1
|
Wang G, Shen G, Xu C, Guo Y, Zhang W, Wang Q, Zhu Y. Caspase-8 promotes innate immunity in the Chinese mitten crab by regulating the expression of antimicrobial peptides and apoptosis in hemocyte. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105308. [PMID: 39724998 DOI: 10.1016/j.dci.2024.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
In mammals, caspase-8 primarily functions as an initiator caspase that regulates apoptosis, while in Drosophila, the caspase-8 ortholog DREDD not only induces apoptosis during development but also regulates antimicrobial peptides (AMPs) expression during Gram-negative bacterial infection-induced immune responses. However, the immune-related function of caspase-8 in the crustacean remains unknown. In the present study, the open reading frame of EsCaspase-8 was cloned from the Chinese mitten crab (Eriocheir sinensis). The deduced EsCaspase-8 protein sequence contained only one death effector domain (DED) and a cysteine aspartase cysteine structural domain. The EsCaspase-8 expression was significantly induced after 6 h of Vibrio parahaemolyticus infection and continued to 24 h in hemocyte. Knocking down EsCaspase-8 expression in hemocytes significantly inhibited Relish's nuclear translocation and suppressed the expression of AMPs, including Crustin 1, Crustin 2, Lysosome, and double WAP domain, after V. parahaemolyticus infection. Furthermore, the knockdown of EsCaspase-8 in vivo significantly inhibited hemocyte apoptosis post-bacterial infection. These results demonstrated that EsCaspase-8 can promote antibacterial activities by regulating the expression of AMPs through activation of Relish nuclear translocation in Chinese mitten crabs, thus acting as a critical positive regulator in innate immunity. In addition, EsCaspase-8 also has the function of inducing hemocyte apoptosis. These findings expand our understanding of the molecular mechanisms underlying crustacean immune responses and provide a foundation for future research to improve disease resistance.
Collapse
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chaohui Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youting Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front Cell Dev Biol 2022; 10:915785. [PMID: 35959493 PMCID: PMC9360593 DOI: 10.3389/fcell.2022.915785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuran Li
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyu Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
3
|
Zheng H, Pan Y, Awais MM, Tian W, Li J, Sun J. Impact of Group II Baculovirus IAPs on Virus-Induced Apoptosis in Insect Cells. Genes (Basel) 2022; 13:genes13050750. [PMID: 35627135 PMCID: PMC9140827 DOI: 10.3390/genes13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Apoptosis plays an important role in virus-host interactions and is a major element of the insect immune response. Exploring the regulatory mechanisms of virus-induced apoptosis through the expression of apoptotic genes holds important research and application value. Functional research on the reported inhibitor of apoptosis proteins (IAPs) mainly focuses on the group I baculovirus, while the functions of the group II baculovirus IAPs remains unclear. To explore its role in the regulation of the apoptosis of insect cells, we constructed the transient expression vector (pIE1 vectors) and the recombinant baculovirus expressing Bsiap genes (from the Buzura suppressaria nucleopolyhedrovirus) of the group II baculovirus. Apoptosis gene expression results and the virus-induced apoptosis rate show that the overexpression of BsIAP1 could promote apoptosis in insect cells. However, the overexpression of BsIAP2 and BsIAP3 decreases the expression of apoptotic genes, revealing an inhibitory effect. Results on the impact of baculovirus-induced apoptosis also confirm that BsIAP1 reduces viral nucleocapsid expression and the baculovirus titer, while BsIAP2 and BsIAP3 increase them significantly. Furthermore, compared with single expression, the co-expression of BsIAP2 and BsIAP3 significantly reduces the rate of virus-induced apoptosis and improves the expression of nucleocapsids and the titer of offspring virus, indicating the synergistic effect on BsIAP2 and BsIAP3. In addition, combined expression of all three BsIAPs significantly reduced levels of intracellular apoptosis-related genes (including apoptosis and anti-apoptosis genes), as well as apoptosis rate and progeny virus titer, indicating that life activities in insect cells are also inhibited. These findings reveal the relationship between apoptosis and group II baculovirus IAP, which provide an experimental and theoretical basis for further exploration of the molecular mechanism between group II baculoviruses and insect cells.
