1
|
Reiter KE, Perkovich C, Smith KN, Feng J, Kritsky G, Lehnert MS. Comparative Material and Mechanical Properties among Cicada Mouthparts: Cuticle Enhanced with Inorganic Elements Facilitates Piercing through Woody Stems for Feeding. BIOLOGY 2023; 12:biology12020207. [PMID: 36829484 PMCID: PMC9953083 DOI: 10.3390/biology12020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Adult cicadas pierce woody stems with their mouthparts to feed on xylem, suggesting the presence of cuticular adaptations that could increase hardness and elastic modulus. We tested the following hypotheses: (a) the mouthpart cuticle includes inorganic elements, which augment the mechanical properties; (b) these elements are abundant in specific mouthpart structures and regions responsible for piercing wood; (c) there are correlations among elements, which could provide insights into patterns of element colocalization. We used scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to investigate mouthpart morphology and quantify the elemental composition of the cuticle among four cicada species, including periodical cicadas (Magicicada sp.). Nanoindentation was used to quantify hardness and elastic modulus of the mandibles. We found 12 inorganic elements, including colocalized manganese and zinc in the distal regions of the mandible, the structure most responsible for piercing through wood; nanoindentation determined that these regions were also significantly harder and had higher elastic modulus than other regions. Manganese and zinc abundance relates to increased hardness and stiffness as in the cuticle of other invertebrates; however, this is one of the first reports of cuticular metals among insects with piercing-sucking mouthparts (>100,000 described species). The present investigation provides insight into the feeding mechanism of cicadas, an important but understudied component of their life traits.
Collapse
Affiliation(s)
- Kristen E. Reiter
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Cynthia Perkovich
- Biology and Toxicology Department, Ashland University, Ashland, OH 44805, USA
| | - Katelynne N. Smith
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Jiansheng Feng
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Gene Kritsky
- Department of Biology, Mount St. Joseph University, Cincinnati, OH 45233, USA
| | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
- Correspondence:
| |
Collapse
|
2
|
Cell wall composition determines handedness reversal in helicoidal cellulose architectures of Pollia condensata fruits. Proc Natl Acad Sci U S A 2021; 118:2111723118. [PMID: 34911759 PMCID: PMC8713805 DOI: 10.1073/pnas.2111723118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Helicoidal architectures are widespread in nature; several species adopt this structure to produce brilliant colorations. Such chiral architectures are usually left-handed in plants, with the only exception found in the cell walls of epicarp cells of Pollia condensata, where both handednesses are observed. Here, we aim to understand the origin of handednesses by analyzing optical and mechanical responses of single cells. Surprisingly, we discover that left-handed and right-handed cells show different distributions of spectra and elasticity. We verified by using finite element analysis simulation that the elasticity of helicoids is sensitive to the ratio of cellulose/cell wall matrix. Our findings reveal that cell wall composition affects the helicoidal architectures, suggesting that chemical composition plays a role in morphogenesis of the chirality reversal. Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.
Collapse
|
3
|
Lehnert MS, Reiter KE, Smith GA, Kritsky G. An augmented wood-penetrating structure: Cicada ovipositors enhanced with metals and other inorganic elements. Sci Rep 2019; 9:19731. [PMID: 31874983 PMCID: PMC6930284 DOI: 10.1038/s41598-019-56203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
Few insect species are as popular as periodical cicadas (Magicicada spp.). Despite representing an enormous biomass and numbers that exceed 370/m2 during mass emergences, the extended time period of the underground nymphal stages (up to 17 years) complicates investigations of their life history traits and ecology. Upon emergence, female cicadas mate and then use their ovipositors to cut through wood to lay their eggs. Given the ability to penetrate into wood, we hypothesized that the ovipositor cuticle is augmented with inorganic elements, which could increase hardness and reduce ovipositor fracturing. We used scanning electron microscopy and energy dispersive x-ray spectroscopy to evaluate the material properties of ovipositors of four cicada species, including three species of periodical cicadas. We found 14 inorganic elements of the cuticle, of which P, Ca, Si, Mg, Na, Fe, Zn, Mn, Cl, K, and S show the highest concentrations (%wt) near the apex of the ovipositor, where other structural modifications for penetrating wood are present. To the best of our knowledge, this is the first report of metal deposits in the cuticle of true bugs (Hemiptera, >80,000 described species).
