1
|
Wang S, Qiao ST, Li PZ, Xie Y, Guo FR, Liu JW, Hu WK, Gao MY, Zheng LJ, Yang FX, Yuchi ZG, Wu SF, Bass C, Gao CF. Y4667D Mutation in the Ryanodine Receptor Confers High Level Resistance to Diamide Insecticides in the Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9920-9931. [PMID: 40198889 DOI: 10.1021/acs.jafc.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Chilo suppressalis is a major rice pest with escalating resistance to diamide insecticides, threatening sustainable management. However, the precise molecular mechanisms underlying this resistance remain unclear. In this study, we assessed the sensitivity of 71 C. suppressalis field populations in China to chlorantraniliprole during 2023-2024 and investigated target-site mutations associated with resistance. The proportion of highly resistant populations increased to 80% in 2023 (RR = 111.6-2706.4) and 90.3% in 2024 (RR = 160-1794.7). Multiple RyR mutations, including Y4667D, were identified in highly resistant populations. Introgressing the Y4667D mutation into a laboratory strain generated the 4667D strain, which exhibited high resistance to chlorantraniliprole and other diamides. Resistance showed autosomal inheritance with incomplete dominance. Modeling and molecular docking revealed that Y4667D reduced CsRyR binding affinity for chlorantraniliprole. Furthermore, Y4667D conferred significant fitness costs such as longer larval duration and reduced reproductive output. These findings provide insights into the molecular mechanisms of diamide resistance, inform pesticide management strategies, and aid the development of novel resistance-breaking pesticides.
Collapse
Affiliation(s)
- Shuai Wang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Song-Tao Qiao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Pei-Zhuo Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Xie
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Fang-Rui Guo
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Jin-Wei Liu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Wen-Kai Hu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Meng-Yue Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Ling-Jun Zheng
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Feng-Xia Yang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Zhi-Guang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shun-Fan Wu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, U.K
| | - Cong-Fen Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| |
Collapse
|
2
|
Zuo Y, Pei Y, Li Y, Wen S, Ren X, Li L, Wu Y, Hu Z. The synergism between metabolic and target-site resistance enhances the intensity of resistance to pyrethroids in Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104313. [PMID: 40233841 DOI: 10.1016/j.ibmb.2025.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 04/13/2025] [Indexed: 04/17/2025]
Abstract
The widespread application of insecticides imposes intense selective pressure on pest populations, driving the evolution of high-level resistance and leading to frequent control failures of pest. Insecticide resistance is primarily mediated through two primary mechanisms: target-site insensitivity and enhanced metabolic detoxification. However, the potential interactions and synergistic effects between these mechanisms remain largely unexplored. In this study, we demonstrate a striking cooperative interaction between these two major resistance mechanisms in a field-derived strain of Spodoptera exigua exhibiting extreme resistance (631-fold) to the pyrethroid insecticide lambda-cyhalothrin. Through genetic mapping and linkage analysis, we identified that this resistance phenotype is conferred by the combined effects of overexpression of the P450 CYP9A9 (two copies: CYP9A9a and CYP9A9b) and a target-site mutation (L1014F, kdr) in the voltage-gated sodium channel. Using an introgression approach, we generated two near-isogenic strains: WH-kdr, carrying only the target-site resistance allele (6.2-fold resistance), and WH-CYP9A, harboring only the metabolic resistance genes (79-fold resistance), both compared to the susceptible WH-S strain. CRISPR/Cas9-mediated knockout of both CYP9A9 copies in the QP19 strain dramatically reduced resistance from 631-fold to 19-fold, while transgenic expression of the CYP9A9a variant (containing three amino acid substitutions) from QP19 strain in Helicoverpa armigera conferred 39-fold resistance to lambda-cyhalothrin. These findings provide compelling evidence that target-site resistance can significantly potentiate metabolic resistance, resulting in substantially higher resistance levels than either mechanism alone in S. exigua. These findings enhance the understanding of higher level resistance mechanisms mediated by interactions between resistance genes and provide theoretical basis for devising management strategies of insecticide resistance.
Collapse
Affiliation(s)
- Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lin Li
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yidong Wu
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wang F, Chen S, Shi Y, Wu S, Yang Y, Wang X. Transgenic expression of SeCYP9A186 and PxFMO2 confers resistance to emamectin benzoate in Plutella xylostella. PEST MANAGEMENT SCIENCE 2025; 81:2000-2008. [PMID: 39651894 DOI: 10.1002/ps.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND The overexpression of metabolic enzymes constitutes a crucial mechanism for insects to detoxify xenobiotics and metabolic pesticides. A flavin-containing monooxygenase gene (PxFMO2) from Plutella xylostella and a P450 gene (SeCYP9A186, F116V mutant allele) from Spodoptera exigua have been reported to be involved in insecticide resistance. In this study, we aim to utilize transgenic technology to validate their in vivo detoxification functions in Plutella xylostella. RESULTS We established two transgenic strains of Plutella xylostella with expressing an endogenous PxFMO2 gene from Plutella xylostella and an exogenous SeCYP9A186 gene from S. exigua, respectively. Bioassays demonstrated that the transgenic Plutella xylostella strain (IPP-FMO2) expressing PxFMO2 exhibited a 12-fold resistance to emamectin benzoate and a 6.4-fold resistance to chlorantraniliprole compared to the background strain (IPP-S). In contrast, the transgenic Plutella xylostella strain (IPP-9A186) expressing SeCYP9A186 displayed a 235-fold resistance to emamectin benzoate and a 115-fold resistance to abamectin. Moreover, resistance to emamectin benzoate in the IPP-9A186 strain of Plutella xylostella was inherited as an incompletely dominant trait and was genetically linked to the transgene locus. CONCLUSIONS Our results not only elucidated the in vivo contribution of the PxFMO2 and SeCYP9A186 to the insecticide resistance phenotype in Plutella xylostella, but also provided a genetic engineering toolkit to manipulate resistance pathways. These insights and methodologies could further aid in developing sustainable pest management strategies in Plutella xylostella. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Falong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shiqi Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Zhang X, Zuo Y, Liu R, Wen S, Pei Y, Zhao Q, Shi B, Wu W, Li D, Hu Z. A key amino acid substitution of vacuolar-type H +-ATPases A subunit (VATP-A) confers selective toxicity of a potential botanical insecticide, periplocoside P (PSP), in Mythimna separata and Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104277. [PMID: 39961394 DOI: 10.1016/j.ibmb.2025.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Periplocosides, extracted from the root bark of Periploca sepium, are plant secondary compounds known to inhibit the V-ATPase enzyme in susceptible insect species, such as Mythimna separata. However, many species, including Spodoptera exigua, show resistance to these compounds. Previous studies identified the V-ATPase subunit A (VATP-A) in the midgut epithelium of M. separata as the putative target of periplocoside P (PSP), but the specific amino acids involved in this interaction remained unclear. In this study, we demonstrate the selective toxicity of PSP and its inhibition effect on V-ATPase. Molecular docking identified potential interactions between PSP and three amino acids (K85, R171, E199) in MsVATP-A, with in vitro binding assays revealing that K85 and R171 serve as the primary binding sites. Notably, sequence alignment revealed that R171 in sensitive species is substituted with K in resistant species. To investigate the functional implications of this substitution, we performed in vitro site-directed mutagenesis to exchange the corresponding amino acids between the VATP-A orthologs of M. separata and S. exigua. The R171K mutation in MsVATP-A reduced binding to PSP, while the K170R mutation in SeVATP-A enhanced it. Furthermore, in vivo genome editing in Drosophila melanogaster, a PSP-sensitive species, revealed that the R168K mutation conferred 15.78-fold resistance to PSP compared to the wild-type strain (w1118). Our findings confirm the role of VATP-A as the target of PSP and elucidate the key amino acids influencing its insecticidal selectivity. This research enhances the understanding of the molecular interactions between natural compounds and insect targets, offering insights for the development of targeted pest control strategies.
