1
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
3
|
Aristide L, Fernández R. Genomic Insights into Mollusk Terrestrialization: Parallel and Convergent Gene Family Expansions as Key Facilitators in Out-of-the-Sea Transitions. Genome Biol Evol 2023; 15:evad176. [PMID: 37793176 PMCID: PMC10581543 DOI: 10.1093/gbe/evad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Animals abandoned their marine niche and successfully adapted to life on land multiple times throughout evolution, providing a rare opportunity to study the mechanisms driving large scale macroevolutionary convergence. However, the genomic factors underlying this process remain largely unknown. Here, we investigate the macroevolutionary dynamics of gene repertoire evolution during repeated transitions out of the sea in mollusks, a lineage that has transitioned to freshwater and terrestrial environments multiple independent times. Through phylogenomics and phylogenetic comparative methods, we examine ∼100 genomic data sets encompassing all major molluskan lineages. We introduce a conceptual framework for identifying and analyzing parallel and convergent evolution at the orthogroup level (groups of genes derived from a single ancestral gene in the species in question) and explore the extent of these mechanisms. Despite deep temporal divergences, we found that parallel expansions of ancient gene families played a major role in facilitating adaptation to nonmarine habitats, highlighting the relevance of the preexisting genomic toolkit in facilitating adaptation to new environments. The expanded functions primarily involve metabolic, osmoregulatory, and defense-related systems. We further found functionally convergent lineage-exclusive gene gains, while family contractions appear to be driven by neutral processes. Also, genomic innovations likely contributed to fuel independent habitat transitions. Overall, our study reveals that various mechanisms of gene repertoire evolution-parallelism, convergence, and innovation-can simultaneously contribute to major evolutionary transitions. Our results provide a genome-wide gene repertoire atlas of molluskan terrestrialization that paves the way toward further understanding the functional and evolutionary bases of this process.
Collapse
Affiliation(s)
- Leandro Aristide
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| | - Rosa Fernández
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| |
Collapse
|
4
|
Gamboa M, Kitamura N, Miura K, Noda S, Kaminuma O. Evolutionary mechanisms underlying the diversification of nuclear factor of activated T cells across vertebrates. Sci Rep 2023; 13:6468. [PMID: 37156933 PMCID: PMC10167247 DOI: 10.1038/s41598-023-33751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The mechanisms of immunity linked to biological evolution are crucial for understanding animal morphogenesis, organogenesis, and biodiversity. The nuclear factor of activated T cells (NFAT) family consists of five members (NFATc1-c4, 5) with different functions in the immune system. However, the evolutionary dynamics of NFATs in vertebrates has not been explored. Herein, we investigated the origin and mechanisms underlying the diversification of NFATs by comparing the gene, transcript and protein sequences, and chromosome information. We defined an ancestral origin of NFATs during the bilaterian development, dated approximately 650 million years ago, where NFAT5 and NFATc1-c4 were derived independently. The conserved parallel evolution of NFATs in multiple species was probably attributed to their innate nature. Conversely, frequent gene duplications and chromosomal rearrangements in the recently evolved taxa have suggested their roles in the adaptive immune evolution. A significant correlation was observed between the chromosome rearrangements with gene duplications and the structural fixation changes in vertebrate NFATs, suggesting their role in NFAT diversification. Remarkably, a conserved gene structure around NFAT genes with vertebrate evolutionary-related breaking points indicated the inheritance of NFATs with their neighboring genes as a unit. The close relationship between NFAT diversification and vertebrate immune evolution was suggested.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
- Department of Ecology, Faculty of Sciences, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile.
