1
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
2
|
Ahmad M, Jha B, Bose S, Tiwari S, Dwivedy A, Kar D, Pal R, Mariadasse R, Parish T, Jeyakanthan J, Vinothkumar KR, Biswal BK. Structural snapshots of Mycobacterium tuberculosis enolase reveal dual mode of 2PG binding and its implication in enzyme catalysis. IUCRJ 2023; 10:738-753. [PMID: 37860976 PMCID: PMC10619443 DOI: 10.1107/s2052252523008485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Enolase, a ubiquitous enzyme, catalyzes the reversible conversion of 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the glycolytic pathway of organisms of all three domains of life. The underlying mechanism of the 2PG to PEP conversion has been studied in great detail in previous work, however that of the reverse reaction remains to be explored. Here we present structural snapshots of Mycobacterium tuberculosis (Mtb) enolase in apo, PEP-bound and two 2PG-bound forms as it catalyzes the conversion of PEP to 2PG. The two 2PG-bound complex structures differed in the conformation of the bound product (2PG) viz the widely reported canonical conformation and a novel binding pose, which we refer to here as the alternate conformation. Notably, we observed two major differences compared with the forward reaction: the presence of MgB is non-obligatory for the reaction and 2PG assumes an alternate conformation that is likely to facilitate its dissociation from the active site. Molecular dynamics studies and binding free energy calculations further substantiate that the alternate conformation of 2PG causes distortions in both metal ion coordination and hydrogen-bonding interactions, resulting in an increased flexibility of the active-site loops and aiding product release. Taken together, this study presents a probable mechanism involved in PEP to 2PG catalysis that is likely to be mediated by the conformational change of 2PG at the active site.
Collapse
Affiliation(s)
- Mohammed Ahmad
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhavya Jha
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Zoology, GDM Mahavidyalaya, Patliputra University, Patna 800020, India
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Satish Tiwari
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhisek Dwivedy
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepshikha Kar
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravikant Pal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Richard Mariadasse
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Tanya Parish
- Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA 98102, USA
- Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Bichitra Kumar Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Russo E, Di Lelio I, Shi M, Becchimanzi A, Pennacchio F. Aphidius ervi venom regulates Buchnera contribution to host nutritional suitability. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104506. [PMID: 37011858 DOI: 10.1016/j.jinsphys.2023.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 06/02/2023]
Abstract
The association between the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), and the endophagous parasitoid wasp Aphidius ervi Haliday (Hymenoptera: Braconidae) offers a unique model system for studying the molecular mechanisms underlying the complex interactions between the parasitoid, its host and the associated primary symbiont. Here, we investigate in vivo the functional role of the most abundant component of A. ervi venom, Ae-γ-glutamyl transpeptidase (Ae-γ-GT), which is known to induce host castration. Microinjections of double-stranded RNA into A. ervi pupae stably knocked down Ae-γ-GT1 and Ae-γ-GT2 paralogue genes in newly emerged females. These females were used to score the phenotypic changes both in parasitized hosts and in the parasitoid's progeny, as affected by a venom blend lacking Ae-γ-GT. Ae-γ-GT gene silencing enhanced growth both of host and parasitoid, supported by a higher load of the primary bacterial symbiont Buchnera aphidicola. Emerging adults showed a reduced survival and fecundity, suggesting a trade-off with body size. This demonstrates in vivo the primary role of Ae-γ-GT in host ovary degeneration and suggests that this protein counterbalances the proliferation of Buchnera likely triggered by other venom components. Our study provides a new approach to unravelling the complexity of aphid parasitoid venom in vivo, and sheds light on a novel role for Ae-γ-GT in host regulation.
Collapse
Affiliation(s)
- Elia Russo
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy
| | - Ilaria Di Lelio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Min Shi
- Jiaxing Nanhu University, Jiaxing, China
| | - Andrea Becchimanzi
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Francesco Pennacchio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
5
|
Genome of the parasitoid wasp Cotesia chilonis sheds light on amino acid resource exploitation. BMC Biol 2022; 20:118. [PMID: 35606775 PMCID: PMC9128236 DOI: 10.1186/s12915-022-01313-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background A fundamental feature of parasitism is the nutritional exploitation of host organisms by their parasites. Parasitoid wasps lay eggs on arthropod hosts, exploiting them for nutrition to support larval development by using diverse effectors aimed at regulating host metabolism. However, the genetic components and molecular mechanisms at the basis of such exploitation, especially the utilization of host amino acid resources, remain largely unknown. To address this question, here, we present a chromosome-level genome assembly of the parasitoid wasp Cotesia chilonis and reconstruct its amino acid biosynthetic pathway. Results Analyses of the amino acid synthetic pathway indicate that C. chilonis lost the ability to synthesize ten amino acids, which was confirmed by feeding experiments with amino acid-depleted media. Of the ten pathways, nine are known to have been lost in the common ancestor of animals. We find that the ability to synthesize arginine was also lost in C. chilonis because of the absence of two key genes in the arginine synthesis pathway. Further analyses of the genomes of 72 arthropods species show that the loss of arginine synthesis is common in arthropods. Metabolomic analyses by UPLC-MS/MS reveal that the temporal concentrations of arginine, serine, tyrosine, and alanine are significantly higher in host (Chilo suppressalis) hemolymph at 3 days after parasitism, whereas the temporal levels of 5-hydroxylysine, glutamic acid, methionine, and lysine are significantly lower. We sequence the transcriptomes of a parasitized host and non-parasitized control. Differential gene expression analyses using these transcriptomes indicate that parasitoid wasps inhibit amino acid utilization and activate protein degradation in the host, likely resulting in the increase of amino acid content in host hemolymph. Conclusions We sequenced the genome of a parasitoid wasp, C. chilonis, and revealed the features of trait loss in amino acid biosynthesis. Our work provides new insights into amino acid exploitation by parasitoid wasps, and this knowledge can specifically be used to design parasitoid artificial diets that potentially benefit mass rearing of parasitoids for pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01313-3.