Collapse
Affiliation(s)
- Xianxia Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yayun Zuo
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Rui Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Shuang Wen
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baojun Shi
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenjun Wu
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Li YX, Kang XL, Li YL, Wang XP, Yan Q, Wang JX, Zhao XF. Receptor tyrosine kinases CAD96CA and FGFR1 function as the cell membrane receptors of insect juvenile hormone. eLife 2025; 13:RP97189. [PMID: 40085503 PMCID: PMC11908783 DOI: 10.7554/elife.97189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| |
Collapse
|
6
|
Li YX, Shao BY, Hou MY, Dong DJ. Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis. SCIENCE ADVANCES 2025; 11:eads0643. [PMID: 39908369 PMCID: PMC11797550 DOI: 10.1126/sciadv.ads0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metamorphosis is an important way for insects to adapt to the environment. In this process, larval tissue destruction regulated by 20-hydroxyecdysone (20E) and adult tissue reconstruction regulated by insulin-like peptides (ILPs) occur simultaneously, but the detailed mechanism is still unclear. Here, the results of succinylome, subcellular localization, and protein interaction analysis show that non-succinylated insulin-degrading enzyme (IDE) localizes in the cytoplasm, binds to insulin-like growth factor 2 (IGF-2-like), and degrades it. When the metamorphosis is initiated, 20E up-regulated carnitine palmitoyltransferase 1A (Cpt1a) through transcription factor Krüppel-like factor 15 (KLF15), thus increasing the level of IDE succinylation on K179. Succinylated IDE translocated from cytoplasm to nucleus, combined with ecdysone receptor to promote 20E signaling pathway, causing larval tissue destruction, while IGF-2-like was released to promote adult tissue proliferation. That is, succinylation alters subcellular localization of IDE so that it can bind to different target proteins and act as a hub of metamorphosis.
Collapse
Affiliation(s)
| | | | - Ming-Ye Hou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| |
Collapse
|
7
|
Han C, Kim J. Transcriptome profiling reveals novel insights into the regulation of calcium ion and detoxification genes driving chlorantraniliprole resistance in Spodoptera exigua. Heliyon 2024; 10:e40556. [PMID: 39660196 PMCID: PMC11629198 DOI: 10.1016/j.heliyon.2024.e40556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Since the commercialization of diamide insecticides, including chlorantraniliprole, in 2007, the overuse of diamide insecticides for over a decade has resulted in excessive chlorantraniliprole resistance in Spodoptera exigua, causing continuous economic losses. While RyR target-site mutations and detoxification enzymes such as cytochrome P450 have been studied as the leading causes of resistance, previous studies, including functional research and synergistic tests, have not confirmed a clear correlation between these factors and the development of resistance. Thus, transcriptome analysis was employed to investigate alternative strategies beyond mutation(s) in RyR or metabolic factors involving detoxification pathways that allow diamide-resistance S. exigua to counteract the calcium ion imbalances induced by chlorantraniliprole effectively. Diamide-resistant, susceptible strains and its F1-hybrid of S. exigua were used for the RNAseq-based differentially expressed gene (DEG) analysis. In total 4669 genes were differentially expressed, with 2809 upregulated and 1860 downregulated in the resistant strain compared to the susceptible strain. GO, KEGG enrichment and orthologous analyses demonstrated that genes involved in metabolic factors were overrepresented in the resistant strain. In particular, overexpressed endoplasmic reticulum (ER)-related calcium ion homeostasis and cell stability-associated genes were newly identified in resistant strain. The selected differentially expressed genes were validated then with qPCR. These genes were inferred to induce cell stability to overcome ER stress derived from calcium ion imbalance caused by chlorantraniliprole. These results provide advanced insights into the critical roles of calcium ion homeostasis- and cell stability-related genes in conferring diamide insecticide resistance.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Wang S, Liu C, Qiao ST, Guo FR, Xie Y, Sun H, Liu Y, Zhao SQ, Zhou LQ, He LF, Yang FX, Wu SF, Bass C, Gao CF. The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26475-26490. [PMID: 39557539 DOI: 10.1021/acs.jafc.4c06839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The emergence of insecticide resistance in the rice stem borer, Chilo suppressalis, is a growing threat to the sustainable control of this important insect crop pest. Thus, monitoring of C. suppressalis populations for insecticide resistance and characterization of the underlying genetic mechanisms is essential to inform rational control decisions and the development of resistance management strategies. Here, we monitored 126 C. suppressalis field populations from China for resistance evolution to four major insecticides: 53 for chlorantraniliprole, 50 for abamectin, 74 for triazophos, and 76 for spinetoram. Moderate to high levels of resistance were observed to all four insecticides. Investigation of the underlying resistance mechanisms revealed multiple mutations in the ryanodine receptor (RyR) and acetylcholinesterase 1 (AChE1), leading to target-site resistance to chlorantraniliprole and triazophos, respectively. In contrast, the absence of mutations in the glutamate-gated chloride channel (GluCl) and α6 nicotinic acetylcholine receptor (nAChR α6) subunit suggested that nontarget site mechanisms contribute to the multiple-insecticide resistance phenotypes observed in C. suppressalis. In this regard, we revealed overexpression of the uridine 5'-diphospho-glycosyltransferase UGT33AF1 and cytochrome P450 CYP6AB45 in C. suppressalis field populations. Functional characterization using transgenic Drosophila demonstrated that UGT33AF1 confers resistance against multiple insecticides in vivo, whereas CYP6AB45 does not appear to contribute to resistance. Collectively, our findings reveal the current status of resistance of C. suppressalis to insecticides in China and uncover a diverse profile of resistance mechanisms in this species. These findings provide a foundation for the development of sustainable strategies to effectively manage and control this pest.
