abstract
In the ant Ectatomma tuberculatum (Olivier, 1792), workers have active ovaries and lay trophic eggs that are eaten by the queen and larvae. Vitellogenins are the main proteins found in the eggs of insects and are the source of nutrients for the embryo in the fertilized eggs and for adults when in the trophic eggs. In social insects, vitellogenin titers vary between castes and affect reproductive social status, nursing, foraging, longevity, somatic maintenance, and immunity. In most insects, vitellogenin synthesis is mainly regulated by juvenile hormone. However, in non-reproductive worker ants, this relationship is poorly characterized. This study determined the effects of juvenile hormone on vitellogenin synthesis in non-reproductive E. tuberculatum workers. Juvenile hormone was topically applied onto workers, and the effect on vitellogenin synthesis in the fat body and vitellogenin titers in the haemolymph were analyzed by ELISA and qPCR. Juvenile hormone downregulated protein synthesis and reduced vitellogenin titers in the haemolymph, suggesting that in workers E. tuberculatum, juvenile hormone loses its gonadotrophic function.
Collapse
Affiliation(s)
| | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Luis Carlos Martinez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
12
|
Niu D, Zheng H, Corona M, Lu Y, Chen X, Cao L, Sohr A, Hu F. Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. INSECT MOLECULAR BIOLOGY 2014; 23:668-681. [PMID: 25039886 DOI: 10.1111/imb.12114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.
Collapse
Affiliation(s)
- D Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gálvez D, Chapuisat M. Immune priming and pathogen resistance in ant queens. Ecol Evol 2014; 4:1761-7. [PMID: 24963375 PMCID: PMC4063474 DOI: 10.1002/ece3.1070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life-history theory predicts that immune priming and large investment in immunity should be more frequent in long-lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L. niger. In contrast, we found no sign of priming in virgin queens of L. niger, nor in virgin or experimentally mated queens of F. selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up-regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring.
Collapse
Affiliation(s)
- Dumas Gálvez
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
14
|
Bernadou A, Heinze J. Mating-Associated Changes in the Behaviour ofLeptothorax gredleriAnt Queens. Ethology 2013. [DOI: 10.1111/eth.12103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abel Bernadou
- Biologie I; Universität Regensburg; Regensburg; Germany
| | - Jürgen Heinze
- Biologie I; Universität Regensburg; Regensburg; Germany
| |
Collapse
|
15
|
Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS One 2013; 8:e57718. [PMID: 23469057 PMCID: PMC3585193 DOI: 10.1371/journal.pone.0057718] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/25/2013] [Indexed: 01/16/2023] Open
Abstract
To accurately assess gene expression levels, it is essential to normalize real-time quantitative PCR (RT-qPCR) data with suitable internal reference genes. For the red imported fire ant, Solenopsis invicta, reliable reference genes to assess the transcript expression levels of the target genes have not been previously investigated. In this study, we examined the expression levels of five candidate reference genes (rpl18, ef1-beta, act, GAPDH, and tbp) in different developmental stages, castes and tissues of S. invicta. To evaluate the suitability of these genes as endogenous controls, three software-based approaches (geNorm, BestKeeper and NormFinder) and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. Furthermore, the optimal number of reference gene(s) was determined by the pairwise variation value. Our data showed that two of the five candidate genes, rpl18 and ef1-beta, were the most suitable reference genes because they have the most stable expression among different developmental stages, castes and tissues in S. invicta. Although widely used as reference gene in other species, in S. invicta the act gene has high variation in expression and was consequently excluded as a reliable reference gene. The two validated reference genes, rpl18 and ef1-beta, can be widely used for quantification of target gene expression with RT-qPCR technology in S. invicta.