Collapse
Affiliation(s)
- Matthew S Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, 44720, USA.
| | - Kristen E Reiter
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, 44720, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gregory A Smith
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, 44720, USA
| | - Gene Kritsky
- School of Behavioral and Natural Sciences, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| |
Collapse
|
4
|
Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M, Martin K, Hu H, Küfner M, de Beer ZW, Poulsen M, Beemelmanns C. Natural Products from Actinobacteria Associated with Fungus-Growing Termites. Antibiotics (Basel) 2018; 7:E83. [PMID: 30217010 PMCID: PMC6165096 DOI: 10.3390/antibiotics7030083] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 12/03/2022] Open
Abstract
The chemical analysis of insect-associated Actinobacteria has attracted the interest of natural product chemists in the past years as bacterial-produced metabolites are sought to be crucial for sustaining and protecting the insect host. The objective of our study was to evaluate the phylogeny and bioprospecting of Actinobacteria associated with fungus-growing termites. We characterized 97 Actinobacteria from the gut, exoskeleton, and fungus garden (comb) of the fungus-growing termite Macrotermes natalensis and used two different bioassays to assess their general antimicrobial activity. We selected two strains for chemical analysis and investigated the culture broth of the axenic strains and fungus-actinobacterium co-cultures. From these studies, we identified the previously-reported PKS-derived barceloneic acid A and the PKS-derived rubterolones. Analysis of culture broth yielded a new dichlorinated diketopiperazine derivative and two new tetracyclic lanthipeptides, named rubrominins A and B. The discussed natural products highlight that insect-associated Actinobacteria are highly prolific natural product producers yielding important chemical scaffolds urgently needed for future drug development programs.
Collapse
Affiliation(s)
- René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Elisabeth Sommerwerk
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Maria Garcia-Altares
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Karin Martin
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Haofu Hu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark.
| | - Michelle Küfner
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| | - Z Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria 0001, South Africa.
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark.
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany.
| |
Collapse
|
5
|
O'Flynn BG, Suarez G, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acyltransferases: Mechanism and Role in Fatty Acid Amide Biosynthesis. Front Mol Biosci 2018; 5:66. [PMID: 30094237 PMCID: PMC6070697 DOI: 10.3389/fmolb.2018.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.
Collapse
Affiliation(s)
| | | | | | - David J. Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Wrońska AK, Boguś MI, Włóka E, Kazek M, Kaczmarek A, Zalewska K. Cuticular fatty acids of Galleria mellonella (Lepidoptera) inhibit fungal enzymatic activities of pathogenic Conidiobolus coronatus. PLoS One 2018. [PMID: 29518079 PMCID: PMC5843172 DOI: 10.1371/journal.pone.0192715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The entomopathogenic fungus Conidiobolus coronatus produces enzymes that may hydrolyze the cuticle of Galleria mellonella. Of these enzymes, elastase activity was the highest: this figure being 24 times higher than NAGase activity 553 times higher than chitinase activity and 1844 times higher than lipase activity. The present work examines the differences in the hydrolysis of cuticles taken from larvae, pupae and adults (thorax and wings), by C. coronatus enzymes. The cuticles of the larvae and adult thorax were the most susceptible to digestion by proteases and lipases. Moreover, the maximum concentration of free N-glucosamine was in the hydrolysis of G. mellonella thorax. These differences in the digestion of the various types of cuticle may result from differences in their composition. GC-MS analysis of the cuticular fatty acids isolated from pupae of G. mellonella confirmed the presence of C 8:0, C 9:0, C 12:0, C 14:0, C 15:0, C 16:1, C 16:0, C 17:0, C 18:1, C 18:0, with C 16:0 and C 18:0 being present in the highest concentrations. Additional fatty acids were found in extracts from G. mellonella imagines: C 10:0, C 13:0, C 20:0 and C 20:1, with a considerable dominance of C 16:0 and C 18:1. In larvae, C 16:0 and C 18:1 predominated. Statistically significant differences in concentration (p≤0.05) were found between the larvae, pupae and imago for each fatty acid. The qualitative and quantitative differences in the fatty acid composition of G. mellonella cuticle occurring throughout normal development might be responsible for the varied efficiency of fungal enzymes in degrading larval, pupal and adult cuticles.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
- * E-mail:
| | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Emilia Włóka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | - Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda, Warsaw, Poland
| | | |
Collapse
|
7
|
Evison SEF, Gallagher JD, Thompson JJW, Siva-Jothy MT, Armitage SAO. Cuticular colour reflects underlying architecture and is affected by a limiting resource. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:7-13. [PMID: 27856219 DOI: 10.1016/j.jinsphys.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/20/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Central to the basis of ecological immunology are the ideas of costs and trade-offs between immunity and life history traits. As a physical barrier, the insect cuticle provides a key resistance trait, and Tenebrio molitor shows phenotypic variation in cuticular colour that correlates with resistance to the entomopathogenic fungus Metarhizium anisopliae. Here we first examined whether there is a relationship between cuticular colour variation and two aspects of cuticular architecture that we hypothesised may influence resistance to fungal invasion through the cuticle: its thickness and its porosity. Second, we tested the hypothesis that tyrosine, a semi-essential amino acid required for immune defence and cuticular melanisation and sclerotisation, can act as a limiting resource by supplementing the larval diet and subsequently examining adult cuticular colouration and thickness. We found that stock beetles and beetles artificially selected for extremes of cuticular colour had thicker less porous cuticles when they were darker, and thinner more porous cuticles when they were lighter, showing that colour co-varies with two architectural cuticular features. Experimental supplementation of the larval diet with tyrosine led to the development of darker adult cuticle and affected thickness in a sex-specific manner. However, it did not affect two immune traits. The results of this study provide a mechanism for maintenance of cuticular colour variation in this species of beetle; darker cuticles are thicker, but their production is potentially limited by resource constraints and differential investments in resistance mechanisms between the sexes.