Collapse
Affiliation(s)
- Shuai Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Chong Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Song-Tao Qiao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Fang-Rui Guo
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Yuan Xie
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Hao Sun
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Yan Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Si-Qi Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Li-Qi Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Lin-Feng He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Feng-Xia Yang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Shun-Fan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, U.K
| | - Cong-Fen Gao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China
| |
Collapse
|
9
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
10
|
Han C, Rahman MM, Kim J, Lueke B, Nauen R. Genome-wide analysis of detoxification genes conferring diamide insecticide resistance in Spodoptera exigua identifies CYP9A40. CHEMOSPHERE 2024; 367:143623. [PMID: 39481490 DOI: 10.1016/j.chemosphere.2024.143623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
For over a decade, diamide insecticides have been effective against lepidopteran pests like beet armyworm, Spodoptera exigua (Hübner, 1808). However, the evolution of resistance poses a challenge to their sustainable use. We identified an I4790 M mutation in the S. exigua ryanodine receptor (RyR) gene, but its correlation with resistance varied across the field-collected Korean populations of S. exigua. RNA sequencing and differential gene expression analysis were performed to investigate other resistance mechanisms. Diamide-resistant and susceptible strains and F1 hybrids were compared by mapping RNA-seq reads to the S. exigua reference genome. CYP9A40 was identified as a critical gene in diamide resistance due to its high expression in the resistant strains. Synergist bioassays with piperonyl butoxide supported the role of P450s in diamide metabolic resistance in S. exigua. A strong positive correlation between CYP9A40 over-expression levels (up to 80-fold) and diamide LC50 values was obtained for field-collected populations uniformly showing a 100% frequency of the RyR I4790 M target-site resistance allele. To validate the function of CYP9A40 in diamide detoxification, we recombinantly expressed the gene and tested its ability to bind and degrade chlorantraniliprole as a substrate. The results confirmed its catalytic role in diamide metabolism. CYP9A40 has been identified and validated to confer metabolic resistance in Korean S. exigua populations. It works alongside the RyR target-site I4790 M mutation to enhance diamide resistance. These mechanisms offer insights for resistance monitoring and support insecticide resistance management programs to improve control strategies for S. exigua.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea
| | - Md-Mafizur Rahman
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, South Korea.
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, 40789, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, 40789, Monheim, Germany.
| |
Collapse
|
11
|
Lin L, Wang C, Wang W, Jiang H, Murayama T, Kobayashi T, Hadiatullah H, Chen YS, Wu S, Wang Y, Korza H, Gu Y, Zhang Y, Du J, Van Petegem F, Yuchi Z. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance. Nat Commun 2024; 15:9056. [PMID: 39428398 PMCID: PMC11491487 DOI: 10.1038/s41467-024-53490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
The resistance of pests to common insecticides is a global issue that threatens food production worldwide. Diamide insecticides target insect ryanodine receptors (RyRs), causing uncontrolled calcium release from the sarcoplasmic and endoplasmic reticulum. Despite their high potency and species selectivity, several resistance mutations have emerged. Using a chimeric RyR (chiRyR) approach and cryo-electron microscopy (cryo-EM), we investigate how insect RyRs engage two different diamide insecticides from separate families: flubendiamide, a phthalic acid derivative, and tetraniliprole, an anthranilic compound. Both compounds target the same site in the transmembrane region of the RyR, albeit with different poses, and promote channel opening through coupling with the pore-forming domain. To explore the resistance mechanisms, we also solve two cryo-EM structures of chiRyR carrying the two most common resistance mutations, I4790M and G4946E, both alone and in complex with the diamide insecticide chlorantraniliprole. The resistance mutations perturb the local structure, directly reducing the binding affinity and altering the binding pose. Our findings elucidate the mode of action of different diamide insecticides, reveal the molecular mechanism of resistance mutations, and provide important clues for the development of novel pesticides that can bypass the resistance mutations.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Changshi Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenlan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunfan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Jiamu Du
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Filip Van Petegem
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Liu X, Cao M, Mei W, Wang X, Wu Y. V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. INSECTS 2024; 15:777. [PMID: 39452352 PMCID: PMC11508211 DOI: 10.3390/insects15100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Spodoptera exigua is one of the most serious lepidopteran pests of global importance. With the intensive use of insecticides, S. exigua has evolved resistance to many insecticides, including the sodium channel blocker insecticides (SCBIs) indoxacarb and metaflumizone. In this study, we investigated the role of the V1848I mutation in the voltage-gated sodium channel (VGSC) in SCBI resistance and its inheritance patterns in S. exigua through the development and characterization of a near-isogenic resistant strain. The AQ-23 strain of S. exigua, collected in 2023 from Anqing, Anhui province of China, shows 165-fold resistance to indoxacarb compared with the susceptible WH-S strain. A frequency of 44.6% for the V1848I mutation was detected in the SeVGSC of the AQ-23 strain, while no F1845Y mutation was found. Through repeated backcrossing and marker-assisted selection, the V1848I mutation in the AQ-23 strain was introgressed into the susceptible WH-S strain, creating a near-isogenic strain named WH-1848I. This WH-1848I strain exhibits high levels of resistance to indoxacarb (146-fold) and metaflumizone (431-fold) but remains susceptible to broflanilide and spinosad compared with the WH-S strain. Inheritance analysis revealed that SCBI resistance in the WH-1848I strain is autosomal, nonrecessive, and genetically linked to the V1848I mutation. These findings establish a clear link between the V1848I mutation and SCBI resistance in S. exigua, offering valuable insights for developing molecular detection tools and resistance management strategies.