Collapse
|
4
|
Wang L, Song J, Bao XY, Chen P, Yi HS, Pan MH, Lu C. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori. Gene 2016; 591:362-8. [DOI: 10.1016/j.gene.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
|
5
|
Li X, Meng K, Qiao J, Liu H, Zhong C, Liu Q. Identification of Aadnr1, a novel gene related to innate immunity and apoptosis in Aedes albopictus. Gene 2016; 587:18-26. [PMID: 27045774 DOI: 10.1016/j.gene.2016.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/01/2022]
Abstract
Innate immunity and apoptosis play critical roles in defending pathogens in insects. In Drosophila, Dnr1 was reported as a negative regulator of apoptosis and immune deficiency (Imd) pathway which belongs to innate immunity. Aedes albopictus is an important kind of arbovirus vector and becoming a significant threat to public health due to its rapid global expansion. Here we identified an ortholog of dnr1 from A. albopictus, named as Aadnr1. Aadnr1 encoded a putative protein containing an N-terminal FERM domain and a C-terminal RING domain. AaDnr1 shared high identity with dipteran insects Dnr1 orthologs. Phylogenetic analyses showed that the closest relative of AaDnr1 was Aedes aegypti Dnr1. Real-time PCR proved that Aadnr1 mRNA was expressed ubiquitously during developmental and adult stages. Transcriptional levels of Aadnr1 were decreased drastically in C6/36 cells underwent apoptosis induced by Actinomycin D (Act D) treatment. Partial silence of Aadnr1 enhanced Act D-induced caspase activity. When challenged by heat-inactivated E. coli, transcriptional level of Aadnr1 was also decreased dramatically in C6/36 cells. While when C6/36 cells were infected with Sindbis virus TE/GFP, transcriptional level of Aadnr1 was reduced and recovered repeatedly, with an overall decreasing trend. It was also shown in this study that similar to Drosophila Dnr1, RING domain destabilized AaDnr1 protein. Taken together, the study identified an innate immunity and apoptosis related gene Aadnr1 in A. albopictus.
Collapse
Affiliation(s)
- Xiaomei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Kun Meng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jialu Qiao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chunyan Zhong
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
6
|
Yang Z, Zhou K, Liu H, Wu A, Mei L, Liu Q. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda. PLoS One 2016; 11:e0151016. [PMID: 26977926 PMCID: PMC4792459 DOI: 10.1371/journal.pone.0151016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 01/11/2023] Open
Abstract
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.
Collapse
Affiliation(s)
- Zhouning Yang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Ke Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Andong Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Long Mei
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Sakamaki K, Shimizu K, Iwata H, Imai K, Satou Y, Funayama N, Nozaki M, Yajima M, Nishimura O, Higuchi M, Chiba K, Yoshimoto M, Kimura H, Gracey AY, Shimizu T, Tomii K, Gotoh O, Akasaka K, Sawasaki T, Miller DJ. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution. Mol Biol Evol 2014; 31:3282-301. [PMID: 25205508 DOI: 10.1093/molbev/msu260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kouhei Shimizu
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hiroaki Iwata
- Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Imai
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mamiko Yajima
- Bio Med Molecular, Cellular Biology Biochemistry Department, Brown University, Providence, RI
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mayura Higuchi
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michi Yoshimoto
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Haruna Kimura
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Andrew Y Gracey
- Marine Environmental Biology, University of Southern California, Los Angeles, CA
| | - Takashi Shimizu
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kentaro Tomii
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Osamu Gotoh
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koji Akasaka
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - David J Miller
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Ocampo CB, Caicedo PA, Jaramillo G, Ursic Bedoya R, Baron O, Serrato IM, Cooper DM, Lowenberger C. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus. PLoS One 2013; 8:e61187. [PMID: 23593426 PMCID: PMC3622604 DOI: 10.1371/journal.pone.0061187] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/07/2013] [Indexed: 01/06/2023] Open
Abstract
Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.
Collapse
Affiliation(s)
- Clara B. Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Paola A. Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Gloria Jaramillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Raul Ursic Bedoya
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Tekmira Pharmaceuticals Corporation, Burnaby, British Columbia, Canada
| | - Olga Baron
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Université Nice Sophia Antipolis, Nice, France
| | - Idalba M. Serrato
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Dawn M. Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
9
|
Wang YH, Yang XL, Han X, Zhang LF, Li HL. Mimic of manganese superoxide dismutase to induce apoptosis of human non-Hodgkin lymphoma Raji cells through mitochondrial pathways. Int Immunopharmacol 2012; 14:620-8. [DOI: 10.1016/j.intimp.2012.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/13/2012] [Accepted: 09/28/2012] [Indexed: 01/23/2023]
|
10
|
Kelly EM, Moon DC, Bowers DF. Apoptosis in mosquito salivary glands: Sindbis virus-associated and tissue homeostasis. J Gen Virol 2012; 93:2419-2424. [PMID: 22894924 PMCID: PMC4091284 DOI: 10.1099/vir.0.042846-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022] Open
Abstract
Apoptosis is observed during a spectrum of conditions including exogenous virus infection and endogenous cellular turnover. Adult female Aedes albopictus mosquitoes challenged with increasing titres of Sindbis virus (SINV) via intrathoracic inoculation demonstrated that the injection dosage did not result in significantly different levels of virus growth or mosquito survival at day 10 post-infection. Tissues probed for apoptosis using an in situ TUNEL assay revealed SINV-associated apoptotic cells scattered throughout the proximal and distal regions of the salivary gland (SG) lateral lobes but which were not detected in the median lobe or the midgut and hindgut. Apoptosis was also identified in SG duct cells in both infected and uninfected mosquitoes, suggesting routine tissue homeostasis. SINV-associated apoptosis sequestered to the SG lateral lobes indicates a differential epithelial cell response to an arbovirus and provides insight into mosquito defence mechanisms against pathogens and SG infection barriers, hurdles to transmission of arboviruses of public health concern.