Collapse
Affiliation(s)
- Sophie E F Evison
- University of Sheffield, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| | - Joe D Gallagher
- University of Sheffield, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| | - John J W Thompson
- University of Sheffield, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| | - Michael T Siva-Jothy
- University of Sheffield, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| | - Sophie A O Armitage
- University of Sheffield, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
8
|
Phatarphekar A, Rokita SE. Functional analysis of iodotyrosine deiodinase from drosophila melanogaster. Protein Sci 2016; 25:2187-2195. [PMID: 27643701 DOI: 10.1002/pro.3044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
The flavoprotein iodotyrosine deiodinase (IYD) was first discovered in mammals through its ability to salvage iodide from mono- and diiodotyrosine, the by-products of thyroid hormone synthesis. Genomic information indicates that invertebrates contain homologous enzymes although their iodide requirements are unknown. The catalytic domain of IYD from Drosophila melanogaster has now been cloned, expressed and characterized to determine the scope of its potential catalytic function as a model for organisms that are not associated with thyroid hormone production. Little discrimination between iodo-, bromo-, and chlorotyrosine was detected. Their affinity for IYD ranges from 0.46 to 0.62 μM (Kd ) and their efficiency of dehalogenation ranges from 2.4 - 9 x 103 M-1 s-1 (kcat /Km ). These values fall within the variations described for IYDs from other organisms for which a physiological function has been confirmed. The relative contribution of three active site residues that coordinate to the amino acid substrates was subsequently determined by mutagenesis of IYD from Drosophila to refine future annotations of genomic and meta-genomic data for dehalogenation of halotyrosines. Substitution of the active site glutamate to glutamine was most detrimental to catalysis. Alternative substitution of an active site lysine to glutamine affected substrate affinity to the greatest extent but only moderately affected catalytic turnover. Substitution of phenylalanine for an active site tyrosine was least perturbing for binding and catalysis.
Collapse
Affiliation(s)
- Abhishek Phatarphekar
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
9
|
Gutierrez AC, Gołębiowski M, Pennisi M, Peterson G, García JJ, Manfrino RG, López Lastra CC. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:752-60. [PMID: 26470187 DOI: 10.1093/jee/tou096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/06/2014] [Indexed: 05/12/2023]
Abstract
Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia.