Collapse
Affiliation(s)
- Xiangjie Liu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Minhui Cao
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xingliang Wang
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yidong Wu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
13
|
Lu JB, He PY, Luo Q, Wang W, Peng YC, Zhang WN, Zhang J, Cao HQ, Sheng CW. Loop-Mediated Isothermal Amplification for Detecting Gly-4891-Glu and Ile-4734 Multiple Mutations of Ryanodine Receptor in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19948-19956. [PMID: 39186810 DOI: 10.1021/acs.jafc.4c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The key mutations, such as the Gly-4891-Glu substitution and the Ile-4734 multiple substitutions within the ryanodine receptors (RyR), are linked to diamide resistance in fall armyworm (FAW), Spodoptera frugiperda. In this study, we found that FAW remained sensitive to cyantraniliprole and chlorantraniliprole, while its sensitivity to flubendiamide was reduced. Moreover, a low level of heterozygous mutation at I4743 was observed. To facilitate the detection procedure of these mutations, a simple and efficient loop-mediated isothermal amplification (LAMP) protocol was developed for operation. The reaction for detecting the G4891E and I4743 single or multiple mutations was carried out at 68 °C for 85 min and 68 °C for 85 min or 68 °C for 65 min, respectively. These LAMP reactions can be easily observed via visualization of the color change from pink to yellow. This assay provides a simple, convenient, and effective means of detecting mutations in the RyR of FAW for pest management purposes.
Collapse
Affiliation(s)
- Jing-Bo Lu
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| | - Pei-Yun He
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| | - Qi Luo
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Wang
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jing Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hai-Qun Cao
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| | - Cheng-Wang Sheng
- Key Laboratory of Agro-Products Quality and Bio-Safety, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
14
|
Zhang X, Zhang R, Yu M, Liu R, Liu N, Teng H, Pei Y, Hu Z, Zuo Y. Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105991. [PMID: 39084768 DOI: 10.1016/j.pestbp.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a pivotal insecticide used worldwide to manage Spodoptera exigua, a devastating agricultural pest. This active compound plays a crucial role in resistance management strategies due to its distinctive mode of action. A field population of S. exigua (SH23) from Shanghai, China, exhibited significantly reduced susceptibility to indoxacarb, with a resistance ratio of 113.84-fold in biological assays. Following two rounds of laboratory screening with indoxacarb, the resistance of the new strain (SH23-S2) escalated steeply to 876.15-fold. Genetic analyses of both the SH23 and SH23-S2 strains demonstrated autosomal inheritance and incompletely dominant resistance patterns. Synergist assays indicated a minor role of detoxification enzymes (glutathione s-transferases and cytochrome P450) of SH23-S2 strain in this resistance, implicating target-site resistance as the primary mechanism. To explore the impact of target-site resistance, segment 1-6 of domain IV (IVS1-6) of the sodium channel in S. exigua was cloned, and the sequences from susceptible and indoxacarb-resistant S. exigua were compared. The V1848I mutation, linked to indoxacarb resistance in Plutella xylostella, Tuta absoluta and Liriomyza trifolii, was identified and strongly associated with the indoxacarb-resistant phenotype in the S. exigua SH23-S2 strain, whereas the F1845Y mutation was not detected. Furthermore, a molecular test for the V1848I mutation in field populations was created using an allele-specific PCR (AS-PCR). The discovery of indoxacarb resistance mutation and the creation of diagnostic tool will enable the early detection of indoxacarb resistance, which will facilitate the implementation of targeted resistance management strategies, ultimately delaying the proliferation of resistance.
Collapse
Affiliation(s)
- Xianxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Ruiming Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Mengqi Yu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Rui Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Naijing Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyuan Teng
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
16
|
Zhang F, Zhang YC, Yu ZT, Zeng B, Sun H, Xie YQ, Zhu KY, Gao CF. The G932C mutation of chitin synthase 1 gene (CHS1) mediates buprofezin resistance as confirmed by CRISPR/Cas9-mediated knock-in approach in the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105953. [PMID: 38879307 DOI: 10.1016/j.pestbp.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.
Collapse
Affiliation(s)
- Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Zhi-Tao Yu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Bing Zeng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yu-Qiu Xie
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
17
|
Sun H, Wang S, Liu C, Hu WK, Liu JW, Zheng LJ, Gao MY, Guo FR, Qiao ST, Liu JL, Sun B, Gao CF, Wu SF. Risk assessment, fitness cost, cross-resistance, and mechanism of tetraniliprole resistance in the rice stem borer, Chilo suppressalis. INSECT SCIENCE 2024; 31:835-846. [PMID: 37846895 DOI: 10.1111/1744-7917.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shuai Wang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chong Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Wen-Kai Hu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jin-Wei Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Ling-Jun Zheng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Meng-Yue Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Fang-Rui Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Song-Tao Qiao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Li Liu
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Bo Sun
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
18
|
Jiang D, Yu Z, He Y, Wang F, Gu Y, Davies TGE, Fan Z, Wang X, Wu Y. Key role of the ryanodine receptor I4790K mutation in mediating diamide resistance in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104107. [PMID: 38492676 DOI: 10.1016/j.ibmb.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.