Collapse
|
16
|
dos Santos Pinto JRA, Fox EGP, Saidemberg DM, Santos LD, da Silva Menegasso AR, Costa-Manso E, Machado EA, Bueno OC, Palma MS. Proteomic View of the Venom from the Fire Ant Solenopsis invicta Buren. J Proteome Res 2012; 11:4643-53. [DOI: 10.1021/pr300451g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José R. A. dos Santos Pinto
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Eduardo G. P. Fox
- Laboratório
de Entomologia Médica e Molecular, Instituto de Biofísica
Carlos Chagas Filho, Federal University of Rio de Janeiro (IBCCF/UFRJ), Rio de Janeiro, Brazil
| | - Daniel M. Saidemberg
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Lucilene D. Santos
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Anally R. da Silva Menegasso
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | | | - Ednildo A. Machado
- Laboratório
de Entomologia Médica e Molecular, Instituto de Biofísica
Carlos Chagas Filho, Federal University of Rio de Janeiro (IBCCF/UFRJ), Rio de Janeiro, Brazil
| | - Odair C. Bueno
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Mario S. Palma
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| |
Collapse
|
17
|
Husseneder C, McGregor C, Lang RP, Collier R, Delatte J. Transcriptome profiling of female alates and egg-laying queens of the Formosan subterranean termite. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 7:14-27. [PMID: 22079412 DOI: 10.1016/j.cbd.2011.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Termites are known to have an extraordinary reproductive plasticity and capacity, but the underlying genetic patterns of termite reproductive biology are relatively understudied. The goal of this study was to identify genes for which expression levels differ between dealated precopulatory females (virgins) and egg-laying queens of the Formosan subterranean termite, Coptotermes formosanus Shiraki. We constructed a normalized polyphenic expressed sequence tag (EST) library that represents genomic material from most of the castes and life stages of the Formosan subterranean termite. Microarrays were designed using probes from this EST library and public genomic resources. Virgin females and queens were competitively hybridized to these microarrays and differentially expressed candidate genes were identified. Differential expression of eight genes was subsequently confirmed via reverse transcriptase quantitative PCR (RT-QPCR). When compared to virgins, queens had higher expression of genes coding for proteins related to immunity (gram negative binding protein), nutrition (e.g., termite-derived endo-beta-1,4-glucanase), protein storage, regulation of caste differentiation and reproduction (hexamerin, juvenile hormone binding protein). Queens also had higher transcript levels for genes involved in metabolism of xenobiotics, fat, and juvenile hormone (glutathione-S-transferase-like proteins, and cytochrome P450), among others. In particular, hexamerin, juvenile hormone binding protein, and a cytochrome P450 from the 4C subfamily are likely to be involved in initiating the inactive period during the reproductive cycle of the queen. Vice versa, virgins had higher expression than queens of genes related to respiration, probably due to recent flight activity, and several genes of unknown function.
Collapse
Affiliation(s)
- Claudia Husseneder
- Louisiana State University Agricultural Center, Department of Entomology, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
18
|
Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1090-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Steller MM, Kambhampati S, Caragea D. Comparative analysis of expressed sequence tags from three castes and two life stages of the termite Reticulitermes flavipes. BMC Genomics 2010; 11:463. [PMID: 20691076 PMCID: PMC3091659 DOI: 10.1186/1471-2164-11-463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 08/06/2010] [Indexed: 11/25/2022] Open
Abstract
Background Termites (Isoptera) are eusocial insects whose colonies consist of morphologically and behaviorally specialized castes of sterile workers and soldiers, and reproductive alates. Previous studies on eusocial insects have indicated that caste differentiation and behavior are underlain by differential gene expression. Although much is known about gene expression in the honey bee, Apis mellifera, termites remain relatively understudied in this regard. Therefore, our objective was to assemble an expressed sequence tag (EST) data base for the eastern subterranean termite, Reticulitermes flavipes, for future gene expression studies. Results Soldier, worker, and alate caste and two larval cDNA libraries were constructed, and approximately 15,000 randomly chosen clones were sequenced to compile an EST data base. Putative gene functions were assigned based on a BLASTX Swissprot search. Categorical in silico expression patterns for each library were compared using the R-statistic. A significant proportion of the ESTs of each caste and life stages had no significant similarity to those in existing data bases. All cDNA libraries, including those of non-reproductive worker and soldier castes, contained sequences with putative reproductive functions. Genes that showed a potential expression bias among castes included a putative antibacterial humoral response and translation elongation protein in soldiers and a chemosensory protein in alates. Conclusions We have expanded upon the available sequences for R. flavipes and utilized an in silico method to compare gene expression in different castes of an eusocial insect. The in silico analysis allowed us to identify several genes which may be differentially expressed and involved in caste differences. These include a gene overrepresented in the alate cDNA library with a predicted function of neurotransmitter secretion or cholesterol absorption and a gene predicted to be involved in protein biosynthesis and ligase activity that was overrepresented in the late larval stage cDNA library. The EST data base and analyses reported here will be a valuable resource for future studies on the genomics of R. flavipes and other termites.