Collapse
Affiliation(s)
- Alejandra C Gutierrez
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CONICET, Consejo Nacional de Investigaciones Científicas -UNLP, Universidad Nacional de La Plata). Av. 120 s/n entre 61 y 62, CP 1900, La Plata, Buenos Aires, Argentina. Comisión de Investigaciónes Científicas Calle 526 entre 10 y 11 CP: 1900 - La Plata - Buenos Aires - Argentina
| | - Marek Gołębiowski
- Institute for Environmental and Human Health Protection, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariana Pennisi
- Prevención del Infarto en Argentina PROPIA - UNLP - CIC Bs. As. Ministerio de Salud Bs. As. Cno. Centenario e/505 y 508 - (1897) - Gonet - Bs. As. - Argentina
| | - Graciela Peterson
- Prevención del Infarto en Argentina PROPIA - UNLP - CIC Bs. As. Ministerio de Salud Bs. As. Cno. Centenario e/505 y 508 - (1897) - Gonet - Bs. As. - Argentina
| | - Juan J García
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CONICET, Consejo Nacional de Investigaciones Científicas -UNLP, Universidad Nacional de La Plata). Av. 120 s/n entre 61 y 62, CP 1900, La Plata, Buenos Aires, Argentina. Comisión de Investigaciónes Científicas Calle 526 entre 10 y 11 CP: 1900 - La Plata - Buenos Aires - Argentina. Corresponding author, e-mail:
| | - Romina G Manfrino
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CONICET, Consejo Nacional de Investigaciones Científicas -UNLP, Universidad Nacional de La Plata). Av. 120 s/n entre 61 y 62, CP 1900, La Plata, Buenos Aires, Argentina
| | - Claudia C López Lastra
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CONICET, Consejo Nacional de Investigaciones Científicas -UNLP, Universidad Nacional de La Plata). Av. 120 s/n entre 61 y 62, CP 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Becker PM, Yu P. What makes protein indigestible from tissue-related, cellular, and molecular aspects? Mol Nutr Food Res 2013; 57:1695-707. [PMID: 23765989 DOI: 10.1002/mnfr.201200592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Abstract
This paper gives an insight into key factors, which impair enzymatic protein digestion. By nature, some proteins in raw products are already poorly digestible because of structural peculiarities, or due to their occurrence in plant cytoplasmic organelles or in cell membranes. In plant-based protein, molecular and structural changes can be induced by genetic engineering, even if protein is not a target compound class of the genetic modification. Other proteins only become difficult to digest due to changes that occur during the processing of proteinaceous products, such as extruding, boiling, or acidic or alkaline treatment. The utilization of proteinaceous raw materials in industrial fermentations can also have negative impacts on protein digestibility, when reused as fermentation by-products for animal nutrition, such as brewers' grains. After consumption, protein digestion can be impeded in the intestine by the presence of antinutritional factors, which are ingested together with the food or feedstuff. It is concluded that the encircling matrix, but also molecular, chemical, and structural peculiarities or modifications to amino acids and proteins obstruct protein digestion by common proteolytic enzymes in humans and animals.
Collapse
Affiliation(s)
- Petra M Becker
- Wageningen UR Livestock Research, Lelystad, The Netherlands
| | | |
Collapse
|
11
|
Gołębiowski M, Boguś MI, Paszkiewicz M, Stepnowski P. Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Anal Bioanal Chem 2010; 399:3177-91. [PMID: 21153591 DOI: 10.1007/s00216-010-4439-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 01/26/2023]
Abstract
The main function of cuticular lipids in insects is the restriction of water transpiration through the surface. Lipids are involved in various types of chemical communication between species and reduce the penetration of insecticides, chemicals, and toxins and they also provide protection from attack by microorganisms, parasitic insects, and predators. Hydrocarbons, which include straight-chain saturated, unsaturated, and methyl-branched hydrocarbons, predominate in the cuticular lipids of most insect species; fatty acids, alcohols, esters, ketones, aldehydes, as well as trace amounts of epoxides, ethers, oxoaldehydes, diols, and triacylglycerols have also been identified. Analyses of cuticular lipids are chemically relatively straightforward, and methods for their extraction should be simple. Classically, extraction has relied mainly on application of apolar solvents to the entire insect body. Recently, several alternative methods have been employed to overcome some of the shortcomings of solvent extraction. These include the use of solid-phase microextraction (SPME) fibers to extract hydrocarbons from the headspace of heated samples, SPME to sample live individuals, and a less expensive method (utilized for social wasps), which consists of the collection of cuticular lipids by means of small pieces of cotton rubbed on the body of the insect. Both classical and recently developed extraction methods are reviewed in this work. The separation and analysis of the insect cuticular lipids were performed by column chromatography, thin-layer chromatography (TLC), high performance liquid chromatography with a laser light scattering detector (HPLC-LLSD), gas chromatography (GC), and GC-mass spectrometry (MS). The strategy of lipid analysis with the use of chromatographic techniques was as follows: extraction of analytes from biological material, lipid class separation by TLC, column chromatography, HPLC-LLSD, derivatization, and final determination by GC, GC-MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, and liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Marek Gołębiowski
- Faculty of Chemistry, University of Gdańsk, ul. Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | |
Collapse
|
12
|
Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomater 2010; 6:3152-6. [PMID: 20152944 DOI: 10.1016/j.actbio.2010.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
The arthropod cuticle is a remarkable and versatile biological material commonly composed of chitin and proteins. Lessons can be learned from the way it is adapted to fit its functions. The larval jewel beetle, Pseudotaenia frenchi, demonstrates hardness in the cutting edge of the mandibles in excess of the mineralized carapace of stone crabs and compares favourably with some stainless steels. Yet this is a form of cuticle which is devoid of transition metals or mineralization. In seeming contradiction, the similarly dark coloured adult beetle mandibles contain the transition metal manganese, but are significantly softer. Energy dispersive X-ray analysis and infrared spectroscopy have been used to investigate the differences in composition of mandible cuticle of the adult and larval beetles.