Collapse
Affiliation(s)
- Dong Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingshi He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Falong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - T G Emyr Davies
- Insect Molecular Genomics Group, Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
20
|
Li L, Zuo Y, Shi Y, Yang Y, Wu Y. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104042. [PMID: 38030045 DOI: 10.1016/j.ibmb.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
22
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
23
|
Mei W, Zuo Y, Su T, Yuan J, Wu Y, Yang Y. The ryanodine receptor mutation I4728M confers moderate-level resistance to diamide insecticides in Spodoptera litura. PEST MANAGEMENT SCIENCE 2023; 79:3693-3699. [PMID: 37184302 DOI: 10.1002/ps.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The common cutworm, Spodoptera litura (Fabricius), is one of the most widespread and destructive polyphagous pests in tropical and subtropical Asia. S. litura has evolved resistance to different insecticides, including diamide insecticides. Here, we identified a ryanodine receptor (RyR) mutation (I4728M) associated with target site resistance to diamides in a field-collected population of S. litura. The contribution of this mutation to diamide resistance was investigated through establishing a near-isogenic resistant strain of S. litura. RESULTS The ND21 population of S. litura, collected from Ningde, Fujian province of China in 2021, exhibited 130.6-fold resistance to chlorantraniliprole compared to the susceptible NJ-S strain. S. litura RyR mutation I4728M, corresponding to Plutella xylostella RyR I4790M, was identified in the ND21 population. SlRyR I4728M mutation of ND21 was introgressed into a susceptible background strain (NJ-S) with marker-assisted backcrossing. The introgressed strain named ND21-R, which was homozygous for the mutant 4728M allele, shared about 94% of the genetic background with the NJ-S strain. ND21-R strain showed moderate levels of resistance to two anthranilic diamides (19.1-fold to chlorantraniliprole, 19.7-fold to cyantraniliprole) and the phthalic diamide flubendiamide (23.4-fold). Genetic analysis showed that chlorantraniliprole resistance was autosomal, incompletely recessive and tightly linked with SlRyR I4728M mutation in the introgressed ND21-R strain of S. litura. CONCLUSION Identification of the I4728M mutation and its contribution to diamide resistance in S. litura will help develop allelic discrimination assays for resistance monitoring and guide resistance management practices for diamides in S. litura. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ting Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Sun Y, Liu ST, Ling Y, Wang L, Ni H, Guo D, Dong BB, Huang Q, Long LP, Zhang S, Wu SF, Gao CF. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. PEST MANAGEMENT SCIENCE 2023; 79:3290-3299. [PMID: 37127919 DOI: 10.1002/ps.7512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rice leaffolder, Cnaphalocrocis medinalis (Guenée), has become an increasingly occurring pest in Asia in recent years. Chemical control remains the most efficient and primary tool for controlling this pest. In this study, we report the resistance status of C. medinalis in China to multiple insecticides including chlorantraniliprole and the main resistance mechanism. RESULTS Significant variations among field populations of C. medinalis in their resistance to 10 insecticides were observed during 2019-2022. Most of the tested field populations have developed low-to-moderate levels of resistance to abamectin (RR = 2.4-22.2), emamectin benzoate (RR = 1.9-40.3) and spinetoram (RR = 4.2-24.8). Some field populations have developed low resistance to chlorpyrifos (RR = 0.9-6.8). Indoxacarb, metaflumizone, methoxenozide and Bacillus thuringiensis (Bt) potency against all tested populations remained similar. For diamides, significantly higher levels of resistance to chlorantraniliprole (RR = 64.9-113.7) were observed in 2022, whereas all tested field populations in 2019-2021 exhibited susceptible or moderate resistance level to chlorantraniliprole (RR = 1.3-22.1). Cross-resistance between chlorantraniliprole and tetraniliprole was significant. Analysis of ryanodine receptor (RyR) mutations showed that mutation of I4712M was present in resistant populations of C. medinalis with different levels of chlorantraniliprole resistance and was the main mechanism conferring diamide resistance. Mutation of Y4621D also was detected in one tested population. Resistance management strategies for the control of C. medinalis are discussed. CONCLUSION C. medinalis has developed high level of resistance to chlorantraniliprole. RyR mutations were deemed as the mechanism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Si-Tong Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Yunnan Agricultural Reclamation Industry Research Institute Co., Ltd., Kunming, China
| | - Yan Ling
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Li Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huan Ni
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bei-Bei Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Li-Ping Long
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Shuai Zhang
- Ministry of Agriculture, National Agro-tech Extension and Service Center, Beijing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Han C, Rahman MM, Shin J, Kim JH, Lee SH, Kwon M, Timm AE, Ramasamy S, Lee Y, Kang S, Park S, Kim J. Exaptation of I4760M mutation in ryanodine receptor of Spodoptera exigua (Lepidoptera: Noctuidae): Lessons from museum and field samples. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105579. [PMID: 37666604 DOI: 10.1016/j.pestbp.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Since 2007, diamide insecticides have been widely used in Korea to control various types of lepidopteran pests including Spodoptera exigua. For nearly a decade, diamide resistance in field populations of S. exigua across 18 localities has been monitored using bioassays. Despite their short history of use, resistance to diamide insecticides has emerged. Based on the LC50 values, some field populations showed a higher level of resistance to chlorantraniliprole, a diamide insecticide, compared to that of the susceptible strain, although regional and temporal variations were observed. To investigate resistance at a molecular level, we examined three mutations (Y4701C, I4790M, and G4946E) in the ryanodine receptor (RyR), which is the primary mechanism underlying diamide insecticide resistance. DNA sequencing showed that only the I4790M mutation was found in most field populations. As resistance levels varied significantly despite the uniform presence of the I4790M mutation, we considered the presence of another resistance factor. Further, the I4790M mutation was also found in S. exigua specimens collected prior to the commercialization of diamide insecticides in Korea as well as in other countries, such as the USA. This finding led us to hypothesize that the I4790M mutation were predisposed in field populations owing to selection factors other than diamide use. For further clarification, we conducted whole-genome sequencing of S. exigua (449.83 Mb) and re-sequencing of 18 individual whole genomes. However, no additional non-synonymous mutations were detected in the RyR-coding region. Therefore, we concluded that the high level of diamide insecticide resistance in Korean S. exigua is not caused by mutations at the target site, RyR, but is attributed to other factors that need to be investigated in future studies.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea.
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh.