Collapse
|
6
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Gao X, Xue H, Luo J, Ji J, Zhang L, Niu L, Zhu X, Wang L, Zhang S, Cui J. Molecular Evidence that Lysiphlebia japonica Regulates the Development and Physiological Metabolism of Aphis gossypii. Int J Mol Sci 2020; 21:ijms21134610. [PMID: 32610524 PMCID: PMC7370083 DOI: 10.3390/ijms21134610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lysiphlebia japonica Ashmead (Hymenoptera, Braconidae) is an endophagous parasitoid and Aphis gossypii Glover (Hemiptera, Aphididae) is a major pest in cotton. The relationship between insect host-parasitoids and their hosts involves complex physiological, biochemical and genetic interactions. This study examines changes in the development and physiological metabolism of A. gossypii regulated by L. japonica. Our results demonstrated that both the body length and width increased compared to non-parasitized aphids. We detected significantly increases in the developmental period as well as severe reproductive castration following parasitization by L. japonica. We then used proteomics to characterize these biological changes, and when combined with transcriptomes, this analysis demonstrated that the differential expression of mRNA (up or downregulation) captured a maximum of 48.7% of the variations of protein expression. We assigned these proteins to functional categories that included immunity, energy metabolism and transport, lipid metabolism, and reproduction. We then verified the contents of glycogen and 6-phosphate glucose, which demonstrated that these important energy sources were significantly altered following parasitization. These results uncover the effects on A. gossypii following parasitization by L. japonica, additional insight into the mechanisms behind insect-insect parasitism, and a better understanding of host-parasite interactions.
Collapse
Affiliation(s)
- Xueke Gao
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Hui Xue
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Lijuan Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Lin Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Xiangzhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Shuai Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
- Correspondence: (S.Z.); (J.C.)
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
- Correspondence: (S.Z.); (J.C.)
| |
Collapse
|
8
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
9
|
Salvia R, Grimaldi A, Girardello R, Scieuzo C, Scala A, Bufo SA, Vogel H, Falabella P. Aphidius ervi Teratocytes Release Enolase and Fatty Acid Binding Protein Through Exosomal Vesicles. Front Physiol 2019; 10:715. [PMID: 31275155 PMCID: PMC6593151 DOI: 10.3389/fphys.2019.00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
The molecular bases of the host-parasitoid interactions in the biological system Acyrthosiphon pisum (Harris) (Homoptera, Aphididae) and Aphidius ervi (Haliday) (Hymenoptera, Braconidae) have been elucidated allowing the identification of a gamma-glutamyl transpeptidase, the active component of maternal venom secretion, and teratocytes, the embryonic parasitic factors responsible for host physiology regulation after parasitization. Teratocytes, cells deriving from the dissociation of the serosa, the parasitoid embryonic membrane, are responsible for extra-oral digestion of host tissues in order to provide a suitable nutritional environment for the development of parasitoid larvae. Teratocytes rapidly grow in size without undergoing any cell division, synthesize, and release in the host hemolymph two proteins: a fatty acid binding protein (Ae-FABP) and an enolase (Ae-ENO). Ae-FABP is involved in transport of fatty acids deriving from host tissues to the parasitoid larva. Ae-ENO is an extracellular glycolytic enzyme that functions as a plasminogen like receptor inducing its activation to plasmin. Both Ae-FABP and Ae-ENO lack their signal peptides, and they are released in the extracellular environment through an unknown secretion pathway. Here, we investigated the unconventional mechanism by which teratocytes release Ae-FABP and Ae-ENO in the extracellular space. Our results, obtained using immunogold staining coupled with TEM and western blot analyses, show that these two proteins are localized in vesicles released by teratocytes. The specific dimension of these vesicles and the immunodetection of ALIX and HSP70, two exosome markers, strongly support the hypothesis that these vesicles are exosomes.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
10
|
Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX. Parasitic insect-derived miRNAs modulate host development. Nat Commun 2018; 9:2205. [PMID: 29880839 PMCID: PMC5992160 DOI: 10.1038/s41467-018-04504-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/30/2018] [Indexed: 01/20/2023] Open
Abstract
Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Fei Li
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Ze-Hua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Qi-Juan Gu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Chuan-Lin Yin
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Dian-Hao Guo
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Rong-Min Hu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Na-Na Hu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Ting Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Bo-Ying Zheng
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Jia-Ni Zou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Le-Qing Zhan
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Yan-Ping Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | | | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Xue-Xin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China.
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
11
|
Youneszadeh-Fashalami M, Salati AP, Keyvanshokooh S. Comparison of proteomic profiles in the ovary of Sterlet sturgeon (Acipenser ruthenus) during vitellogenic stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:23-29. [PMID: 29738886 DOI: 10.1016/j.cbd.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022]
Abstract
One of the challenges of sturgeon aquaculture is that sturgeon takes an extended amount of time to reach sexual maturity. The pattern of the protein expression in relation to the late maturity of sturgeon can help to better understand changes in sexual maturity. 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) levels were examined at all stages of sexual maturation in Sterlet sturgeon (Acipenser ruthenus). Two-dimensional gel electrophoresis and mass spectrometry analysis were used to show the pattern of the ovarian proteins. The T levels increased from the previtellogenic to the postvitellogenic stages (P < 0.05) and Vtg showed a decremental pattern in pre- and postvitellogenic, and atresia (not significantly). The analysis showed 900 protein spots, 19 of which were successfully identified and had significant differences between the previtellogenic and the vitellogenic groups (P < 0.05). Among the identified proteins, 40% involved in cell defense (heat shock protein, Glutathione peroxidase, natural killer enhancing factor, peroxiredoxin-2), 30% in transcription and translation (constitutive photomorphogenesis 9 and Ybx2), 20% in metabolism and energy production (triose-phosphate isomerase (TPI)) and 10% in transport (glycolipid transfer protein). In the vitellogenic stage, the proteins were related to metabolism and energy production (TPI, ES1, creatin kinase, enolase, nucleoside diphosphate kinase, 50%), cell defense (thioredoxin and dislophid isomerase, 20%) and transport (fatty acid binding protein, 10%). Our findings show changes in protein expression pattern from cell defense to metabolism during egg development.