Collapse
Affiliation(s)
- Matthew M Steller
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
20
|
Wurm Y, Wang J, Keller L. Changes in reproductive roles are associated with changes in gene expression in fire ant queens. Mol Ecol 2010; 19:1200-11. [PMID: 20163551 DOI: 10.1111/j.1365-294x.2010.04561.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to become reproductives. Such a phenomenon occurs in the monogyne form of the fire ant, Solenopsis invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged nonreproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. To identify the molecular changes that occur in virgin queens as they perceive the loss of their mother queen and begin to compete for reproductive dominance, we collected virgin queens before the loss of their mother queen, 6 h after orphaning and 24 h after orphaning. Their RNA was extracted and hybridized against microarrays to examine the expression levels of approximately 10,000 genes. We identified 297 genes that were consistently differentially expressed after orphaning. These include genes that are putatively involved in the signalling and onset of reproductive development, as well as genes underlying major physiological changes in the young queens.
Collapse
Affiliation(s)
- Yannick Wurm
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
21
|
Abstract
A recent workshop held at the Arizona State University Center for Social Dynamics and Complexity gathered over 50 prominent researchers from around the globe to discuss the development of genomic resources for several ant species. Ants play crucial roles in many ecological niches and the sequencing of several ant genomes promises to elucidate topics ranging from the genetic basis for social complexity, longevity and behaviour to systems biology and the identification of novel antimicrobial compounds. Unlike other species, most ant genomes are being generated by individual labs and small collaborations without the annotation and computational resources that support prominent model organism genome databases such those for the fruitfly and roundworm. Attendees summarized their current progress and future plans for several ant genomes and discussed how best to coordinate the analysis and annotation of ant sequences to benefit the broad research interests of the social insect community.
Collapse
|
22
|
Irles P, Bellés X, Piulachs MD. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics 2009; 10:206. [PMID: 19405973 PMCID: PMC2683872 DOI: 10.1186/1471-2164-10-206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 04/30/2009] [Indexed: 12/13/2022] Open
Abstract
Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH) library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions related to choriogenesis are postulated. The relatively high percentage of novel genes obtained and the practical absence of chorion genes typical of meroistic ovaries suggest that mechanisms regulating chorion formation in panoistic ovaries are significantly different from those of meroistic ones.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | | | | |
Collapse
|
23
|
Lu HL, Vinson SB, Pietrantonio PV. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J 2009; 276:3110-23. [PMID: 19490112 DOI: 10.1111/j.1742-4658.2009.07029.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ant species in which mating flights are a strategic life-history trait for dispersal and reproduction, maturation of virgin queens occurs. However, the specific molecular mechanisms that mark this transition and the effectors that control premating ovarian growth are unknown. The vitellogenin receptor (VgR) is responsible for vitellogenin uptake during egg formation in insects. In the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), virgin queens have more abundant VgR transcripts than newly mated queens, but limited egg formation. To elucidate whether the transition to egg production involved changes in VgR expression, we investigated both virgin and mated queens. In both queens, western blot analysis showed an ovary-specific VgR band (approximately 202 kDa), and immunofluorescence analysis of ovaries detected differential VgR localization in early- and late-stage oocytes. However, the VgR signal was much lower in virgin queens ready to fly than in mated queens 8 h post mating flight. In virgin queens, the receptor signal was first observed at the oocyte membrane beginning at day 12 post emergence, coinciding with the 2 weeks of maturation required before a mating flight. Thus, the membrane localization of VgR appears to be a potential marker for queen mating readiness. Silencing of the receptor in virgin queens through RNA interference abolished egg formation, demonstrating that VgR is involved in fire ant ovary development pre mating. To our knowledge, this is the first report of RNA interference in any ant species and the first report of silencing of a hymenopteran VgR.
