1
|
Ge H, Wei J, Guan D, Wang Z, Li H, Zhang H, Qian K, Wang J. The Elongator complex regulates larval-pupal metamorphosis by modulating ecdysteroid biosynthesis in the red flour beetle, Tribolium castaneum. Int J Biol Macromol 2025; 303:140676. [PMID: 39914527 DOI: 10.1016/j.ijbiomac.2025.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The highly conserved Elongator complex plays important roles in histone acetylation and tRNA modification. Currently, Elongator complex has been shown to be essential for a range of biological processes, but its function in insect hormone signaling is poorly understood. In this study, the cDNA encoding TcElp3, the catalytic subunit of the Elongator complex in Tribolium castaneum, was cloned and functionally characterized. Analysis of temporal and spatial expression patterns revealed that TcElp3 is expressed at the highest level in the 20-day-old larvae and Malpighian tube of 7-day-old females, respectively. RNA interference of TcElp3 delayed the pupation of T. castaneum larvae by two days and led to significantly decreased pupation rate. Notably, knockdown of TcElp3 caused downregulation of ecdysteroid biosynthesis and ecdysone response genes as well as a decrease in ecdysone content in T. castaneum larvae. Further functional characterization of TcElp1, TcElp2, TcElp4, TcElp5 and TcElp6 revealed that knockdown of any of these five subunits of Elongator complex led to similar phenotypes observed in dsTcElp3-injected beetles. These results suggest a possible role of Elongator complex in the epigenetic regulation of T. castaneum ecdysteroid signaling, and provide further evidence in insects that the complete integrity of the Elongator complex is important for its function.
Collapse
Affiliation(s)
- Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhichao Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Wu J, Liu W, Hou S, Wang Y, Fang H, Luo S, Yang L, Wen C. Identification of Nrf2/Keap1 pathway and its transcriptional regulation of antioxidant genes after exposure to microcystins in freshwater mussel Cristaria plicata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104629. [PMID: 36587710 DOI: 10.1016/j.dci.2022.104629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MC) are one of the most abundant and widely distributed cyanotoxins in aquatic systems. MC inhibits the functions of protein phosphatase 1 and 2A (PP1/2A), which can seriously affect ecosystem integrity. The NF-E2-related nuclear factor 2 (Nrf2)/Kelch-like epichlorohydrin-related protein-1 (Keap1) signaling pathway protects against oxidative damage by activating phase II detoxification/antioxidant enzymes. Our previous study revealed that MC upregulates the expression and enhances the activities of the antioxidant enzymes by stimulating the CpNrf2 signaling pathway. In the current study, to further clarify the regulatory role of Keap1 in response to MC-induced oxidative stress in shellfish, we cloned the full-length cDNA of Keap1a and Keap1b from Cristaria plicata (designated CpKeap1a and CpKeap1b), which are 2952 and 3710 bp peptides, respectively. The amino acid sequence of CpKeap1a and CpKeap1b contained Tram-track and Bric-a-brac (BTB), Intervening region (IVR), and Double glycine repeat (DGR) domain. Additionally, CpKeap1a contained two cysteine residues analogous to Cys-273 and -288 in zebrafish, but CpKeap1b did not. Moreover, CpKeap1a and -1b formed a homodimer and heterodimer, respectively, and also formed a heterodimer with CpNrf2. In the hepatopancreas, the expression levels of CpKeap1a and -1b were the highest, but MC treatment down-regulated the expression of these proteins. Moreover, the transcription of antioxidant enzymes with antioxidant response element (ARE-driven enzymes), including CpMnSOD, CpCu/ZnSOD, CpTRX, CpPrx, CpSe-GPx, and Cpsigma-GST was upregulated by CpNrf2 in the hepatopancreas. Compared with the MC-induced group, CpKeap1a-siRNA1117 injection significantly increased the transcription of mRNAs for ARE-driven enzymes and Nrf2. CpKeap1a-siRNA1117 also enhanced the activities of antioxidation enzymes. These findings demonstrated that Keap1a negatively regulated the expression of Nrf2 protein and MC-induced oxidative stress response in C. plicata. Therefore, we speculated that CpKeap1a promoted CpNrf2 by recognizing and binding MC. These events then protected molluscs from MC-induced oxidative damage.
Collapse
Affiliation(s)
- Jielian Wu
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Wenxiu Liu
- Nanchang University, Nanchang, 330031, China
| | - Shumin Hou
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Yanrui Wang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Haihong Fang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Shanshan Luo
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Lang Yang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Chungen Wen
- Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Shen GM, Ou SY, Li CZ, Feng KY, Niu JZ, Adang MJ, He L. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. INSECT SCIENCE 2022; 29:801-816. [PMID: 34586709 DOI: 10.1111/1744-7917.12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.