Collapse
Affiliation(s)
- Mohammad Youneszadeh-Fashalami
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran; South Iranian Aquaculture Research Center, Ahwaz, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran
| |
Collapse
|
12
|
Trotta V, Forlano P, Falabella P, Battaglia D, Fanti P. The aphid Acyrthosiphon pisum exhibits a greater survival after a heat shock when parasitized by the wasp Aphidius ervi. J Therm Biol 2018; 72:53-58. [DOI: 10.1016/j.jtherbio.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/17/2022]
|
13
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|
14
|
Mathé-Hubert H, Colinet D, Deleury E, Belghazi M, Ravallec M, Poulain J, Dossat C, Poirié M, Gatti JL. Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive fruit fly parasitoids: a hypothetical role for a GH1 β-glucosidase. Sci Rep 2016; 6:35873. [PMID: 27779241 PMCID: PMC5078806 DOI: 10.1038/srep35873] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023] Open
Abstract
Venom composition of parasitoid wasps attracts increasing interest - notably molecules ensuring parasitism success on arthropod pests - but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range. Among the shared abundant proteins, we found a GH1 β-glucosidase and a family of leucine-rich repeat (LRR) proteins. Olive is extremely rich in glycoside compounds that are hydrolyzed by β-glucosidases into defensive toxic products in response to phytophagous insect attacks. Assuming that Psyttalia host larvae sequester ingested glycosides, the injected venom GH1 β-glucosidase could induce the release of toxic compounds, thus participating in parasitism success by weakening the host. Venom LRR proteins are similar to truncated Toll-like receptors and may possibly scavenge the host immunity. The abundance of one of these LRR proteins in the venom of only one of the two P. lounsburyi strains evidences intraspecific variation in venom composition. Altogether, venom intra- and inter-specific variation in Psyttalia spp. were much lower than previously reported in the Leptopilina genus (Figitidae), suggesting it might depend upon the parasitoid taxa.
Collapse
Affiliation(s)
| | | | | | - Maya Belghazi
- CNRS, Aix-Marseille Université, UMR 7286, CRN2M, Centre d’Analyses Protéomiques de Marseille (CAPM), Faculté de Médecine, Marseille, France
| | - Marc Ravallec
- INRA, Univ. Montpellier, UMR 1333 « Microorganism & Insect Diversity, Genomes & Interactions » (DGIMI), CC101, Montpellier Cedex 34095, France
| | - Julie Poulain
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Génoscope, 91000, Evry, France
| | - Carole Dossat
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Génoscope, 91000, Evry, France
| | | | | |
Collapse
|
15
|
Ciregia F, Giusti L, Molinaro A, Niccolai F, Mazzoni MR, Rago T, Tonacchera M, Vitti P, Giannaccini G, Lucacchini A. Proteomic analysis of fine-needle aspiration in differential diagnosis of thyroid nodules. Transl Res 2016; 176:81-94. [PMID: 27172385 DOI: 10.1016/j.trsl.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
Abstract
Thyroid nodules are common in the general population and vary widely in their propensity to harbor thyroid malignancies. The category of follicular lesion of undetermined significance, for instance, carries only a 15% risk of malignancy. The overarching aim of this work was the proteomic study of thyroid cancer because more effort needs to be placed on differentiating malignant thyroid nodules to avoid unnecessary thyroidectomy. We used 2-dimensional electrophoresis coupled to nano-liquid chromatography electrospray ionization tandem mass spectrometry, to examine fine-needle aspiration (FNA), which was easily attainable from the wash of the syringe used for classical FNA biopsy. Overall, we found 25 different proteins able to discriminate benign from malignant samples. The different expression of moesin; annexin A1 (ANXA1); cornulin (CRNN); lactate dehydrogenase; enolase; protein DJ-1; and superoxide dismutase was confirmed in FNA by enzyme-linked immunosorbent assay or Western blot. Receiver operating characteristic curves were calculated to investigate the discriminative power of our marker. The best performance in diagnosis was obtained by combining ANXA1, enolase, protein DJ-1, superoxide dismutase, and CRNN. In addition, the most highly ranked proteins, from the perspective of follicular lesion of undetermined significance, were ANXA1 and CRNN. The research of these candidate biomarkers has then been widened to other biological fluids, such as serum and whole saliva. In conclusion, we believe that when a decision by a thyroid nodule biopsy cannot be distinctly made, the combination of our biomarkers may be one of the criteria to be taken into account for the final decision, together with the identification of ANXA1 in serum and saliva.
Collapse
Affiliation(s)
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Angelo Molinaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Niccolai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Teresa Rago
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
16
|
Glupov VV, Kryukova NA. Physiological and biochemical aspects of interactions between insect parasitoids and their hosts. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s0013873816050018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Laurino S, Grossi G, Pucci P, Flagiello A, Bufo SA, Bianco G, Salvia R, Vinson SB, Vogel H, Falabella P. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:49-61. [PMID: 27388778 DOI: 10.1016/j.ibmb.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors.