Collapse
Affiliation(s)
- Hsiao-Ling Lu
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | | | |
Collapse
|
24
|
Viljakainen L, Evans JD, Hasselmann M, Rueppell O, Tingek S, Pamilo P. Rapid Evolution of Immune Proteins in Social Insects. Mol Biol Evol 2009; 26:1791-801. [DOI: 10.1093/molbev/msp086] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
CASTELLA G, CHRISTE P, CHAPUISAT M. Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol 2009; 22:564-70. [DOI: 10.1111/j.1420-9101.2008.01664.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 2008; 9:735-48. [PMID: 18802413 DOI: 10.1038/nrg2429] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Division of labour--individuals specializing in different activities--features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.
Collapse
Affiliation(s)
- Chris R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
27
|
Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:257-62. [PMID: 20494845 DOI: 10.1016/j.cbd.2008.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 11/23/2022]
Abstract
Bemisia tabaci (Insecta, Hemiptera, Aleyrodidae) females are more heat resistant than males, which has important ecological significance in adaptation and expansion of B. tabaci populations. Differentially expressed genes between 25 degrees C and 44 degrees C were identified by Suppression Subtractive Hybridization (SSH) in B. tabaci sexes. 50 and 83 differentially expressed Expression Sequence Tags (ESTs) were obtained from female and male libraries, respectively. The ESTs have four functional categories. The frequency of heat stress-related ESTs, metabolism-related ESTs and new ESTs was higher in males than females. However, the percentage of ESTs with unclassified functions was higher in females than males. Furthermore, three differentially expressed genes were further examined by real-time PCR. The results suggested that difference of heat-resistance under heat-shock condition was associated with differentially expressed genes in B. tabaci sexes, which might enable us to better understand the mechanism behind this ecologically important trait.
Collapse
|
28
|
Ye GY, Dong SZ, Song QS, Shi M, Chen XX, Hu C. Molecular cloning and developmental expression of the vitellogenin gene in the endoparasitoid, Pteromalus puparum. INSECT MOLECULAR BIOLOGY 2008; 17:227-233. [PMID: 18397278 DOI: 10.1111/j.1365-2583.2008.00795.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A cDNA of the vitellogenin (Vg) protein gene was isolated from the endoparasitoid Pteromalus puparum and characterized. The putative coding sequence was found to be 5634 bp long, encoding 1803 amino acids in a single open reading frame. The chemically determined N-terminal amino acid sequence of vitellin completely matched the deduced amino acid sequence that follows a putative signal peptide of 17 amino acid residues. The Vg mRNA was detected in the fat body of late female pupae, whereas the ovary and male fat body lacked the Vg transcript. The Vg mRNA level in the fat body depended significantly on the developmental stage, reaching the highest level 0 h after eclosion. The haemolymph Vg titre appeared 24 h after the appearance of Vg transcript. A positive correlation between the titre and transcript level of Vg in individual female wasps was found.
Collapse
Affiliation(s)
- G-Y Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
29
|
Heinze J, Schrempf A. Aging and reproduction in social insects--a mini-review. Gerontology 2008; 54:160-7. [PMID: 18367827 DOI: 10.1159/000122472] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022] Open
Abstract
Perennial social insects are characterized by the extraordinarily long lifespan of their reproductive females, which may be tens or hundreds of times larger than that of non-social insects of similar body size and also greatly surpasses that of conspecific non-reproductives. Evolutionary theories of aging explain this phenomenon from the low extrinsic mortality queens experience once they have successfully established their colony. The aim of our review is to summarize recent findings on the ultimate and proximate causes of increased queen longevity in social insects, in particular ants and honey bees. While progress is being made in elucidating the interrelations between the vitellogenin, juvenile hormone, fecundity, and senescence, we feel that the explanation for the comparatively short lifespan of queens in multi-queen societies is as yet not satisfactory and needs further attention, both concerning its proximate and ultimate basis.