| | - Noriko Kitamura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kento Miura
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Satoko Noda
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki, 310-8512, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
| |
Collapse
|
5
|
Malintha GHT, Celino-Brady FT, Stoytcheva ZR, Seale AP. Osmosensitive transcription factors in the prolactin cell of a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111356. [PMID: 36535574 PMCID: PMC9911408 DOI: 10.1016/j.cbpa.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In euryhaline fish, prolactin (Prl) plays a key role in freshwater acclimation. Prl release in the rostral pars distalis (RPD) of the pituitary is directly stimulated by a fall in extracellular osmolality. Recently, we identified several putative transcription factor modules (TFM) predicted to bind to the promoter regions of the two prl isoforms in Mozambique tilapia, Oreochromis mossambicus. We characterized the effects of extracellular osmolality on the activation of these TFMs from RPDs, in vivo and in vitro. OCT1_PIT1 01, CEBP_CEBP 01 and BRNF_RXRF 01 were significantly activated in freshwater (FW)- acclimated tilapia RPDs while SORY_PAX3 02 and SP1F_SP1F 06, SP1F_SP1F 09 were significantly activated in seawater (SW)- counterparts. Short-term incubation of SW- acclimated tilapia RPDs in hyposmotic media (280 mOsm/kg) resulted in activation of CAAT_AP1F 01, OCT1_CEBP 01, AP1F_SMAD 01, GATA_SP1F 01, SORY_PAX6 01 and CREB_EBOX 02, EBOX_AP2F 01, EBOX_MITF 01 while hyperosmotic media (420 mOsm/kg) activated SORY_PAX3 02 and AP1F_SMAD 01 in FW- tilapia. Short-term incubation of dispersed Prl cells from FW- acclimated fish exposed to hyperosmotic conditions decreased pou1f1, pou2f1b, stat3, stat1a and ap1b1 expression, while pou1f1, pou2f1b, and stat3 were inversely related to osmolality in their SW- counterparts. Further, in Prl cells of SW- tilapia, creb3l1 was suppressed in hyposmotic media. Collectively, our results indicate that multiple TFMs are involved in regulating prl transcription at different acclimation salinities and, together, they modulate responses of Prl cells to changes in extracellular osmolality. These responses reflect the complexity of osmosensitive molecular regulation of the osmoreceptive Prl cell of a euryhaline teleost.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zoia R Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
Nuclear Factor of Activated T Cells-5 Regulates Notochord Lumenogenesis in Chordate Larval Development. Int J Mol Sci 2022; 23:ijms232214407. [PMID: 36430885 PMCID: PMC9698811 DOI: 10.3390/ijms232214407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Osmoregulation is essential for organisms to adapt to the exterior environment and plays an important role in embryonic organogenesis. Tubular organ formation usually involves a hyperosmotic lumen environment. The mechanisms of how the cells respond and regulate lumen formation remain largely unknown. Here, we reported that the nuclear factor of activated T cells-5 (NFAT5), the only transcription factor in the NFAT family involved in the cellular responses to hypertonic stress, regulated notochord lumen formation in chordate Ciona. Ciona NFAT5 (Ci-NFAT5) was expressed in notochord, and its expression level increased during notochord lumen formation and expansion. Knockout and expression of the dominant negative of NFAT5 in Ciona embryos resulted in the failure of notochord lumen expansion. We further demonstrated that the Ci-NFAT5 transferred from the cytoplasm into nuclei in HeLa cells under the hyperosmotic medium, indicating Ci-NFAT5 can respond the hypertonicity. To reveal the underly mechanisms, we predicted potential downstream genes of Ci-NFAT5 and further validated Ci-NFAT5-interacted genes by the luciferase assay. The results showed that Ci-NFAT5 promoted SLC26A6 expression. Furthermore, expression of a transport inactivity mutant of SLC26A6 (L421P) in notochord led to the failure of lumen expansion, phenocopying that of Ci-NFAT5 knockout. These results suggest that Ci-NFAT5 regulates notochord lumen expansion via the SLC26A6 axis. Taken together, our results reveal that the chordate NFAT5 responds to hypertonic stress and regulates lumen osmotic pressure via an ion channel pathway on luminal organ formation.
Collapse
|
7
|
Store-operated Ca2+ entry regulates neuronal gene expression and function. Curr Opin Neurobiol 2022; 73:102520. [DOI: 10.1016/j.conb.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022]
|
8
|
McBroome J, Liang D, Corbett-Detig R. Fine-Scale Position Effects Shape the Distribution of Inversion Breakpoints in Drosophila melanogaster. Genome Biol Evol 2021; 12:1378-1391. [PMID: 32437518 PMCID: PMC7487137 DOI: 10.1093/gbe/evaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Chromosomal inversions are among the primary drivers of genome structure evolution in a wide range of natural populations. Although there is an impressive array of theory and empirical analyses that have identified conditions under which inversions can be positively selected, comparatively little data are available on the fitness impacts of these genome structural rearrangements themselves. Because inversion breakpoints can disrupt functional elements and alter chromatin domains, the precise positioning of an inversion’s breakpoints can strongly affect its fitness. Here, we compared the fine-scale distribution of low-frequency inversion breakpoints with those of high-frequency inversions and inversions that have gone to fixation between Drosophila species. We identified a number of differences among frequency classes that may influence inversion fitness. In particular, breakpoints that are proximal to insulator elements, generate large tandem duplications, and minimize impacts on gene coding spans which are more prevalent in high-frequency and fixed inversions than in rare inversions. The data suggest that natural selection acts to preserve both genes and larger cis-regulatory networks in the occurrence and spread of rearrangements. These factors may act to limit the availability of high-fitness arrangements when suppressed recombination is favorable.