Collapse
Affiliation(s)
- Simona Laurino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Gerarda Grossi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Pietro Pucci
- Dipartimento di Scienze Chimiche e Ceinge Biotecnologie Avanzate, Università di Napoli Federico II, Via Cintia 6, 80126, Napoli, Italy
| | - Angela Flagiello
- Ceinge Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80131, Napoli, Italy
| | - Sabino Aurelio Bufo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - S Bradleigh Vinson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Patrizia Falabella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
18
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
19
|
Identification and characterization of an immunogenic antigen, enolase 2, among excretory/secretory antigens (ESA) of Toxoplasma gondii. Protein Expr Purif 2016; 127:88-97. [PMID: 27450536 DOI: 10.1016/j.pep.2016.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
An immunogenic protein, enolase 2, was identified among the secreted excretory/secretory antigens (ESAs) from Toxoplasma gondii strain RH using immunoproteomics based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Enolase 2 was cloned, sequenced, and heterologously expressed. BLAST analysis revealed 75-96% similarity with enolases from other parasites. Immunoblotting demonstrated good immunoreactivity of recombinant T. gondii enolase (Tg-enolase 2) to T. gondii-infected animal serum. Purified Tg-enolase 2 was found to catalyze dehydration of 2-phospho-d-glycerate to phosphoenolpyruvate. In vitro studies revealed maximal activity at pH 7.5 and 37 °C, and activity was inhibited by K(+), Ni(2+), Al(3+), Na(+), Cu(2+) and Cr(3+). A monoclonal antibody against Tg-enolase 2 was prepared, 1D6, with the isotype IgG2a/κ. Western blotting revealed that 1D6 reacts with Tg-enolase 2 and native enolase 2, present among T. gondii ESAs. The indirect immunofluorescence assays showed that enolase 2 could be specifically detected on the growing T. gondii tachyzoites. Immunoelectron microscopy revealed the surface and intracellular locations of enolase 2 on T. gondii cells. In conclusion, our results clearly show that the enzymatic activity of T. gondii enolase 2 is ion dependent and that it could be influenced by environmental factors. We also provide evidence that enolase 2 is an important immunogenic protein of ESAs from T. gondii and that it is a surface-exposed protein with strong antigenicity and immunogenicity. Our findings indicate that enolase 2 could play important roles in metabolism, immunogenicity and pathogenicity and that it may serve as a novel drug target and candidate vaccine against T. gondii infection.
Collapse
|
20
|
Gao F, Gu QJ, Pan J, Wang ZH, Yin CL, Li F, Song QS, Strand MR, Chen XX, Shi M. Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism. Sci Rep 2016; 6:26967. [PMID: 27254821 PMCID: PMC4890588 DOI: 10.1038/srep26967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 01/25/2023] Open
Abstract
Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qi-juan Gu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Pan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ze-hua Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chuan-lin Yin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and Key Lab of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qi-sheng Song
- Molecular Insect Physiology, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
21
|
Grossi G, Grimaldi A, Cardone RA, Monné M, Reshkin SJ, Girardello R, Greco MR, Coviello E, Laurino S, Falabella P. Extracellular matrix degradation via enolase/plasminogen interaction: Evidence for a mechanism conserved in Metazoa. Biol Cell 2016; 108:161-78. [PMID: 26847147 DOI: 10.1111/boc.201500095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND INFORMATION While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion. RESULTS We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism. CONCLUSIONS These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species. SIGNIFICANCE To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.
Collapse
Affiliation(s)
- Gerarda Grossi
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Rosa A Cardone
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Magnus Monné
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Maria R Greco
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Elena Coviello
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Simona Laurino
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | | |
Collapse
|
22
|
Mancini D, Garonna AP, Pedata PA. To divide or not to divide: An alternative behavior for teratocytes in Encarsia pergandiella (Hymenoptera: Aphelinidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:57-63. [PMID: 26529581 DOI: 10.1016/j.asd.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Encarsia pergandiella (Hymenoptera: Aphelinidae) is an endoparasitoid with an unusual embryonic development compared to most of congeneric species and all other members of the superfamily Chalcidoidea. The developmental background of this wasp is based on an alecithal hydropic egg, with the embryo developing inside an extra-embryonic membrane which dissociates at hatching into special larva-assisting cells, the teratocytes. In E. pergandiella many teratocytes at hatching were multinucleated syncytial cells with no evidence of a cellular membrane separating the nuclei. These teratocytes during larval development produced smaller uninucleated teratocytes, through successive divisions obtained by progressive ingrowth of the plasmatic membrane, accompanied by appearance of degeneration symptoms, such as protrusions and blebs. As a consequence of this divisional process teratocytes showed a size reduction and an increase in number of about four times during the second day of larval development. Only on the third day of larval life teratocytes started to decrease in number, until total disappearance at larval maturation. This behaviour is in striking contrast with all other studied systems in which teratocytes do not divide and progressively decrease in number as the parasitoid larva develops.
Collapse
Affiliation(s)
- Donato Mancini
- Dipartimento di Agraria, Sezione di Biologia e Protezione dei Sistemi Agrari e Forestali, Università degli Studi di Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy
| | - Antonio P Garonna
- Dipartimento di Agraria, Sezione di Biologia e Protezione dei Sistemi Agrari e Forestali, Università degli Studi di Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy
| | - Paolo A Pedata
- Istituto per la Protezione Sostenibile delle Piante CNR, Via Università 133, 80055 Portici (NA), Italy.
| |
Collapse
|
23
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase. Comput Biol Chem 2015; 58:1-8. [DOI: 10.1016/j.compbiolchem.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 01/07/2023]
|
25
|
Wang WX, Li KL, Chen Y, Lai FX, Fu Q. Identification and Function Analysis of enolase Gene NlEno1 from Nilaparvata lugens (Stål) (Hemiptera:Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev046. [PMID: 26056319 PMCID: PMC4535590 DOI: 10.1093/jisesa/iev046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
The enolase [EC 4.2.1.11] is an essential enzyme in the glycolytic pathway catalyzing the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP). In this study, a full-length cDNA encoding α-enolase was cloned from rice brown planthopper (Nilaparvata lugens) and is provisionally designated as NlEno1. The cDNA sequence of NlEno1 was 1,851 bp with an open reading frame (ORF) of 1,305 bp and encoding 434 amino acids. The deduced protein shares high identity of 80-87% with ENO1-like protein from Hemiptera, Diptera, and Lepidoptera speices. The NlEno1 showed the highest mRNA expression level in hemolymph, followed by fat body, salivary gland, ovaries and egg, and showed trace mRNA levels in testis. The mRNA of NlEno1 showed up-regulated level in virulent N. lugens population Mudgo, IR56 and IR42 when compared with TN1 population. Injection of double-stranded RNA (dsRNA) of NlEno1 into the adults significantly down-regulated the NlEno1 mRNA level along with decreased eggs and offspring. Moreover, injection of NlEno1-dsRNA decreased mRNA level of Vitellogenin (Vg) gene. These results showed that the NlEno1, as a key glycolytic enzyme, may play roles in regulation of fecundity and adaptation of N. lugens to resistant rice varieties.