Collapse
|
13
|
Andersen SO. Insect cuticular sclerotization: a review. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:166-78. [PMID: 19932179 DOI: 10.1016/j.ibmb.2009.10.007] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/10/2009] [Accepted: 10/23/2009] [Indexed: 05/21/2023]
Abstract
Different regions of an insect cuticle have different mechanical properties, partly due to different degrees of stabilization and hardening occurring during the process of sclerotization, whereby phenolic material is incorporated into the cuticular proteins. Our understanding of the chemistry of cuticular sclerotization has increased considerably since Mark Pryor in 1940 suggested that enzymatically generated ortho-quinones react with free amino groups, thereby crosslinking the cuticular proteins. The results obtained since then have confirmed the essential features of Pryor's suggestion, and the many observations and experiments, which have been obtained, have led to a detailed and rather complex picture of the sclerotization process, as described in this review. However, many important questions still remain unanswered, especially regarding the precise regional and temporal regulation of the various steps in the process.
Collapse
Affiliation(s)
- Svend Olav Andersen
- The Collstrop Foundation, The Royal Danish Academy of Sciences and Letters, H.C. Andersens Boulevard 35, DK-1553 Copenhagen V, Denmark.
| |
Collapse
|
14
|
Gołebiowski M, Maliński E, Boguś MI, Kumirska J, Stepnowski P. The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:619-27. [PMID: 18510973 DOI: 10.1016/j.ibmb.2008.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 05/18/2023]
Abstract
Epicuticular lipids in many terrestrial arthropods consist of vast numbers of polar and non-polar aliphatic compounds, which are mainly responsible for the water balance in these animals but can also affect conidia germination of entomopathogenic fungi. In this work the qualitative and quantitative profiles of cuticular fatty acids from three insect species differing in their susceptibility to fungal infection were studied. In an innovative approach, laser light scattering detection was coupled with HPLC in order to identify the non-chromophoric chemicals usually present in cuticular extracts. The acids identified contained from 5 to 20 carbon atoms in the alkyl chain and included unsaturated entities such as C(16:1), C(18:1), C(18:2), C(18:3) and C(20:1). There was a marked dominance of acids containing 16-18 carbon atoms. The relative contents of fatty acids in the extracted waxes varied from trace amounts to 44%. Cuticular fatty acids profile of Calliphora vicina (species resistant to fungal infection) significantly differs from profiles of Dendrolimus pini and Galleria mellonella (both species highly susceptible to fungal infection). The major difference is the presence of C(14:0), C(16:1) and C(20:0) in the cuticle of C. vicina. These three fatty acids are absent in the cuticle of D. pini while G. mellonella cuticle contains their traces. The concentrations of four fatty acids dominating in the G. mellonella larval cuticle (C(16:0), C(18:0), C(18:1) and C(18:2)) were found to fluctuate during the final larval instar and correlate with fluctuations in the susceptibility of larvae to fungal infection. The possible role of cuticular fatty acids in preventing fungal infection is discussed.
Collapse
Affiliation(s)
- Marek Gołebiowski
- Faculty of Chemistry, University of Gdańsk, ul. Sobieskiego 18/19, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
15
|
Andersen SO. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:969-74. [PMID: 17681236 DOI: 10.1016/j.ibmb.2007.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 04/27/2007] [Accepted: 05/01/2007] [Indexed: 05/16/2023]
Abstract
During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.