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Republic of Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Alicia E Timm
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Youngsu Lee
- Gyeonggi Provincial Agricultural Research and Extension Services, Republic of Korea.
| | - Sera Kang
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Suhyeong Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea; Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Plant Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
26
|
Dai H, Liu B, Yang L, Yao Y, Liu M, Xiao W, Li S, Ji R, Sun Y. Investigating the Regulatory Mechanism of the Sesquiterpenol Nerolidol from a Plant on Juvenile Hormone-Related Genes in the Insect Spodoptera exigua. Int J Mol Sci 2023; 24:13330. [PMID: 37686136 PMCID: PMC10488281 DOI: 10.3390/ijms241713330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Various plant species contain terpene secondary metabolites, which disrupt insect growth and development by affecting the activity of juvenile hormone-degrading enzymes, and the juvenile hormone (JH) titers maintained in insects. Nerolidol, a natural sesquiterpenol belonging to the terpenoid group, exhibits structural similarities to insect JHs. However, the impact of nerolidol on insect growth and development, as well as its underlying molecular mechanism, remains unclear. Here, the effects of nerolidol on Spodoptera exigua were investigated under treatment at various sub-lethal doses (4.0 mg/mL, 1.0 mg/mL, 0.25 mg/mL). We found that a higher dose (4.0 mg/mL) of nerolidol significantly impaired the normal growth, development, and population reproduction of S. exigua, although a relatively lower dose (0.25 mg/mL) of nerolidol had no significant effect on this growth and development. Combined transcriptome sequencing and gene family analysis further revealed that four juvenile hormone esterase (JHE)-family genes that are involved in juvenile hormone degradation were significantly altered in S. exigua larvae after nerolidol treatment (4.0 mg/mL). Interestingly, the juvenile hormone esterase-like (JHEL) gene Sexi006721, a critical element responsive to nerolidol stress, was closely linked with the significant augmentation of JHE activity and JH titer in S. exigua (R2 = 0.94, p < 0.01). Taken together, we speculate that nerolidol can function as an analog of JH by modulating the expression of the enzyme genes responsible for degrading JH, resulting in JH disorders and ultimately disrupting the development of insect larvae. This study ultimately provides a theoretical basis for the sustainable control of S. exigua in the field whilst proposing a new perspective for the development of novel biological pesticides.
Collapse
Affiliation(s)
- Hanyang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Baosheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Lei Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Yu Yao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mengyun Liu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenqing Xiao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
27
|
Zhang YC, Gao Y, Ye WN, Peng YX, Zhu KY, Gao CF. CRISPR/Cas9-mediated knockout of NlCYP6CS1 gene reveals its role in detoxification of insecticides in Nilaparvata lugens (Hemiptera: Delphacidae). PEST MANAGEMENT SCIENCE 2023; 79:2239-2246. [PMID: 36775840 DOI: 10.1002/ps.7404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The brown planthopper (Nilaparvata lugens) is one of the major rice insect pests in Asia. Recently, high levels of insecticide resistance have been frequently reported and cytochrome P450 monooxygenase (P450)-mediated metabolic detoxification is a common resistance mechanism in N. lugens. However, there has been no persuasive genetic method to prove the role of P450s in insecticide resistance in N. lugens. RESULTS Here, CRISPR/Cas9 system was used to disrupt the P450 gene NlCYP6CS1 to elucidate its role in insecticide resistance in field populations of N. lugens. We successfully constructed a homozygous strain (Nl6CS1-KO) with a 5-bp deletion and 1-bp insertion mutation of NlCYP6CS1. Compared with a background resistant strain (Nl-R), the susceptibility of knockout strain Nl6CS1-KO to imidacloprid, nitenpyram, thiamethoxam, dinotefuran, and pymetrozine was increased by 2.3-, 3.4-, 7.0-, 4.2- and 3.9-fold, respectively, but not significantly changed to triflumezopyrim, chlorpyrifos and buprofezin. Life table analysis demonstrated that the Nl6CS1-KO strain resembled the Nl-R strain in terms of egg and nymph developmental duration and adult lifespan, but differed from the Nl-R strain in the survival rate of eggs and nymphs, reproduction, and body weight. CONCLUSIONS Our study demonstrates the effect of functional deletion of NlCYP6CS1 on multiple insecticide resistance in N. lugens. For the first time, we applied CRISPR/Cas9 system to reveal the mechanism of insecticide resistance in N. lugens, which may shed light on similar studies in other hemipteran insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Yang Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Wen-Nan Ye
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Yu-Xuan Peng
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing, China
| |
Collapse
|
28
|
Sun X, Hua W, Wang K, Song J, Zhu B, Gao X, Liang P. A novel V263I mutation in the glutamate-gated chloride channel of Plutella xylostella (L.) confers a high level of resistance to abamectin. Int J Biol Macromol 2023; 230:123389. [PMID: 36706876 DOI: 10.1016/j.ijbiomac.2023.123389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The frequent and extensive use of insecticides leads to the evolution of insecticide resistance, which has become one of the constraints on global agricultural production. Avermectins are microbial-derived insecticides that target a wide number of insect pests, including the diamondback moth Plutella xylostella, an important global pest of brassicaceous vegetables. However, field populations of P. xylostella have evolved serious resistance to avermectins, including abamectin, thereby threatening the efficiency of these insecticides. In this study, a novel valine to isoleucine mutation (V263I) was identified in the glutamate-gated chloride channel (GluCl) of field P. xylostella populations, which showed different levels of resistance to abamectin. Electrophysiological analysis revealed that the V263I mutation significantly reduced the sensitivity of PxGluCl to abamectin by 6.9-fold. Genome-modified Drosophila melanogaster carrying the V263I mutation exhibited 27.1-fold resistance to abamectin. Then, a knockin strain (V263I-KI) of P. xylostella expressing the homozygous V263I mutation was successfully constructed using the CRISPR/Cas9. The V263I-KI had high resistance to abamectin (106.3-fold), but significantly reduced fecundity. In this study, the function of V263I mutation in PxGluCl was verified for the first time. These findings provide a more comprehensive understanding of abamectin resistance mechanisms and lay the foundation for providing a new molecular detection method for abamectin resistance monitoring.