Collapse
Affiliation(s)
- Wei-Xia Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Kai-Long Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Yang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Feng-Xiang Lai
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Qiang Fu
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
26
|
Strand MR. Teratocytes and their functions in parasitoids. CURRENT OPINION IN INSECT SCIENCE 2014; 6:68-73. [PMID: 32846683 DOI: 10.1016/j.cois.2014.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/10/2014] [Indexed: 06/11/2023]
Abstract
Some endoparasitoid wasps (Hymenoptera) produce teratocytes, which are a type of cell that is released into host insects when wasp eggs hatch. In this short review I first summarize the different taxa of wasps that produce teratocytes, the embryonic origin of these cells, and key features of teratocyte growth. Then I discuss the known or hypothesized functions of teratocytes, and the range of teratocyte gene products that have been identified including recent transcriptome and proteome data.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
27
|
Pennacchio F, Caccia S, Digilio MC. Host regulation and nutritional exploitation by parasitic wasps. CURRENT OPINION IN INSECT SCIENCE 2014; 6:74-79. [PMID: 32846685 DOI: 10.1016/j.cois.2014.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 05/26/2023]
Abstract
The physiological alterations observed in naturally parasitized hosts are characterized by a number of reproductive and developmental changes. Some of these changes are also associated with alterations in host physiology that benefit the nutrition and development of wasp offspring. Here we review the breadth of host-parasitoid nutritional interactions, and discuss current understanding of underlying mechanisms. We also discuss priorities for future studies that could enhance understanding of basic questions about the parasitoid lifestyle and provide insights of value for insect control.
Collapse
Affiliation(s)
- Francesco Pennacchio
- Dipartimento di Agraria, BiPAF - Laboratorio di Entomologia "E. Tremblay", Università degli Studi di Napoli "Federico II", Italy.
| | - Silvia Caccia
- Dipartimento di Agraria, BiPAF - Laboratorio di Entomologia "E. Tremblay", Università degli Studi di Napoli "Federico II", Italy
| | - Maria Cristina Digilio
- Dipartimento di Agraria, BiPAF - Laboratorio di Entomologia "E. Tremblay", Università degli Studi di Napoli "Federico II", Italy
| |
Collapse
|
28
|
Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 2014; 3:875-907. [PMID: 25436509 PMCID: PMC4282890 DOI: 10.3390/pathogens3040875] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
The potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively. CLso causes Zebra chip disease of potato and vein-greening in solanaceous species, whereas, CLas causes citrus greening disease. The reliance on insecticides for vector management to reduce pathogen transmission has increased interest in alternative approaches, including RNA interference to abate expression of genes essential for psyllid-mediated Ca. Liberibacter transmission. To identify genes with significantly altered expression at different life stages and conditions of CLso/CLas infection, cDNA libraries were constructed for CLso-infected and -uninfected PoP adults and nymphal instars. Illumina sequencing produced 199,081,451 reads that were assembled into 82,224 unique transcripts. PoP and the analogous transcripts from ACP adult and nymphs reported elsewhere were annotated, organized into functional gene groups using the Gene Ontology classification system, and analyzed for differential in silico expression. Expression profiles revealed vector life stage differences and differential gene expression associated with Liberibacter infection of the psyllid host, including invasion, immune system modulation, nutrition, and development.
Collapse
Affiliation(s)
- Tonja W Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | - Joseph M Cicero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ryan Kim
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Robin Kramer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Greg A May
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | | | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Pascale M, Laurino S, Vogel H, Grimaldi A, Monné M, Riviello L, Tettamanti G, Falabella P. The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:129-39. [PMID: 25043263 PMCID: PMC7124382 DOI: 10.1016/j.dci.2014.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identical to P102 form a subfamily with similar function.
Collapse
Affiliation(s)
- Mariarosa Pascale
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Laurino
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Annalisa Grimaldi
- Università dell'Insubria, Dipartimento di Biotecnologie e Scienze della Vita, via Dunant 3, 21100 Varese, Italy
| | - Magnus Monné
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lea Riviello
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gianluca Tettamanti
- Università dell'Insubria, Dipartimento di Biotecnologie e Scienze della Vita, via Dunant 3, 21100 Varese, Italy
| | - Patrizia Falabella
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
30
|
Colinet D, Anselme C, Deleury E, Mancini D, Poulain J, Azéma-Dossat C, Belghazi M, Tares S, Pennacchio F, Poirié M, Gatti JL. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics 2014; 15:342. [PMID: 24884493 PMCID: PMC4035087 DOI: 10.1186/1471-2164-15-342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
Background Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum. Results A combined large-scale transcriptomic and proteomic approach allowed us to identify 16 putative venom proteins among which three γ-glutamyl transpeptidases (γ-GTs) were by far the most abundant. Two of the γ-GTs most likely correspond to alleles of the same gene, with one of these alleles previously described as involved in host castration. The third γ-GT was only distantly related to the others and may not be functional owing to the presence of mutations in the active site. Among the other abundant proteins in the venom, several were unique to A. ervi such as the molecular chaperone endoplasmin possibly involved in protecting proteins during their secretion and transport in the host. Abundant transcripts encoding three secreted cystein-rich toxin-like peptides whose function remains to be explored were also identified. Conclusions Our data further support the role of γ-GTs as key players in A. ervi success on aphid hosts. However, they also evidence that this wasp venom is a complex fluid that contains diverse, more or less specific, protein components. Their characterization will undoubtedly help deciphering parasitoid-aphid and parasitoid-aphid-symbiont interactions. Finally, this study also shed light on the quick evolution of venom components through processes such as duplication and convergent recruitment of virulence factors between unrelated organisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-342) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jean-Luc Gatti
- INRA, ISA, UMR 1355, Evolution et Spécificité des Interactions Multitrophiques (ESIM), Sophia Antipolis, 06903, France.