Collapse
Affiliation(s)
- Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz
| | - David Liang
- Department of Biomolecular Engineering, University of California Santa Cruz
| | | |
Collapse
|
9
|
Eadaim A, Hahm ET, Justice ED, Tsunoda S. Cholinergic Synaptic Homeostasis Is Tuned by an NFAT-Mediated α7 nAChR-K v4/Shal Coupled Regulatory System. Cell Rep 2021; 32:108119. [PMID: 32905767 PMCID: PMC7521586 DOI: 10.1016/j.celrep.2020.108119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) involves compensatory mechanisms employed by neurons and circuits to preserve signaling when confronted with global changes in activity that may occur during physiological and pathological conditions. Cholinergic neurons, which are especially affected in some pathologies, have recently been shown to exhibit HSP mediated by nicotinic acetylcholine receptors (nAChRs). In Drosophila central neurons, pharmacological blockade of activity induces a homeostatic response mediated by the Drosophila α7 (Dα7) nAChR, which is tuned by a subsequent increase in expression of the voltage-dependent Kv4/Shal channel. Here, we show that an in vivo reduction of cholinergic signaling induces HSP mediated by Dα7 nAChRs, and this upregulation of Dα7 itself is sufficient to trigger transcriptional activation, mediated by nuclear factor of activated T cells (NFAT), of the Kv4/Shal gene, revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons. Eadaim et al. show that in vivo reduction of cholinergic signaling in Drosophila neurons induces synaptic homeostasis mediated by Dα7 nAChRs. This upregulation of Dα7 induces Kv4/Shal gene expression mediated by nuclear factor of activated T cells (NFAT), revealing a receptor-ion channel system coupled for homeostatic tuning in cholinergic neurons.
Collapse
Affiliation(s)
- Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth D Justice
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
11
|
Jaree P, Kawai T, Lo CF, Tassanakajon A, Somboonwiwat K. Genome organization and definition of the Penaeus monodon viral responsive protein 15 (PmVRP15) promoter. FISH & SHELLFISH IMMUNOLOGY 2019; 93:997-1006. [PMID: 31412281 DOI: 10.1016/j.fsi.2019.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The viral responsive protein 15 from the black tiger shrimp Penaeus monodon (PmVRP15) is a highly responsive gene upon white spot syndrome virus (WSSV) challenge. It is identified from hemocyte and important for WSSV trafficking and assembly. However, the knowledge of PmVRP15 gene regulation is limited. In the present study, the genome organization and 5'upstream promoter sequences of PmVRP15 gene were investigated. The PmVRP15 gene was found to contain 4 exons interrupted by 3 introns and the start codon was located in the exon 2. The transcription start site and TATA box were also determined from the 5' upstream sequence. By using the narrow down experiment, the 5' upstream promoter active region was determined to be at the nucleotide positions -525 to +612. Mutagenesis of the putative transcription factor (TF) binding sites revealed that the binding site of interferon regulatory factor (IRF) (-495/-479) was a repressor-binding site whereas those of the octamer transcription factor 1 (Oct-1) (-275/-268) and the nuclear factor of activated T-cells transcription factor (NFAT) (-228/-223) were activator-binding sites. This is the first report on the transcription factors that might play essential roles in modulating the PmVRP15 gene expression. Nevertheless, the underlying regulation mechanism of PmVRP15 gene expression needs further investigation.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand.
| |
Collapse
|
12
|
Genomic divergence and adaptive convergence in Drosophila simulans from Evolution Canyon, Israel. Proc Natl Acad Sci U S A 2019; 116:11839-11844. [PMID: 31127048 PMCID: PMC6576144 DOI: 10.1073/pnas.1720938116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Biodiversity refugia formed by unique features of the Mediterranean arid landscape, such as the dramatic ecological contrast of "Evolution Canyon," provide a natural laboratory in which local adaptations to divergent microclimate conditions can be investigated. Significant insights have been provided by studies of Drosophila melanogaster diversifying along the thermal gradient in Evolution Canyon, but a comparative framework to survey adaptive convergence across sister species at the site has been lacking. To fill this void, we present an analysis of genomic polymorphism and evolutionary divergence of Drosophila simulans, a close relative of Drosophila melanogaster with which it co-occurs on both slopes of the canyon. Our results show even deeper interslope divergence in D. simulans than in D. melanogaster, with extensive signatures of selective sweeps present in flies from both slopes but enhanced in the population from the hotter and drier south-facing slope. Interslope divergence was enriched for genes related to electrochemical balance and transmembrane transport, likely in response to increased selection for dehydration resistance on the hotter slope. Both species shared genomic regions that underwent major selective sweeps, but the overall level of adaptive convergence was low, demonstrating no shortage of alternative genomic solutions to cope with the challenges of the microclimate contrast. Mobile elements were a major source of genetic polymorphism and divergence, affecting all parts of the genome, including coding sequences of mating behavior-related genes.