Collapse
Affiliation(s)
- Jürgen Heinze
- Biologie I, Universität Regensburg, Regensburg, Germany.
| | | |
Collapse
|
30
|
Gräff J, Jemielity S, Parker JD, Parker KM, Keller L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 2007; 16:675-83. [PMID: 17257122 DOI: 10.1111/j.1365-294x.2007.03162.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ants and other social insects forming large societies are generally characterized by marked reproductive division of labour. Queens largely monopolize reproduction whereas workers have little reproductive potential. In addition, some social insect species show tremendous lifespan differences between the queen and worker caste. Remarkably, queens and workers are usually genotypically identical, meaning that any phenotypic differences between the two castes arise from caste-specific gene expression. Using a combination of differential display, microarrays and reverse Northern blots, we found 16 genes that were differentially expressed between adult queens and workers in the ant Lasius niger, a species with highly pronounced reproductive division of labour and a several-fold lifespan difference between queens and workers. RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) and gene walking were used to further characterize these genes. On the basis of the molecular function of their nearest homologues, three genes appear to be involved in reproductive division of labour. Another three genes, which were exclusively overexpressed in queens, are possibly involved in the maintenance and repair of the soma, a candidate mechanism for lifespan determination. In-depth functional analyses of these genes are now needed to reveal their exact role.
Collapse
Affiliation(s)
- Johannes Gräff
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Hoffman EA, Goodisman MAD. Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biol 2007; 5:23. [PMID: 17504526 PMCID: PMC1884141 DOI: 10.1186/1741-7007-5-23] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 05/15/2007] [Indexed: 12/26/2022] Open
Abstract
Background Organisms are capable of developing different phenotypes by altering the genes they express. This phenotypic plasticity provides a means for species to respond effectively to environmental conditions. One of the most dramatic examples of phenotypic plasticity occurs in the highly social hymenopteran insects (ants, social bees, and social wasps), where distinct castes and sexes all arise from the same genes. To elucidate how variation in patterns of gene expression affects phenotypic variation, we conducted a study to simultaneously address the influence of developmental stage, sex, and caste on patterns of gene expression in Vespula wasps. Furthermore, we compared the patterns found in this species to those found in other taxa in order to investigate how variation in gene expression leads to phenotypic evolution. Results We constructed 11 different cDNA libraries derived from various developmental stages and castes of Vespula squamosa. Comparisons of overall expression patterns indicated that gene-expression differences distinguishing developmental stages were greater than expression differences differentiating sex or caste. Furthermore, we determined that certain sets of genes showed similar patterns of expression in the same phenotypic forms of different species. Specifically, larvae upregulated genes related to metabolism and genes possessing structural activity. Surprisingly, our data indicated that at least a few specific gene functions and at least one specific gene family are important components of caste differentiation across social insect taxa. Conclusion Despite research on various aspects of development originating from model systems, growth in understanding how development is related to phenotypic diversity relies on a growing literature of contrasting studies in non-model systems. In this study, we found that comparisons of patterns of gene expression with model systems highlighted areas of conserved and convergent developmental evolution across diverse taxa. Indeed, conserved biological functions across species implicated key functions related to how phenotypes are built. Finally, overall differences between social insect taxa suggest that the independent evolution of caste arose via distinct developmental trajectories.