| |
Collapse
|
31
|
Li Q, Wang D, Lv S, Zhang Y. Comparative proteomics and expression analysis of five genes in Epicauta chinensis larvae from the first to fifth instar. PLoS One 2014; 9:e89607. [PMID: 24586908 PMCID: PMC3931803 DOI: 10.1371/journal.pone.0089607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Blister beetle is an important insect model for both medicinal and pure research. Previous research has mainly focused on its biology and biochemistry, but very little data is yet available in the molecular biology. This study uses differential proteomics technology to analyze the soluble proteins extracted from each of the 5 instars larvae of Epicauta chinensis. 42 of the differentially-expressed proteins were identified successfully by MALDI-TOF/TOF-MS. Some of these proteins' function and their expression profiles are analyzed. Our analysis revealed dynamics regulation of the following proteins: Axin-like protein pry-1 (APR-1), dihydrolipoyl dehydrogenase (DLD), vitellogenin (Vg) and lysozyme C (Lmz-S). APR-1 negatively regulates the Wnt signaling pathway. Its overexpression could result in embryo, leg, eye and ovary ectopica or malformation. DLD catalyzes the pyruvate into acetyl-CoA, the latter is the starting material of juvenile hormone (JH) and ipsdienol biosynthesis through the MVA pathway in insects. While Vg synthesis can be regulated by JH and stimulated by food factors. So DLD may affect the synthesis of JH, ipsdienol and Vg indirectly. The activity of lysozyme is an indicator of the immunity. Nutrition/food should be taken into account for its potential role during the development of larva in the future. Among the five genes and their corresponding proteins' expression, only hsc70 gene showed a good correspondence with the protein level. This reflects the fluctuating relationship between mRNA and protein levels.
Collapse
Affiliation(s)
- Qiurong Li
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Dun Wang
- Institute of Entomology, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Shumin Lv
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A & F University, Yangling, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
32
|
Díaz-Martín V, Manzano-Román R, Oleaga A, Encinas-Grandes A, Pérez-Sánchez R. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol 2012; 191:301-14. [PMID: 23089148 DOI: 10.1016/j.vetpar.2012.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/07/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023]
Abstract
Significant amounts of enolase have recently been found in the saliva of the argasid tick Ornithodoros moubata, raising the question as to what the function of enolase in the tick-host interface is. Enolase is a multifunctional glycolytic enzyme known to act as a plasminogen receptor on cellular surfaces, promoting fibrinolysis and extracellular matrix degradation. Fibrinolysis could be important for ticks to dissolve clots that might be formed during feeding as well as to prevent clotting of the ingested blood meal in the tick midgut. Additionally, enolase-mediated extracellular matrix degradation could contribute to the tick feeding lesion. Moreover, previous observations suggested an additional antihaemostatic role for O. moubata enolase as a P-selectin antagonist ligand. Accordingly, the aim of the present study was to investigate the potential role of the O. moubata salivary enolase as a plasminogen receptor and P-selectin ligand, and to evaluate its potential as an antigen target for anti-O. moubata vaccines. The study included the cloning, sequencing and recombinant production of the O. moubata enolase, plasminogen binding and activation assays, P-selectin binding assays, animal immunization trials, and RNAi knockdown of the enolase gene. Here we confirmed that enolase is secreted to the saliva of the tick and provide convincing evidence for a role of this salivary enolase as a plasminogen receptor, most likely stimulating host fibrinolysis and maintaining blood fluidity during tick feeding. The RNAi experiments and immunization trials indicated that enolase could be also involved in the regulation of tick reproduction, suggesting new potential control strategies. Finally, the P-selectin binding experiments demonstrated that this enolase is not a P-selectin ligand.