Collapse
Affiliation(s)
- Xi Sun
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Wenjuan Hua
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kunkun Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Wang X, Zhang J, Yang Y, Wu Y. Equivalent intensity but differential dominance of sodium channel blocker insecticide resistance conferred by F1845Y and V1848I mutations of the voltage-gated sodium channel in Plutella xylostella. INSECT SCIENCE 2023; 30:125-134. [PMID: 35366363 DOI: 10.1111/1744-7917.13042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Two point mutations (F1845Y and V1848I) in the voltage-gated sodium channel gene of Plutella xylostella are involved in the target-site resistance to sodium channel blocker insecticides (SCBIs). The contribution of the individual mutations to the SCBI resistance and the associated inheritance modes is as yet unclear. Through 2 rounds of single-pair crossing and marker-assisted selection, 2 P. xylostella strains (1845Y and 1848I) bearing homozygous F1845Y or V1848I mutant alleles were successfully established from a field-collected population, and the contribution of each mutation to SCBI resistance, as well as associated inheritance patterns, was determined. When compared with the susceptible SZPS strain, each of the mutations individually conferred equally high-level resistance to indoxacarb (378 and 313 fold) and metaflumizone (734 and 674 fold), respectively. However, dominance levels of resistance to SCBIs were significantly different between the 2 resistant strains. Resistance of the 1845Y strain to indoxacarb and metaflumizone was inherited as an autosomal and incompletely dominant trait (D values ranged from 0.43 to 0.76). In contrast, that of the 1848I strain followed an autosomal but incompletely recessive to semidominant mode (D values: -0.24 to 0.09). Our findings enriched the current understanding of inheritance and mechanisms of SCBI resistance in P. xylostella, and will help develop resistance management programs for P. xylostella and other economic pests.
Collapse
Affiliation(s)
- Xingliang Wang
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianheng Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Ren H, Zhang H, Ni R, Li Y, Li L, Wang W, Tian Y, Pang B, Tan Y. Detection of ryanodine receptor G4911E and I4754M mutation sites and analysis of binding modes of diamide insecticides with RyR on Galeruca daurica (Coleoptera: Chrysomelidae). Front Physiol 2022; 13:1107045. [PMID: 36620218 PMCID: PMC9815114 DOI: 10.3389/fphys.2022.1107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the leaf beetle Galeruca daurica has broken out in the northern grasslands of Inner Mongolia, its management still mainly depends on chemical control using traditional insecticides or with novel action. The study was aim to identify mutation locus associated with resistance to diamide insecticides in field population of G. daurica, to provide a reference for rational selection of insecticides and to avoid the rapid resistance development to diamide insecticides. We cloned the full length of the ryanodine receptor gene of G. daurica (GdRyR), constructed 3D model and transmembrane regions by homologous modeling based on deduced amino acid sequence. Two potential mutation loci (Gly4911Glu and Ile4754Met) and allelic mutation frequencies were detected in individuals of G. daurica. In addition, their binding patterns to two diamide insecticides (chlorantraniliprole, cyantraniliprole) were analyzed separately using a molecular docking method. The full-length cDNA sequence of GdRyR (GenBank accession number: OP828593) was obtained by splicing and assembling, which is 15,399 bp in length and encodes 5,133 amino acids. The amino acid similarity of GdRyR with that of other Coleopteran insects were 86.70%-91.33%, which possessed the typical structural characteristics. An individual resistance allelic mutation frequency test on fifty field leaf beetles has identified 12% and 32% heterozygous individuals at two potential mutation loci Gly4911Glu and Ile4754Met, respectively. The affinity of the I4754M mutant model of GdRyR for chlorantraniliprole and cyantraniliprole was not significantly different from that of the wild type, and all had non-covalent interactions such as hydrogen bonding, hydrophobic interactions and π-cation interactions. However, the G4911E mutant model showed reduced affinity and reduced mode of action with two diamide insecticides, thus affecting the binding stability of the ryanodine receptor to the diamide insecticides. In conclusion, the G4911E mutation in GdRyR may be a potential mechanism for the development of resistance to diamide insecticides on G. daurica and should be a key concern for resistance risk assessment and reasonable applications of diamide insecticides for control in future. Moreover, this study could provide a reference for ryanodine receptor structure-based insecticides design.
Collapse
Affiliation(s)
- Hao Ren
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Hongling Zhang
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Wenhe Wang
- Forestry station of Ar Horqin Banner, Chifeng, China
| | - Yu Tian
- Grassland Station of Xianghuang Banner, Xilinhot, China
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
32
|
Zuo Y, Wang Z, Ren X, Pei Y, Aioub AAA, Hu Z. A Genetic Compensation Phenomenon and Global Gene Expression Changes in Sex-miR-2766-3p Knockout Strain of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). INSECTS 2022; 13:1075. [PMID: 36421978 PMCID: PMC9695525 DOI: 10.3390/insects13111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs) drive the post-transcriptional repression of target mRNAs and play important roles in a variety of biological processes. miR-2766-3p is conserved and abundant in Lepidopteran species and may be involved in a variety of biological activities. In this study, Sex-miR-2766-3p was predicted to potentially bind to the 3' untranslated region (UTR) of cap 'n' collar isoform C (CncC) in Spodoptera exigua, and Sex-miR-2766-3p was confirmed to regulate the expression of SeCncC through screening with a luciferase reporter system. Although CRISPR/Cas9 has been extensively utilized to examine insect gene function, studies of miRNA function are still relatively uncommon. Thus, we employed CRISPR/Cas9 to knock out Sex-miR-2766-3p from S. exigua. However, the expression of SeCncC was not significantly altered in the knockout strain (2766-KO) compared with that of the WHS strain. This result suggested that a miRNA knockout might lack phenotypes because of genetic robustness. Additionally, we used transcriptome analysis to examine how the global gene expression patterns of the Sex-miR-2766-3p knockout strain varied. RNA-seq data revealed 1746 upregulated and 2183 downregulated differentially expressed genes (DEGs) in the 2766-KO strain, which might be the result of Sex-miR-2766-3p loss or DNA lesions as the trigger for transcriptional adaptation. GO function classification and KEGG pathway analyses showed that these DEGs were enriched for terms related to binding, catalytic activity, metabolic process, and signal transduction. Our findings demonstrated that S. exigua could compensate for the missing Sex-miR-2766-3p by maintaining the expression of SeCncC by other pathways.