Collapse
Affiliation(s)
- Eric A Hoffman
- Department of Biology, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Michael AD Goodisman
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
32
|
Dong SZ, Ye GY, Zhu JY, Chen ZX, Hu C, Liu S. Vitellin of Pteromalus puparum (Hymenoptera: Pteromalidae), a pupal endoparasitoid of Pieris rapae (Lepidoptera: Pieridae): Biochemical characterization, temporal patterns of production and degradation. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:468-77. [PMID: 17368664 DOI: 10.1016/j.jinsphys.2007.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 05/14/2023]
Abstract
Vitellin (Vt) and vitellogenin (Vg) profiles were analyzed in Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. Non-denaturing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses indicated that both native Vt and Vg were likely 370 kDa in size, consisting of two subunits of approximate 206 and 165 kDa. An indirect double antibody enzyme-linked immunosorbent assay (ELISA) for monitoring hemolymph Vg and ovarian Vt levels was developed using a monoclonal antibody and a polyclonal antibody made specially against P. puparum Vt. The synthesis and uptake of Vg in this wasp was initiated immediately after adult eclosion. The hemolymph Vg and ovarian Vt reached their highest level of 0.58 and 4.51 microg per female 24 and 48 h after adult eclosion, respectively. Both Vg synthesis and uptake were in parallel with ovarian development. The Vt levels in the developing embryos decreased progressively except 12h after parasitism. Meanwhile, nine new polypeptides with sizes ranging from 59.2 to 151 kDa, possibly resulting from the limited proteolysis of Vt originally accumulated in newly laid eggs, were detected de-novo during embryonic development using Western blotting with the monoclonal antibody against Vt. These studies provide the basis for future investigation into endocrinal regulations of vitellogenesis and understanding the reproductive strategy in this wasp.
Collapse
Affiliation(s)
- Sheng-Zhang Dong
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
33
|
Wang J, Jemielity S, Uva P, Wurm Y, Gräff J, Keller L. An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta. Genome Biol 2007; 8:R9. [PMID: 17224046 PMCID: PMC1839134 DOI: 10.1186/gb-2007-8-1-r9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/17/2006] [Accepted: 01/15/2007] [Indexed: 01/22/2023] Open
Abstract
An annotated EST resource for the fire ant Solenopsis invicta containing 21,715 ESTs, which represent 11,864 putatively different transcripts, and a corresponding cDNA microarray are described. Ants display a range of fascinating behaviors, a remarkable level of intra-species phenotypic plasticity and many other interesting characteristics. Here we present a new tool to study the molecular mechanisms underlying these traits: a tentatively annotated expressed sequence tag (EST) resource for the fire ant Solenopsis invicta. From a normalized cDNA library we obtained 21,715 ESTs, which represent 11,864 putatively different transcripts with very diverse molecular functions. All ESTs were used to construct a cDNA microarray.
Collapse
Affiliation(s)
- John Wang
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephanie Jemielity
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo Uva
- Istituto di Ricerche di Biologia Molecolare, Merck Research Laboratories, 00040 Pomezia, Rome, Italy
| | - Yannick Wurm
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Gräff
- Brain Research Institute, University of Zürich/Swiss Federal Institute of Technology, 8057 Zürich, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
GRÄFF JOHANNES, JEMIELITY STEPHANIE, PARKER JOELD, PARKER KARENM, KELLER LAURENT. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 2007. [DOI: 10.1111/j.1365-294x.2006.03162.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genes Dev 2006; 16:1385-94. [PMID: 17065613 PMCID: PMC1626640 DOI: 10.1101/gr.5012006] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 06/07/2006] [Indexed: 11/25/2022]
Abstract
The genomic architecture underlying the evolution of insect social behavior is largely a mystery. Eusociality, defined by overlapping generations, parental brood care, and reproductive division of labor, has most commonly evolved in the Hymenopteran insects, including the honey bee Apis mellifera. In this species, the Major Royal Jelly Protein (MRJP) family is required for all major aspects of eusocial behavior. Here, using data obtained from the A. mellifera genome sequencing project, we demonstrate that the MRJP family is encoded by nine genes arranged in an approximately 60-kb tandem array. Furthermore, the MRJP protein family appears to have evolved from a single progenitor gene that encodes a member of the ancient Yellow protein family. Five genes encoding Yellow-family proteins flank the genomic region containing the genes encoding MRJPs. We describe the molecular evolution of these protein families. We then characterize developmental-stage-specific, sex-specific, and caste-specific expression patterns of the mrjp and yellow genes in the honey bee. We review empirical evidence concerning the functions of Yellow proteins in fruit flies and social ants, in order to shed light on the roles of both Yellow and MRJP proteins in A. mellifera. In total, the available evidence suggests that Yellows and MRJPs are multifunctional proteins with diverse, context-dependent physiological and developmental roles. However, many members of the Yellow/MRJP family act as facilitators of reproductive maturation. Finally, it appears that MRJP protein subfamily evolution from the Yellow protein family may have coincided with the evolution of honey bee eusociality.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Biology, New York University, New York, New York 10003, USA