Collapse
Affiliation(s)
- Verónica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca, Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | | | | | | | | |
Collapse
|
33
|
Liu H, Zeng H, Yao Q, Yuan J, Zhang Y, Qiu D, Yang X, Yang H, Liu Z. Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression. Mol Biochem Parasitol 2012; 185:89-98. [PMID: 22750626 DOI: 10.1016/j.molbiopara.2012.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Entomopathogenic nematodes are widely used as biological control agents that can suppress or evade the host immune defense upon entry into insects. The surface coat of Steinernema glaseri has been shown to play important roles in defeating the host immune system. In this work, a protein fraction with antiphagocytic activity was separated by electro-elution and further analyzed by two-dimensional electrophoresis (2-DE). LC-MS/MS analysis of one protein spot from a 2-DE gel gave five peptides that were highly similar to enolases of many organisms. A 1311 bp cDNA was cloned that encodes a 47 kDa protein with high sequence identity to enolases from different species of nematodes. The deduced protein, Sg-ENOL, was expressed in Escherichia coli, and its glycolytic activity was demonstrated by the conversion of 2-phospho-d-glycerate to phosphoenolpyruvate. Recombinant Sg-ENOL significantly reduced the LT(50)s of Xenorhabdus poinarii and Metarhizium anisopliae when co-injected into Galleria mellonella and Locusta migratoria manilensis Meyen, respectively. Using immuno-gold transmission electron microscopy, native Sg-ENOL was confirmed to be localized to both the nematode cuticle and the surface coat. In vitro, secretion of Sg-ENOL was inducible rather than constitutive. In vivo, Sg-ENOL was detected in the host hemolymph after infection of G. mellonella with S. glaseri, indicating that Sg-ENOL was secreted into the insect hemocoel and was involved in infection. This is the first report of the cloning and characterization of a surface coat protein in an entomopathogenic nematode. Our findings provide clear evidence for an important role for a cell surface enolase in S. glaseri infection and host immune suppression.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Integrated Pest Management in Crops, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Caccia S, Grimaldi A, Casartelli M, Falabella P, de Eguileor M, Pennacchio F, Giordana B. Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:621-627. [PMID: 22226822 DOI: 10.1016/j.jinsphys.2011.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
Aphidius ervi (Hymenoptera, Braconidae) is an endophagous parasitoid of various aphid species, including Acyrthosiphon pisum (Homoptera, Aphididae), the model host used in the present study. Parasitized hosts show a marked increase of their nutritional suitability for the developing parasitoid larvae. This alteration of the biochemical and metabolic profile is due to a castration process mediated by the combined action of the venom, injected at the oviposition, and of the teratocytes, cells deriving from the dissociation of the embryonic membrane. Teratocytes produce and release in the host haemocoel two parasitism-specific proteins, which are of crucial importance for the development of their sister larvae. One of the proteins is a fatty acid binding protein (Ae-FABP), which shows a high affinity for C14-C18 saturated fatty acids (FAs) and for oleic and arachidonic acids. To better define the possible nutritional role of this protein, we have studied its immunolocalization profile in vivo and the impact on FA uptake by the epidermal and midgut epithelia of A. ervi larvae. During the exponential growth of A. ervi larvae, Ae-FABP is distributed around discrete lipid particles, which are abundantly present in the haemocoel of parasitized host aphids and in the midgut lumen of parasitoid larvae. Moreover, a strong immunodetection signal is evident on the surface of the two larval epithelia involved in nutrient absorption: the parasitoid midgut epithelium and the external epidermal layer. These two epithelia can effectively absorb radiolabelled myristic acid, but the FA transport rates are not affected by the presence in the medium of Ae-FABP. The protein appears to act essentially as a vector in the host haemolymph, transferring FAs from the digestion sites of host lipids to the growing parasitoid larvae. These data indicate that the proteins produced by A. ervi teratocytes may play complementary roles in the nutritional exploitation of the host.
Collapse
Affiliation(s)
- Silvia Caccia
- Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Falabella P, Riviello L, Pascale M, Lelio ID, Tettamanti G, Grimaldi A, Iannone C, Monti M, Pucci P, Tamburro AM, Deeguileor M, Gigliotti S, Pennacchio F. Functional amyloids in insect immune response. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:203-211. [PMID: 22207151 DOI: 10.1016/j.ibmb.2011.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The innate immune system of insects consists of humoural and cellular responses that provide protection against invading pathogens and parasites. Defence reactions against these latter include encapsulation by immune cells and targeted melanin deposition, which is usually restricted to the surface of the foreign invader, to prevent systemic damage. Here we show that a protein produced by haemocytes of Heliothis virescens (Lepidoptera, Noctuidae) larvae, belonging to XendoU family, generates amyloid fibrils, which accumulate in large cisternae of the rough endoplasmic reticulum and are released upon immune challenge, to form a layer coating non-self objects entering the haemocoel. This amyloid layer acts as a molecular scaffold that promotes localised melanin synthesis and the adhesion of immune cells around the non-self intruder during encapsulation response. Our results demonstrate a new functional role for these protein aggregates that are commonly associated with severe human diseases. We predict that insects will offer new powerful experimental systems for studying inducible amyloidogenesis, which will likely provide fresh perspectives for its prevention.
Collapse
Affiliation(s)
- Patrizia Falabella
- Difesa e Biotecnologie Agro-Forestali, Dipartimento di Biologia, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol 2012; 10:11. [PMID: 22364271 PMCID: PMC3312838 DOI: 10.1186/1741-7007-10-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont). Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism), then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. RESULTS We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. CONCLUSIONS Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont-based defense. More generally, our results indicate that natural enemies are not passive victims of defensive symbionts, and that an evolutionary arms race between A. pisum and the parasitoid A. ervi may be mediated by a bacterial symbiosis.
Collapse
|
37
|
Burke GR, Strand MR. Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors. INSECTS 2012; 3:91-119. [PMID: 26467950 PMCID: PMC4553618 DOI: 10.3390/insects3010091] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 12/21/2022]
Abstract
Symbiosis is a common phenomenon in which associated organisms can cooperate in ways that increase their ability to survive, reproduce, or utilize hostile environments. Here, we discuss polydnavirus symbionts of parasitic wasps. These viruses are novel in two ways: (1) they have become non-autonomous domesticated entities that cannot replicate outside of wasps; and (2) they function as a delivery vector of genes that ensure successful parasitism of host insects that wasps parasitize. In this review we discuss how these novelties may have arisen, which genes are potentially involved, and what the consequences have been for genome evolution.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, The University of Georgia, 120 Cedar St., Athens, GA 30601, USA.
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar St., Athens, GA 30601, USA.
| |
Collapse
|
38
|
Bisharyan Y, Clark TG. Calcium-dependent mitochondrial extrusion in ciliated protozoa. Mitochondrion 2011; 11:909-18. [PMID: 21856451 PMCID: PMC3206207 DOI: 10.1016/j.mito.2011.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/22/2011] [Accepted: 08/04/2011] [Indexed: 01/21/2023]
Abstract
Here we demonstrate that ciliated protozoa can jettison mitochondria as intact organelles, releasing their contents to the extracellular space either in a soluble form, or in association with membrane vesicles at the cell periphery. The response is triggered by lateral clustering of GPI-anchored surface antigens, or by heat shock. In the first instance, extrusion is accompanied by elevated levels of intracellular calcium and is inhibited by Verapamil and BAPTA-AM arguing strongly for the involvement of calcium in triggering the response. Cells survive mitochondrial discharge raising the interesting possibility that extrusion is an early evolutionary adaptation to cell stress.