Collapse
Affiliation(s)
- Svend Olav Andersen
- Institute of Molecular Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen O, Denmark.
| |
Collapse
|
16
|
Boguś MI, Kedra E, Bania J, Szczepanik M, Czygier M, Jabłoński P, Pasztaleniec A, Samborski J, Mazgajska J, Polanowski A. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:909-22. [PMID: 17512001 DOI: 10.1016/j.jinsphys.2007.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 05/15/2023]
Abstract
The resistance of Galleria mellonella, Dendrolimus pini, and Calliphora vicina larvae against infection by the enthomopathogen Conidiobolus coronatus was shown to vary among the studied species. Exposure of both G. mellonella and D. pini larvae to the fungus resulted in rapid insect death, while all the C. vicina larvae remained unharmed. Microscopic studies revealed diverse responses of the three species to the fungal pathogen: (1) the body cavities of D. pini larvae were completely overgrown by fungal hyphae, with no signs of hemocyte response, (2) infected G. mellonella larvae formed melanotic capsules surrounding the fungal pathogen, and (3) the conidia of C. coronatus did not germinate on the cuticle of C. vicina larvae. The in vitro study on the degradation of the insect cuticle by proteases secreted by C. coronatus revealed that the G. mellonella cuticle degraded at the highest rate. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. Of all the tested species, only plasmatocytes exhibited phagocytic potential. Exposure to the fungal pathogen resulted in elevated phagocytic activity, found to be the highest in the infected G. mellonella. The incubation of insect hemolymph with fungal conidia and hyphae revealed diverse reactions of hemocytes of the studied insect species. The encapsulation potential of D. pini hemocytes was low. Hemocytes of G. mellonella showed a high ability to attach and encapsulate fungal structures. Incubation of C. vicina hemolymph with C. coronatus did not result in any hemocytic response. Phenoloxidase (PO) activity was found to be highest in D. pini hemolymph, moderate in G. mellonella, and lowest in the hemolymph of C. vicina. Fungal infection resulted in a significant decrease of PO activity in G. mellonela larvae, while that in the larvae of D. pini remained unchanged. PO activity in C. vicina exposed to fungus slightly increased. The lysozyme-like activity increased in the plasma of all three insect species after contact with the fungal pathogen. Anti E. coli activity was detected neither in control nor in infected D. pini larvae. No detectable anti E. coli activity was found in the control larvae of G. mellonella; however, its exposure to C. coronatus resulted in an increase in the activity to detectable level. In the case of C. vicina exposure to the fungus, the anti E. coli activity was significantly higher than in control larvae. The defense mechanisms of D. pini (species of economic importance in Europe) are presented for the first time.
Collapse
Affiliation(s)
- M I Boguś
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warszawa, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Andersen SO, Roepstorff P. The extensible alloscutal cuticle of the tick, Ixodes ricinus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1181-8. [PMID: 16102423 DOI: 10.1016/j.ibmb.2005.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 05/19/2005] [Accepted: 05/25/2005] [Indexed: 05/04/2023]
Abstract
The proteins in the distensible alloscutal cuticle of the blood-feeding tick, Ixodes ricinus, have been characterized by electrophoresis and chromatography, two of the proteins were purified and their total amino acid sequence determined. They show sequence similarity to cuticular proteins from the spider, Araneus diadematus, and the horseshoe crab, Limulus polyphemus, and to a lesser extent to insect cuticular proteins. They contain a conserved sequence region, which is closely related to the chitin-binding Rebers-Riddiford consensus sequence present in many insect cuticular proteins. Only a fraction of the alloscutal proteins can be readily dissolved, and the dissolved proteins are difficult to separate by electrophoresis and column chromatography. The insoluble fraction can only be dissolved after degradation to smaller peptides. The mixture of extractable proteins as well as hydrolysates of the insoluble fraction are fluorescent when exposed to ultraviolet light, and the fluorescence corresponds in excitation and emission maxima to the fluorescence of the rubber-like arthropodan protein, resilin, and to the amino acid dityrosine. Small amounts of dityrosine were obtained from ticks in the early phase of a blood meal when the cuticle weighs less than 4 mg; increasing amounts were obtained from animals in the initial period of feeding, during which the cuticular weight increases from 4 to 11 mg, whereas little increase in dityrosine content was observed during the final period of engorgement. Cuticle from fully distended ticks contains about 60-80 nmole dityrosine per tick, corresponding to 2-3 microg/mg cuticle. It is suggested that the major part of the cuticular proteins is made inextractable by cross-linking by dityrosine residues, and that dityrosine plays a role in stabilizing the cuticular structure during the extensive distension occurring during a blood meal. Small amounts of 3-monochlorotyrosine and 3,5-dichlorotyrosine were obtained from the distended tick cuticle, corresponding to chlorination of between 0.5% and 1.5% of the tyrosine residues. It is suggested that the chlorotyrosines are a side-product of oxidative processes in the cuticle.
Collapse
Affiliation(s)
- Svend Olav Andersen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen O, Denmark.
| | | |
Collapse
|