| | - Stefan Albert
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Robert Kucharski
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Carsten Prusko
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Ryszard Maleszka
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
36
|
Baer B, Armitage SAO, Boomsma JJ. Sperm storage induces an immunity cost in ants. Nature 2006; 441:872-5. [PMID: 16778889 DOI: 10.1038/nature04698] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/07/2006] [Indexed: 11/08/2022]
Abstract
Ant queens are among the most long-lived insects known. They mate early in adult life and maintain millions of viable sperm in their sperm storage organ until they die many years later. Because they never re-mate, the reproductive success of queens is ultimately sperm-limited, but it is not known what selective forces determine the upper limit to sperm storage. Here we show that sperm storage carries a significant cost of reduced immunity during colony founding. Newly mated queens of the leaf-cutting ant Atta colombica upregulate their immune response shortly after completing their nest burrow, probably as an adaptive response to a greater exposure to pathogens in the absence of grooming workers. However, the immune response nine days after colony founding is negatively correlated with the amount of sperm in the sperm storage organ, indicating that short-term survival is traded off against long-term reproductive success. The immune response was lower when more males contributed to the stored sperm, indicating that there might be an additional cost of mating or storing genetically different ejaculates.
Collapse
Affiliation(s)
- Boris Baer
- Institute of Biology, Department of Population Biology, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
37
|
Liénard MA, Lassance JMXS, Paulmier I, Picimbon JF, Löfstedt C. Differential expression of cytochrome c oxidase subunit III gene in castes of the termite Reticulitermes santonensis. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:551-7. [PMID: 16545394 DOI: 10.1016/j.jinsphys.2006.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/02/2006] [Accepted: 02/06/2006] [Indexed: 05/07/2023]
Abstract
Social insects such as termites live in colonies in which cooperation is assumed by all individuals developing into castes to which specific tasks are allocated. Little has been reported about molecular aspects underlying termite caste-specific gene expression. Genetic regulation has recently been hypothesized to govern caste-specific traits and physiology in social insects. Cytochrome c oxidase (COX) has been shown to be an interesting candidate for expression study in insects. We used the cytochrome c oxidase subunit III gene (COXIII) that was cloned from mRNA in a lower termite, Reticulitermes santonensis De Feytaud (Isoptera; Rhinotermitidae). The full-length cDNA encodes a protein of 262 amino acids that shows high degree of homology with other insects COXIIIs. Reverse transcriptase-PCR and real-time PCR were performed to compare gene expression between larvae, workers, nymphs and soldiers. Analyses performed on head cDNAs revealed that COXIII is differentially expressed between castes. The level of COXIII is caste-regulated with an increase in workers (approximately 1.9-fold) and nymphs (approximately 2.8-fold) and a decrease in soldiers (0.8-fold) compared to the expression level in larvae (1.0-fold). These results may emphasize the physiological importance of COX in the termite brain at different developmental stages.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Department of Ecology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Sumner S, Pereboom JJM, Jordan WC. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc Biol Sci 2006; 273:19-26. [PMID: 16519229 PMCID: PMC1560005 DOI: 10.1098/rspb.2005.3291] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how a single genome can produce a variety of different phenotypes is of fundamental importance in evolutionary and developmental biology. One of the most striking examples of phenotypic plasticity is the female caste system found in eusocial insects, where variation in reproductive (queens) and non-reproductive (workers) phenotypes results in a broad spectrum of caste types, ranging from behavioural through to morphological castes. Recent advances in genomic techniques allow novel comparisons on the nature of caste phenotypes to be made at the level of the genes in organisms for which there is little genome information, facilitating new approaches in studying social evolution and behaviour. Using the paper wasp Polistes canadensis as a model system, we investigated for the first time how behavioural castes in primitively eusocial insect societies are associated with differential expression of shared genes. We found that queens and newly emerged females express gene expression patterns that are distinct from each other whilst workers generally expressed intermediate patterns, as predicted by Polistes biology. We compared caste-associated genes in P. canadensis with those expressed in adult queens and workers of more advanced eusocial societies, which represent four independent origins of eusociality. Nine genes were conserved across the four taxa, although their patterns of expression and putative functions varied. Thus, we identify several genes that are putatively of evolutionary importance in the molecular biology that underlies a number of caste systems of independent evolutionary origin.