Collapse
Affiliation(s)
- Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kai-Yang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Shen CH, Xu QY, Mu LL, Fu KY, Guo WC, Li GQ. Involvement of Leptinotarsa hormone receptor 38 in the larval-pupal transition. Gene 2020; 751:144779. [DOI: 10.1016/j.gene.2020.144779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
5
|
Wu JJ, Chen ZC, Wang YW, Fu KY, Guo WC, Li GQ. Silencing chitin deacetylase 2 impairs larval-pupal and pupal-adult molts in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2019; 28:52-64. [PMID: 30058750 DOI: 10.1111/imb.12524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insect chitin deacetylases (CDAs) are carbohydrate esterases that catalyze N-deacetylation of chitin to generate chitosan, a process essential for chitin organization and compactness during the formation of extracellular chitinous structure. Here we identified two CDA2 splice variants (LdCDA2a and LdCDA2b) in Leptinotarsa decemlineata. Both splices were abundantly expressed in larval foregut, rectum, and epidermis; their levels peaked immediately before ecdysis within each instar. In vivo results revealed that the two isoforms transcriptionally responded, positively and negatively respectively, to 20-hydroxyecdysone and juvenile hormone signaling pathways. RNA interference (RNAi)-aided knockdown of the two LdCDA2 variants (hereafter LdCDA2) or LdCDA2b, rather than LdCDA2a, resulted in three negative effects. First, foliage consumption was significantly reduced, larval developing period was lengthened, and larval growth was retarded. Second, chitin contents were reduced, whereas glucose, trehalose, and glycogen contents were increased in the LdCDA2 and LdCDA2b RNAi larvae. Third, approximately 20% of LdCDA2 and LdCDA2b RNAi larvae were trapped within the exuviae and finally died. About 60% of the abnormal pupae died as pharate adults. Around 20% of the RNAi pupae emerged as deformed adults, with small size and wrinkled wings. These adults eventually died within 1 week after molting. Our results reveal that knockdown of CDA2 affects chitin accumulation. Consequently, LdCDA2 may be a potential target for control of L. decemlineata larvae.
Collapse
Affiliation(s)
- J-J Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z-C Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y-W Wang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Rodriguez TP, Mast JD, Hartl T, Lee T, Sand P, Perlstein EO. Defects in the Neuroendocrine Axis Contribute to Global Development Delay in a Drosophila Model of NGLY1 Deficiency. G3 (BETHESDA, MD.) 2018; 8:2193-2204. [PMID: 29735526 PMCID: PMC6027897 DOI: 10.1534/g3.118.300578] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023]
Abstract
N-glycanase 1 (NGLY1) Deficiency is a rare monogenic multi-system disorder first described in 2014. NGLY1 is evolutionarily conserved in model organisms. Here we conducted a natural history study and chemical-modifier screen on the Drosophila melanogaster NGLY1 homolog, Pngl We generated a new fly model of NGLY1 Deficiency, engineered with a nonsense mutation in Pngl at codon 420 that results in a truncation of the C-terminal carbohydrate-binding PAW domain. Homozygous mutant animals exhibit global development delay, pupal lethality and small body size as adults. We developed a 96-well-plate, image-based, quantitative assay of Drosophila larval size for use in a screen of the 2,650-member Microsource Spectrum compound library of FDA approved drugs, bioactive tool compounds, and natural products. We found that the cholesterol-derived ecdysteroid molting hormone 20-hydroxyecdysone (20E) partially rescued the global developmental delay in mutant homozygotes. Targeted expression of a human NGLY1 transgene to tissues involved in ecdysteroidogenesis, e.g., prothoracic gland, also partially rescues global developmental delay in mutant homozygotes. Finally, the proteasome inhibitor bortezomib is a potent enhancer of global developmental delay in our fly model, evidence of a defective proteasome "bounce-back" response that is also observed in nematode and cellular models of NGLY1 Deficiency. Together, these results demonstrate the therapeutic relevance of a new fly model of NGLY1 Deficiency for drug discovery and gene modifier screens.
Collapse
Affiliation(s)
| | - Joshua D Mast
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Tom Hartl
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Tom Lee
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Peter Sand
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Ethan O Perlstein
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| |
Collapse
|
7
|
Meng QW, Xu QY, Deng P, Fu KY, Guo WC, Li GQ. Involvement of methoprene-tolerant (Met) in the determination of the final body size in Leptinotarsa decemlineata (Say) larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:1-9. [PMID: 29680288 DOI: 10.1016/j.ibmb.2018.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In the tobacco hornworm Manduca sexta, juvenile hormone (JH) is critical for the control of species-specific size. However, whether the basic helix-loop-helix/Per-Arnt-Sim domain receptor methoprene-tolerant (Met) is involved remains unconfirmed. In the present paper, we found that RNA interference (RNAi)-aided knockdown of Met gene (LdMet) lowered the larval and pupal fresh weights and shortened the larval development period in the Colorado potato beetle Leptinotarsa decemlineata. Dietary introduction of JH into the LdMet RNAi larvae rescued neither the decreased weights nor the reduced development phase, even though JH ingestion by control larvae extended developmental time and caused large pupae. Moreover, the transcript levels of five genes involved in prothoracicotropic hormone and cap 'n' collar isoform C/Kelch-like ECH associated protein 1 pathways were upregulated in the LdMet silenced larvae. Ecdysteroidogenesis was thereby activated; 20-hydroxyecdysone (20E) titer was increased; and 20E signaling pathway was elicited in the LdMet RNAi larvae. Therefore, JH, acting through its receptor Met, inhibits PTTH production and release before the attainment of critical weight. Once the critical weight is reached, JH production and release are averted; and the hemolymph JH is removed. The elimination of JH allows the brain to release PTTH. PTTH subsequently stimulates ecdysteroid biosynthesis and release to start larval-pupal transition in L. decemlineata.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|