Collapse
|
13
|
Feingold D, Knogler L, Starc T, Drapeau P, O'Donnell MJ, Nilson LA, Dent JA. secCl is a cys-loop ion channel necessary for the chloride conductance that mediates hormone-induced fluid secretion in Drosophila. Sci Rep 2019; 9:7464. [PMID: 31097722 PMCID: PMC6522505 DOI: 10.1038/s41598-019-42849-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown. Surprisingly, we find a pentameric, cys-loop chloride channel, a type of channel normally associated with neurotransmission, mediating hormone-induced transepithelial chloride conductance. This discovery is important because: 1) it describes an unexpected role for pentameric receptors in the membrane permeability of secretory epithelial cells, and 2) it suggests that neurotransmitter-gated ion channels may have evolved from channels involved in secretion.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Laura Knogler
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Str. 29, München, Bau 601D-80802, Germany
| | - Pierre Drapeau
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Laura A Nilson
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada.
| |
Collapse
|
14
|
Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS One 2018; 13:e0199003. [PMID: 29953444 PMCID: PMC6023154 DOI: 10.1371/journal.pone.0199003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/30/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE African Americans, East Asians, and Hispanics with systemic lupus erythematous (SLE) are more likely to develop lupus nephritis (LN) than are SLE patients of European descent. The etiology of this difference is not clear, and this study was undertaken to investigate how genetic variants might explain this effect. METHODS In this cross-sectional study, 1244 SLE patients from multiethnic case collections were genotyped for 817,810 single-nucleotide polymorphisms (SNPs) across the genome. Continental genetic ancestry was estimated utilizing the program ADMIXTURE. Gene-based testing and pathway analysis was performed within each ethnic group and meta-analyzed across ethnicities. We also performed candidate SNP association tests with SNPs previously established as risk alleles for SLE, LN, and chronic kidney disease (CKD). Association testing and logistic regression models were performed with LN as the outcome, adjusted for continental ancestries, sex, disease duration, and age. RESULTS We studied 255 North European, 263 South European, 238 Hispanic, 224 African American and 264 East Asian SLE patients, of whom 606 had LN (48.7%). In genome-wide gene-based and candidate SNP analyses, we found distinct genes, pathways and established risk SNPs associated with LN for each ethnic group. Gene-based analyses showed significant associations between variation in ZNF546 (p = 1.0E-06), TRIM15 (p = 1.0E-06), and TRIMI0 (p = 1.0E-06) and LN among South Europeans, and TTC34 (p = 8.0E-06) was significantly associated with LN among Hispanics. The SNP rs8091180 in NFATC1 was associated with LN (OR 1.43, p = 3.3E-04) in the candidate SNP meta-analysis with the highest OR among African-Americans (OR 2.17, p = 0.0035). CONCLUSION Distinct genetic factors are associated with the risk of LN in SLE patients of different ethnicities. CKD risk alleles may play a role in the development of LN in addition to SLE-associated risk variants. These findings may further explain the clinical heterogeneity of LN risk and response to therapy observed between different ethnic groups.
Collapse
|
15
|
Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Sci Rep 2017; 7:42586. [PMID: 28195208 PMCID: PMC5307359 DOI: 10.1038/srep42586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Collapse
Affiliation(s)
- Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Manipal University, Manipal 576104, India
| | - Katharine Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
16
|
Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, Kamatani Y, Zhu G, Sofer T, Puri S, Schellinger JN, Chu PL, Cechova S, van Zuydam N, Arnlov J, Flessner MF, Giedraitis V, Heath AC, Kubo M, Larsson A, Lindgren CM, Madden PAF, Montgomery GW, Papanicolaou GJ, Reiner AP, Sundström J, Thornton TA, Lind L, Ingelsson E, Cai J, Martin NG, Kooperberg C, Matsuda K, Whitfield JB, Okada Y, Laurie CC, Morris AP, Franceschini N. Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. Am J Hum Genet 2016; 99:636-646. [PMID: 27588450 PMCID: PMC5011075 DOI: 10.1016/j.ajhg.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.
Collapse
Affiliation(s)
- Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Aylin R Rodan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Thu H Le
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Gu Zhu
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Sanjana Puri
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Jeffrey N Schellinger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75229, USA
| | - Pei-Lun Chu
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sylvia Cechova
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Natalie van Zuydam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Johan Arnlov
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden; School of Health and Social Studies, Dalarna University, Falun 791 88, Sweden
| | - Michael F Flessner
- National Institute of Diabetes, Digestive, and Kidney Disease, NIH, Bethesda, MD 20892, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala 752 37, Sweden
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Anders Larsson
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Pamela A F Madden
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Grant W Montgomery
- Molecular Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - George J Papanicolaou
- Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - John B Whitfield
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK.