Collapse
Affiliation(s)
- Erica M. Kelly
- Departments of Physics and Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224 USA
| | - Daniel C. Moon
- Department of Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224, USA
| | - Doria F. Bowers
- Department of Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Behura SK, Haugen M, Flannery E, Sarro J, Tessier CR, Severson DW, Duman-Scheel M. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes. PLoS One 2011; 6:e21504. [PMID: 21754989 PMCID: PMC3130749 DOI: 10.1371/journal.pone.0021504] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022] Open
Abstract
Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.
Collapse
Affiliation(s)
- Susanta K. Behura
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Morgan Haugen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Ellen Flannery
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joseph Sarro
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Charles R. Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - David W. Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Molly Duman-Scheel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sojka D, Francischetti IMB, Calvo E, Kotsyfakis M. Cysteine proteases from bloodfeeding arthropod ectoparasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:177-91. [PMID: 21660665 PMCID: PMC3413451 DOI: 10.1007/978-1-4419-8414-2_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Michalis Kotsyfakis
- Corresponding Author: Michalis Kotsyfakis—Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,
| |
Collapse
|
13
|
Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics 2010; 11:611. [PMID: 21040523 PMCID: PMC3091752 DOI: 10.1186/1471-2164-11-611] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 10/31/2010] [Indexed: 12/29/2022] Open
Abstract
Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori.
Collapse
Affiliation(s)
- Jin-Ye Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Plunkett RM, Murray SI, Lowenberger CA. Generation and characterization of the antibacterial activity of a novel hybrid antimicrobial peptide comprising functional domains from different insect cecropins. Can J Microbiol 2009; 55:520-8. [PMID: 19483780 DOI: 10.1139/w09-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The search for new antimicrobial compounds involves finding novel sources of chemotherapeutic compounds or manipulating and combining structures from existing molecules. Small antimicrobial peptides (AMPs) are components of innate immune defenses characterized in greatest detail in insect-derived AMPs. We have generated hybrid AMPs (hAMPs) by combining functional motifs from different insect AMPs as a proof of principle that we can generate molecules with lower minimum inhibitory concentrations, and with different activity and target specificity than either parent molecule. A two-helix, cecropin-like hAMP was created by linking the N-terminal alpha helix of cecropin A from Aedes aegypti to the C-terminal alpha helix of cecropin A1 from Drosophila melanogaster. This molecule exhibits antibacterial activity at sub-micromolar concentrations with a target specificity that differs from either parent molecule. Antibacterial activity of the hybrid molecule was found to be greater against Gram-negative than Gram-positive bacteria. No hemolysis was observed in sheep red blood cells exposed to concentrations up to 50 micromol/L, suggesting the peptide is not detrimental to eukaryotic cells.
Collapse
Affiliation(s)
- Richard M Plunkett
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| | | | | |
Collapse
|
15
|
|
16
|
Cooper DM, Chamberlain CM, Lowenberger C. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:47-54. [PMID: 18977438 DOI: 10.1016/j.ibmb.2008.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 09/09/2008] [Accepted: 09/24/2008] [Indexed: 05/27/2023]
Abstract
Microbial infections in insects activate a series of immune responses that culminate in the production of antimicrobial peptides (AMPs). In Drosophila, two signaling pathways, govern the challenge-dependent expression of AMPs; the Toll and IMD pathways. While AMPs have been the subject of much research in mosquitoes, the regulation of the pathways required for AMP expression remains largely unknown. We report here the identification of Aedes FADD (AeFADD), a death domain protein in Aedes aegypti. AeFadd is expressed in all immune-competent tissues and all developmental stages examined. At the transcriptional level, AeFadd transcripts increased when challenged with Escherichia coli but not Micrococcus luteus. In both cases, we observed the induction of two AMP genes; cecropin and defensin. Loss of AeFadd function by dsRNA interference impaired the inducible expression of both AMPs, and rendered adult mosquitoes susceptible to both types of bacteria. Identifying molecules that regulate mosquito immunity may help elucidate the factors that contribute to the vectorial capacity and provide insights into general mechanisms that regulate innate immunity.
Collapse
Affiliation(s)
- Dawn M Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | |
Collapse
|
17
|
Cooper DM, Thi EP, Chamberlain CM, Pio F, Lowenberger C. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2007; 16:563-72. [PMID: 17725799 DOI: 10.1111/j.1365-2583.2007.00758.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Caspases are cysteinyl-aspartate-specific proteases known for their role in apoptosis. Here, we describe the characterization of Aedes Dronc, a novel caspase in the yellow fever mosquito, Aedes aegypti. Aedes Dronc is predicted to contain an N-terminal caspase recruitment domain and is a homologue of Drosophila Dronc and human caspase-9. An increase in transcripts and caspase activity coincides with developmental changes in the mosquito, suggesting that Aedes Dronc plays a role in developmental apoptosis. Exposure of third instar larvae to ecdysone resulted in a significant increase in both transcript levels and caspase activity. We present here a functional characterization of the first caspase recruitment domain-containing caspase in mosquitoes, and will initiate studies on the role of apoptosis in the innate immune response of vectors.
Collapse
Affiliation(s)
- D M Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|