Collapse
Affiliation(s)
- Seirian Sumner
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Republic of Panama.
| | | | | |
Collapse
|
39
|
Donnell DM, Strand MR. Caste-based differences in gene expression in the polyembryonic wasp Copidosoma floridanum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:141-53. [PMID: 16431281 DOI: 10.1016/j.ibmb.2005.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 05/06/2023]
Abstract
The polyembryonic parasitoid Copidosoma floridanum produces two larval castes, soldiers and reproductives, during development within its host. Soldier larvae defend the brood against competitors while reproductive larvae develop into adult wasps. As with other caste-forming insects, the distinct morphological and behavioral features of soldier and reproductive larvae likely involve differential gene expression. In this study we used a bi-directional suppression subtractive hybridization (SSH) approach to isolate differentially expressed genes from C. floridanum soldier and reproductive larvae. We isolated 230 novel expressed sequence tags (ESTs) from the two subtractions (114 soldier/116 reproductive ESTs). Among these ESTs were sequences with significant similarity to genes coding for serine proteinases, proteinase inhibitors, odorant-binding and chemosensory proteins, and cuticular proteins. Also, three novel genes were isolated that resemble one another in conceptual translation and share the cysteine spacing pattern of short scorpion toxins and insect defensins. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of 20 ESTs from the two libraries indicated that 85% were differentially expressed in one caste or the other. We conclude that our SSH strategy was effective in identifying a number of genes differentially expressed in soldier and reproductive larvae and that several of these genes will be useful in characterizing caste-specific gene networks in C. floridanum.
Collapse
Affiliation(s)
- David M Donnell
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
40
|
Pereboom JJM, Jordan WC, Sumner S, Hammond RL, Bourke AFG. Differential gene expression in queen-worker caste determination in bumble-bees. Proc Biol Sci 2005; 272:1145-52. [PMID: 16024376 PMCID: PMC1559810 DOI: 10.1098/rspb.2005.3060] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen-worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression.
Collapse
|
41
|
Scharf ME, Wu-Scharf D, Zhou X, Pittendrigh BR, Bennett GW. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. INSECT MOLECULAR BIOLOGY 2005; 14:31-44. [PMID: 15663773 DOI: 10.1111/j.1365-2583.2004.00527.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Array-based genomic studies were conducted with the goal of identifying immature (i.e. nymph) and adult reproductive caste-biased gene expression in the termite Reticulitermes flavipes. Using cDNA macro-arrays, we identified thirty-four nymph-biased genes falling into eight ontogenic categories. Based on gene expression profiles among diverse castes and developmental stages (determined by quantitative PCR), several important trends emerged. These findings highlight the importance of several developmental and survival-based factors among immature and adult termite reproductives, including: vitellogenesis, nutrient storage, juvenile hormone sequestration, ribosomal translational and filtering mechanisms, fatty acid biosynthesis, apoptosis inhibition, and both endogenous and symbiont cellulase-assisted nutrition. These findings are highly significant as they are the first to elucidate the molecular biology underlying termite reproductive caste differentiation and reproductive caste-specific biology. Other gene expression results are in agreement with previous findings that suggest roles for vitellogenin-like haemolymph proteins in soldier caste differentiation.
Collapse
Affiliation(s)
- M E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA.
| | | | | | | | | |
Collapse
|