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
17
|
Bire S, Casteret S, Piégu B, Beauclair L, Moiré N, Arensbuger P, Bigot Y. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2. PLoS Genet 2016; 12:e1005902. [PMID: 26939020 PMCID: PMC4777549 DOI: 10.1371/journal.pgen.1005902] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. Transposons are mobile DNA sequences that have long co-evolved with the genome of their hosts. Consequently, they are involved in the generation of mutations, as well as the creation of genes and regulatory networks. Controlling the transposon activity, and consequently its negative effects on both the host soma and germ line, is a challenge for the survival of both the host and the transposon. To silence transposons, hosts often use defence mechanisms involving DNA methylation and RNA interference pathways. Here we show that mariner transposons can self-regulate their activity by using a silencer element located in their DNA sequence. The silencer element interferes with host housekeeping protein transcription factors involved in the polycomb silencing pathways. As the regulation of chromatin configuration by polycomb is an important regulator of animal development, our findings open the possibility that mariner silencers might have been exapted during animal evolution to participate in certain regulation pathways of their hosts. Since some of the TFs involved in mariner silencer activity play a role at different stages of nervous system development and neuron differentiation, it might be possible that mariner transposons can be active during some steps of cell differentiation. Interestingly, mariner transposons (i.e. IS630-Tc1-mariner (ITm) DD34D transposons) have so far only been found in genomes of animals having a nervous system.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | | | - Peter Arensbuger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, United States of America
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- * E-mail:
| |
Collapse
|
18
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
19
|
Huang XD, Wei GJ, Zhang H, He MX. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2015; 42:108-113. [PMID: 25449375 DOI: 10.1016/j.fsi.2014.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-Xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
20
|
Kim NH, Choi S, Han EJ, Hong BK, Choi SY, Kwon HM, Hwang SY, Cho CS, Kim WU. The xanthine oxidase-NFAT5 pathway regulates macrophage activation and TLR-induced inflammatory arthritis. Eur J Immunol 2014; 44:2721-36. [PMID: 25044064 DOI: 10.1002/eji.201343669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 12/30/2022]
Abstract
NFAT5 (nuclear factor of activated T cells), a well-known osmoprotective factor, can be activated by isotonic stimuli such as Toll-like receptor (TLR) triggering. However, it is unclear how NFAT5 discriminates between isotonic and hypertonic stimuli to produce different functional and molecular outcomes. Here, we identified a novel XO-ROS-p38 MAPK-NFAT5 pathway (XO is xanthine oxidase, ROS is reactive oxygen species) that is activated in RAW 264.7 macrophages upon isotonic TLR stimulation. Unlike what is seen under hypertonic conditions, XO-derived ROS were selectively required for the TLR-induced NFAT5 activation and NFAT5 binding to the IL-6 promoter in RAW 264.7 macrophages under isotonic conditions. In mouse peritoneal macrophages and human macrophages, TLR ligation also induced NFAT5 activation, which was dependent on XO and p38 kinase. The involvement of XO in NFAT5 activation by TLR was confirmed in RAW 264.7 macrophages implanted in BALB/c mice. Moreover, allopurinol, an XO inhibitor, suppressed arthritis severity and decreased the expression of NFAT5 and IL-6 in splenic macrophages in C57BL/6 mice. Collectively, these data support a novel function of the XO-NFAT5 axis in macrophage activation and TLR-induced arthritis, and suggest that XO inhibitor(s) could serve as a therapeutic agent for chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Nam-Hoon Kim
- POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Davies SA, Cabrero P, Overend G, Aitchison L, Sebastian S, Terhzaz S, Dow JAT. Cell signalling mechanisms for insect stress tolerance. ACTA ACUST UNITED AC 2014; 217:119-28. [PMID: 24353211 DOI: 10.1242/jeb.090571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.