Collapse
Affiliation(s)
- Yelena Bisharyan
- Department of Microbiology and Immunology, Veterinary Medical Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
39
|
Avilán L, Gualdrón-López M, Quiñones W, González-González L, Hannaert V, Michels PAM, Concepción JL. Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res 2011; 2011:932549. [PMID: 21603223 PMCID: PMC3092696 DOI: 10.4061/2011/932549] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/15/2011] [Indexed: 12/22/2022] Open
Abstract
Glycolysis and glyconeogenesis play crucial roles in the ATP supply and synthesis of glycoconjugates, important for the viability and virulence, respectively, of the human-pathogenic stages of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. These pathways are, therefore, candidate targets for antiparasite drugs. The glycolytic/gluconeogenic enzyme enolase is generally highly conserved, with similar overall fold and identical catalytic residues in all organisms. Nonetheless, potentially important differences exist between the trypanosomatid and host enzymes, with three unique, reactive residues close to the active site of the former that might be exploited for the development of new drugs. In addition, enolase is found both in the secretome and in association with the surface of Leishmania spp. where it probably functions as plasminogen receptor, playing a role in the parasite's invasiveness and virulence, a function possibly also present in the other trypanosomatids. This location and possible function of enolase offer additional perspectives for both drug discovery and vaccination.
Collapse
Affiliation(s)
- Luisana Avilán
- Laboratorio de Fisiología, Facultad de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang X, Chen W, Hu F, Deng C, Zhou C, Lv X, Fan Y, Men J, Huang Y, Sun J, Hu D, Chen J, Yang Y, Liang C, Zheng H, Hu X, Xu J, Wu Z, Yu X. Clonorchis sinensis enolase: identification and biochemical characterization of a glycolytic enzyme from excretory/secretory products. Mol Biochem Parasitol 2011; 177:135-42. [PMID: 21382423 DOI: 10.1016/j.molbiopara.2011.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 11/25/2022]
Abstract
Enolase plays a key role in energy metabolism and development of most organisms. We isolated a gene encoding enolase from Clonorchis sinensis (C. sinensis) adult cDNA library and expressed the recombinant protein in Escherichia coli. C. sinensis enolase (Csenolase) was identified as both an excretory/secretory product and a tegumental component of C. sinensis by western blot analysis. The transcriptional level of Csenolase was examined at adult worm, metacercaria, cercaria and egg of C. sinensis, and results showed that Csenolase is transcribed at the four life stages of C. sinensis while showing a significant higher expression level at the stage of adult worm. Immunohistochemical localization indicated that Csenolase was specifically deposited on the tegument of adult worm and cyst wall of metacercaria. Ligand blot assay revealed a specific characteristic of dose-dependent plasminogen-binding activity of Csenolase and kinetic parameters were explored using 2-phospho-D-glycerate (2-PGA) as the primary substrate by monitoring the conversion of nicotinamide-adenine dinucleotide (NADH) into nicotinamide adenine dinucleotide (NAD). In addition, Csenolase exhibited active enzyme activity in catalytic reactions while the anti-Csenolase serum inhibited the enzyme activity. In vitro incubation experiments revealed that Csenolase might play key roles in the growth of the parasites. In conclusion, Csenolase is an important glycolytic enzyme required for the development of C. sinensis, and may be a potential vaccine candidate and drug target against C. sinensis infection.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
DION E, ZÉLÉ F, SIMON JC, OUTREMAN Y. Rapid evolution of parasitoids when faced with the symbiont-mediated resistance of their hosts. J Evol Biol 2011; 24:741-50. [DOI: 10.1111/j.1420-9101.2010.02207.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Liu Y, Li Y, Wang H, Xia R, Li X, Wan H, Qin L, Jiang D, Lu C, Xiang Z. cDNA cloning and expression pattern of two enolase genes from the Chinese oak silkworm, Antheraea pernyi. Acta Biochim Biophys Sin (Shanghai) 2010; 42:816-26. [PMID: 20923858 DOI: 10.1093/abbs/gmq084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, two enolase genes were isolated and characterized from the Chinese oak silkworm, Antheraea perny, which were designated as enolase I and II, respectively. The enolase I cDNA sequence was 1712 bp with an open reading frame (ORF) of 1302 bp encoding 433 amino acids. The enolase II cDNA sequence was 1549 bp with an ORF of 1296 bp encoding 431 amino acids. The amino acid sequences of the two genes share several conserved features/sites of enolase. Antheraea pernyi enolase I shows 93%-97% sequence identity to enolases of lepidopterans available to date, 75%-82% identity to enolases of other invertebrates, 60%-72% identity to enolases of other organisms including vertebrates, plants, and fungi. Antheraea pernyi enolase II shows 84% identity to Bombyx mori enolase II, but 60% identity to A. pernyi enolase I. In the phylogenetic tree, enolase II sequences from A. pernyi and B. mori were clearly separated from the majority of enolase sequences of higher organisms including A. pernyi and B. mori enolase I sequences. By sequence comparisons and phylogenetic analysis, we suggest that enolase II from A. pernyi and B. mori may be a new member of the enolase superfamily. Antheraea pernyi enolase I mRNA was found in all tested tissues whereas enolase II mRNA was expressed specifically in the spermaries and ovaries, suggesting that the product of enolase II gene may be related to reproduction. The transcript abundance of A. pernyi enolase I gene was significantly down-regulated after cold shock and significantly up-regulated after heat shock, suggesting that A. pernyi enolase I gene may be inducible by temperature stress.
Collapse
Affiliation(s)
- Yanqun Liu
- Department of Sericulture, Shenyang Agricultural University, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|