Collapse
Affiliation(s)
- Shireen A Davies
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Activated/uninhibited calcineurin is both necessary and sufficient to induce cardiac hypertrophy, a condition that often leads to dilated cardiomyopathy, heart failure, and sudden cardiac death. We expressed constitutively active calcineurin in the adult heart of Drosophila melanogaster and identified enlarged cardiac chamber dimensions and reduced cardiac contractility. In addition, expressing constitutively active calcineurin in the fly heart using the Gal4/UAS system induced an increase in heart wall thickness. We performed a targeted genetic screen for modifiers of calcineurin-induced cardiac enlargement based on previous calcineurin studies in the fly and identified galactokinase as a novel modifier of calcineurin-induced cardiomyopathy. Genomic deficiencies spanning the galactokinase locus, transposable elements that disrupt galactokinase, and cardiac-specific RNAi knockdown of galactokinase suppressed constitutively active calcineurin-induced cardiomyopathy. In addition, in flies expressing constitutively active calcineurin using the Gal4/UAS system, a transposable element in galactokinase suppressed the increase in heart wall thickness. Finally, genetic disruption of galactokinase suppressed calcineurin-induced wing vein abnormalities. Collectively, we generated a model for discovering novel modifiers of calcineurin-induced cardiac enlargement in the fly and identified galactokinase as a previously unknown regulator of calcineurin-induced cardiomyopathy in adult Drosophila.
Collapse
|
23
|
Abstract
Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca(2+) concentration activates many proteins, including calmodulin and the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals.
Collapse
|
24
|
Abstract
The construction and prediction of cell fate maps at the whole embryo level require the establishment of an accurate atlas of gene expression patterns throughout development and the identification of the corresponding cis-regulatory sequences. However, while the expression and regulation of genes encoding upstream developmental regulators such as transcription factors or signaling pathway components have been analyzed in detail, up to date the number of cis-regulatory sequences identified for downstream effector genes, like ion channels, pumps and exchangers, is very low. The control and regulation of ion homeostasis in each cell, including at blastoderm stages, are essential for normal embryonic development. In this study, we analyzed in detail the embryonic expression pattern and cis-regulatory modules of the Drosophila Na+-driven anion exchanger 1 (Ndae1) gene, involved in the regulation of pH homeostasis. We show that Ndae1 is expressed in a tight and complex spatial-temporal pattern. In particular, we report that this downstream effector gene is under the control of the canonical dorsal-ventral patterning cascade through dorsal, Toll, twist and snail at early embryogenesis. Moreover, we identify several cis-regulatory modules, some of which control discrete and non-overlapping aspects of endogenous gene expression throughout development.
Collapse
|
25
|
Song X, Hu J, Jin P, Chen L, Ma F. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity. Genomics 2013; 102:355-62. [DOI: 10.1016/j.ygeno.2013.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
26
|
Davies SA, Overend G, Sebastian S, Cundall M, Cabrero P, Dow JAT, Terhzaz S. Immune and stress response 'cross-talk' in the Drosophila Malpighian tubule. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:488-497. [PMID: 22306292 DOI: 10.1016/j.jinsphys.2012.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 05/31/2023]
Abstract
The success of insects is in large part due to their ability to survive environmental stress, including heat, cold, and dehydration. Insects are also exposed to infection, osmotic or oxidative stress, and to xenobiotics or toxins. The molecular mechanisms of stress sensing and response have been widely investigated in mammalian cell lines, and the area of stress research is now so vast to be beyond the scope of a single review article. However, the mechanisms by which stress inputs to the organism are sensed and integrated at the tissue and cellular level are less well understood. Increasingly, common molecular events between immune and other stress responses are observed in vivo; and much of this work stems of efforts in insect molecular science and physiology. We describe here the current knowledge in the area of immune and stress signalling and response at the level of the organism, tissue and cell, focussing on a key epithelial tissue in insects, the Malpighian tubule, and drawing together the known pathways that modulate responses to different stress insults. The tubules are critical for insect survival and are increasingly implicated in responses to multiple and distinct stress inputs. Importantly, as tubule function is central to survival, they are potentially key targets for insect control, which will be facilitated by increased understanding of the complexities of stress signalling in the organism.
Collapse
Affiliation(s)
- Shireen-Anne Davies
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Naikkhwah W, O'Donnell MJ. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae. J Exp Biol 2012; 215:461-70. [PMID: 22246255 DOI: 10.1242/jeb.064048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
Drosophila provides a useful model system for studies of the mechanisms involved in regulation of internal ion levels in response to variations in dietary salt load. This study assessed whether alterations in Na+ and K+ transport by the gut of larval D. melanogaster reared on salt-rich diets contribute to haemolymph ionoregulation. Na+ and K+ fluxes across the isolated guts of third instar larvae reared on control or salt-rich diets were measured using the scanning ion-selective electrode technique (SIET). K+ absorption across the anterior portion of the posterior midgut of larvae reared on diet in which the concentration of KCl was increased 0.4 mol l-1 above that in the control diet was reduced eightfold relative to the same gut segment of larvae reared on the control diet. There was also an increase in the magnitude and extent of K+ secretion across the posterior half of the posterior midgut. Na+ was absorbed across the ileum of larvae reared on the control diet, but was secreted across the ileum of larvae reared on diet in which the concentration of NaCl was increased 0.4 mol l-1 above that in the control diet. There was also a small reduction in the extent of Na+ absorption across the middle midgut of larvae reared on the NaCl-rich diet. The results indicate considerable phenotypic plasticity with respect to K+ and Na+ transport by the gut epithelia of larval D. melanogaster. SIET measurements of K+ and Na+ fluxes along the length of the gut show that ion transport mechanisms of the gut are reconfigured during salt stress so that there are reductions in K+ and Na+ absorption and increases in K+ and Na+ secretion. Together with previously described changes in salt secretion by the Malpighian tubules, these changes contribute to haemolymph ionoregulation.
Collapse
Affiliation(s)
- Wida Naikkhwah
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Michael J. O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
28
|
Ephemeral association between gene CG5762 and hybrid male sterility in Drosophila sibling species. J Mol Evol 2011; 73:181-7. [PMID: 22052252 DOI: 10.1007/s00239-011-9466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/05/2011] [Indexed: 01/14/2023]
Abstract
Interspecies divergence in regulatory pathways may result in hybrid male sterility (HMS) when dominance and epistatic interactions between alleles that are functional within one genome are disrupted in hybrid genomes. The identification of genes contributing to HMS and other hybrid dysfunctions is essential for understanding the origin of new species (speciation). Previously, we identified a panel of male-specific loci misexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to parental species. In the current work, we attempt to dissect the genetic associations between HMS and one of the genes, CG5762, a Drosophila-unique locus characterized by rapid sequence divergence within the genus, presumably driven by positive natural selection. CG5762 is underexpressed in sterile backcross males compared with their fertile brothers. In CG5762 heterozygotes, the D. mauritiana allele is consistently overexpressed on both the D. simulans and D. mauritiana backcross genomic background, suggesting a cis-acting regulation factor. There is a significant association between heterozygosity and HMS in hybrid males from early but not later backcross generations. Microsatellite markers spanning CG5762 fail to associate with HMS. These observations lead to a conclusion that CG5762 is not a causative factor of HMS. Although genetic linkage between CG5762 and a neighboring causative introgression cannot be ruled out, it seems that the pattern is most consistent with CG5762 participating in epistatic interactions that are disrupted in flies with HMS.
Collapse
|
29
|
José-Edwards DS, Kerner P, Kugler JE, Deng W, Jiang D, Di Gregorio A. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network. Dev Dyn 2011; 240:1793-805. [PMID: 21594950 PMCID: PMC3685856 DOI: 10.1002/dvdy.22656] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2011] [Indexed: 11/07/2022] Open
Abstract
The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like, and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Pierre Kerner
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Wei Deng
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| |
Collapse
|
30
|
Freeman A, Franciscovich A, Bowers M, Sandstrom DJ, Sanyal S. NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila. Mol Cell Neurosci 2010; 46:535-47. [PMID: 21185939 DOI: 10.1016/j.mcn.2010.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
The calcium-regulated transcription factor NFAT is emerging as a key regulator of neuronal development and plasticity but precise cellular consequences of NFAT function remain poorly understood. Here, we report that the single Drosophila NFAT homolog is widely expressed in the nervous system including motor neurons and unexpectedly controls neural excitability. Likely due to this effect on excitability, NFAT regulates overall larval locomotion and both chronic and acute forms of activity-dependent plasticity at the larval glutamatergic neuro-muscular synapse. Specifically, NFAT-dependent synaptic phenotypes include changes in the number of pre-synaptic boutons, stable modifications in synaptic microtubule architecture and pre-synaptic transmitter release, while no evidence is found for synaptic retraction or alterations in the level of the synaptic cell adhesion molecule FasII. We propose that NFAT regulates pre-synaptic development and constrains long-term plasticity by dampening neuronal excitability.
Collapse
Affiliation(s)
- Amanda Freeman
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Adaptation of Drosophila melanogaster to increased NaCl concentration due to dominant beneficial mutations. Genetica 2010; 139:177-86. [PMID: 21128095 DOI: 10.1007/s10709-010-9535-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
32
|
Kino T, Segars JH, Chrousos GP. The Guanine Nucleotide Exchange Factor Brx: A Link between Osmotic Stress, Inflammation and Organ Physiology and Pathophysiology. Expert Rev Endocrinol Metab 2010; 5:603-614. [PMID: 21037977 PMCID: PMC2964845 DOI: 10.1586/eem.10.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydration, and consequent intracellular hyperosmolarity, is a major challenge to land organisms, as it is associated with extraction of water from cells and disturbance of global cellular function. Organisms have thus developed a highly conserved regulatory mechanism that transduces the hyperosmolarity signal from the cell surface to the cell nucleus and adjusts the expression of cellular osmolarity-regulating genes. We recently found that the Rho-type guanine nucleotide exchange factor Brx, or AKAP13, is essential for osmotic stress-stimulated expression of nuclear factor of activated T-cells 5 (NFAT5), a key transcription factor of intracellular osmolarity. It accomplishes this by first attracting cJun kinase (JNK)-interacting protein (JIP) 4 and then coupling activated Rho-type small G-proteins to cascade components of the p38 MAPK signaling pathway, ultimately activating NFAT5. We describe the potential implications of osmotic stress and Brx activation in organ physiology and pathophysiology and connect activation of this system to key human homeostatic states.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Kino T, Takatori H, Manoli I, Wang Y, Tiulpakov A, Blackman MR, Su YA, Chrousos GP, DeCherney AH, Segars JH. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci Signal 2009; 2:ra5. [PMID: 19211510 DOI: 10.1126/scisignal.2000081] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular hyperosmolarity, or osmotic stress, generally caused by differences in salt and macromolecule concentrations across the plasma membrane, occurs in lymphoid organs and at inflammatory sites. The response of immune cells to osmotic stress is regulated by nuclear factor of activated T cells 5 (NFAT5), a transcription factor that induces the expression of hyperosmolarity-responsive genes and stimulates cytokine production. We report that the guanine nucleotide exchange factor (GEF) Brx [also known as protein kinase A-anchoring protein 13 (AKAP13)] is essential for the expression of nfat5 in response to osmotic stress, thus transmitting the extracellular hyperosmolarity signal and enabling differentiation of splenic B cells and production of immunoglobulin. This process required the activity of p38 mitogen-activated protein kinase (MAPK) and NFAT5 and involved a physical interaction between Brx and c-Jun N-terminal kinase (JNK)-interacting protein 4 (JIP4), a scaffold molecule specific to activation of the p38 MAPK cascade. Our results indicate that Brx integrates the responses of immune cells to osmotic stress and inflammation by elevating intracellular osmolarity and stimulating the production of cytokines.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eid JP, Arias AM, Robertson H, Hime GR, Dziadek M. The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning. BMC DEVELOPMENTAL BIOLOGY 2008; 8:104. [PMID: 18950512 PMCID: PMC2584103 DOI: 10.1186/1471-213x-8-104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/24/2008] [Indexed: 11/16/2022]
Abstract
Background Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER) and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined. Results We have investigated the expression and developmental function of dSTIM in Drosophila and shown that dSTIM is widely expressed in embryonic and larval tissues. Using the UAS-Gal4 induction system, we have expressed full-length dSTIM protein and a dsRNAi construct in different tissues. We demonstrate an essential role for dSTIM in larval development and survival, and a tissue-specific role in specification of mechanosensory bristles in the notum and specification of wing vein thickness. Conclusion Our studies show that dSTIM regulates growth and patterning of imaginal discs and indicate potential interactions with the Notch and Wingless signaling pathways. These interactions may be relevant to studies implicating STIM family proteins in tumorigenesis.
Collapse
Affiliation(s)
- Jean-Pierre Eid
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
35
|
The transcription factor NF-kappaB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain. Dev Genes Evol 2008; 218:23-32. [PMID: 18175145 DOI: 10.1007/s00427-007-0197-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The Rel/nuclear factor-kappa B (NF-kappaB) and nuclear factor of activated T-cells (NFAT) transcription factors contribute to the regulation of an assortment of biological processes by binding DNA with high specificity using their Rel homology domain (RHD). Recently, it has been shown that members of these gene families are present in the genome of the anthozoan cnidarian Nematostella vectensis, indicating that they predate the evolution of the most recent ancestor to living bilaterians. By identifying a single NF-kappaB gene in the genome of the demosponge Amphimedon queenslandica, a representative of an even earlier branching metazoan lineage, we demonstrate here that the Rel/NF-kappaB family originated at the dawn of the Metazoa. There is no evidence of RHDs in fungal and choanoflagellate genomes, supporting the notion that the RHD is a metazoan-specific innovation. The A. queenslandica gene (AmqNF-kappaB) encodes a protein that is highly similar in structure to the vertebrate NF-kappaB p50/p52 proteins, possessing both a RHD and ankyrin (ANK) repeats. The intact AmqNF-kappaB contrasts with the N. vectensis NF-kappaB, which lacks ANK repeats, and suggests that the ancestral metazoan NF-kappaB was configured identically to contemporary vertebrate and sponge forms. AmqNF-kappaB is expressed during A. queenslandica embryogenesis, suggesting a developmental role.
Collapse
|