Collapse
Affiliation(s)
- Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Zeyu Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Xuan Ren
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Ahmed A. A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biologyfor Arid Areas, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
33
|
Teng H, Zuo Y, Yuan J, Fabrick JA, Wu Y, Yang Y. High frequency of ryanodine receptor and cytochrome P450 CYP9A186 mutations in insecticide-resistant field populations of Spodoptera exigua from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105153. [PMID: 35973775 DOI: 10.1016/j.pestbp.2022.105153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The beet armyworm, Spodoptera exigua is a global agricultural pest that is polyphagous, highly dispersive, and often difficult to control due to resistance to many insecticides. Previous studies showed that a target site mutation in the S. exigua ryanodine receptor (SeRyR) corresponding to I4743M contributes approximately 20-fold resistance to chlorantraniliprole, whereas a mutation in the cytochrome P450 enzyme CYP9A186 corresponding to F116V confers 200-fold to emamectin benzoate through enhanced metabolic detoxification. Here, high frequencies of mutations were found among six China S. exigua field populations collected from 2016 to 2019 resulting in SeRyR I4743M and CYP9A186 F116V substitutions, with some populations having high levels of resistance to chlorantraniliprole and emamectin benzoate, respectively. Whereas we found a significant correlation between emamectin benzoate resistance level and the allele frequency of CYP9A186 F116V, no significant correlation was found between chlorantraniliprole resistance level and SeRyR I4743M allele frequency in the six field populations. These results suggest that CYP9A186 F116V is a major resistance mechanism for emamectin benzoate in the tested field populations, whereas it is likely that resistance mechanisms other than SeRyR I4743M are responsible for resistance to chlorantraniliprole in the six China field populations. Because of the growing resistance to these two insecticides by S. exigua in China, the use of insecticidal compounds with different modes of action and/or other integrated pest management strategies are needed to further delay the evolution of insecticide resistance and effectively manage S. exigua in China.
Collapse
Affiliation(s)
- Haiyuan Teng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Okuma DM, Cuenca A, Nauen R, Omoto C. Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:626. [PMID: 35886802 PMCID: PMC9323691 DOI: 10.3390/insects13070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is an important lepidopteran pest in the Americas, and recently invaded the Eastern Hemisphere. In Brazil, FAW is considered the most destructive pest of corn and cotton. FAW has evolved resistance to many insecticides and Bacillus thuringiensis (Bt) proteins. Here, a large-scale monitoring was performed between 2019 and 2021 to assess diamide insecticide susceptibility in more than 65 FAW populations sampled in corn and cotton. We did not detect a significant shift in FAW susceptibility to flubendiamide, but a few populations were less affected by a discriminating rate. F2 screen results of 31 selected FAW populations across regions confirmed that the frequency of diamide resistance alleles remained rather stable. Two laboratory-selected strains exhibited high resistance ratios against flubendiamide, and cross-resistance to anthranilic diamides. Reciprocal crosses indicated that resistance is autosomal and (incompletely) recessive in both strains. F1 backcrosses suggested monogenic resistance, supported by the identification of an I4734M/K target-site mutation in the ryanodine receptor (RyR). Subsequent genotyping of field-collected samples employing a TaqMan-based allelic discrimination assay, revealed a low frequency of RyR I4790M/K mutations significantly correlated with phenotypic diamide resistance. Our findings will help to sustainably employ diamides in FAW resistance management strategies across crops.
Collapse
Affiliation(s)
- Daniela M. Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ana Cuenca
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred Nobel Str. 50, 40789 Monheim am Rhein, Germany
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
| |
Collapse
|
35
|
Kumari P, Jasrotia P, Kumar D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP. Biotechnological Approaches for Host Plant Resistance to Insect Pests. Front Genet 2022; 13:914029. [PMID: 35719377 PMCID: PMC9201757 DOI: 10.3389/fgene.2022.914029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Annually, the cost of insect pest control in agriculture crosses billions of dollars around the world. Until recently, broad-spectrum synthetic pesticides were considered as the most effective means of pest control in agriculture. However, over the years, the overreliance on pesticides has caused adverse effects on beneficial insects, human health and the environment, and has led to the development of pesticide resistant insects. There is a critical need for the development of alternative pest management strategies aiming for minimum use of pesticides and conservation of natural enemies for maintaining the ecological balance of the environment. Host plant resistance plays a vital role in integrated pest management but the development of insect-resistant varieties through conventional ways of host plant resistance takes time, and is challenging as it involves many quantitative traits positioned at various loci. Biotechnological approaches such as gene editing, gene transformation, marker-assisted selection etc. in this direction have recently opened up a new era of insect control options. These could contribute towards about exploring a much wider array of novel insecticidal genes that would otherwise be beyond the scope of conventional breeding. Biotechnological interventions can alter the gene expression level and pattern as well as the development of transgenic varieties with insecticidal genes and can improve pest management by providing access to novel molecules. This review will discuss the emerging biotechnological tools available to develop insect-resistant engineered crop genotypes with a better ability to resist the attack of insect pests.
Collapse
Affiliation(s)
- Pritam Kumari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
- CCS Haryana Agricultural University, Hisar, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Deepak Kumar
- CCS Haryana Agricultural University, Hisar, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
36
|
Xu H, Pan Y, Li J, Yang F, Chen X, Gao X, Wen S, Shang Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105076. [PMID: 35715031 DOI: 10.1016/j.pestbp.2022.105076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Chemosensory proteins (CSPs) are a class of small transporter proteins expressed only in arthropods with various functions beyond chemoreception. Previous studies have been reported that CSPs are involved in the insecticide resistance. In this study, we found that AgoCSP1, AgoCSP4, and AgoCSP5 were constitutively overexpressed in an insecticide-resistant strain of Aphis gossypii and showed higher expression in broad body tissue (including fat bodies) than in the midgut but without tissue specificity. However, the function of these three upregulated AgoCSPs remains unknown. Here, we investigated the function of AgoCSPs in resistance to the diamide insecticide cyantraniliprole. Suppression of AgoCSP1, AgoCSP4 and AgoCSP5 transcription by RNAi significantly increased the sensitivity of resistant aphids to cyantraniliprole. Molecular docking and competitive binding assays indicated that these AgoCSPs bind moderate with cyantraniliprole. Transgenic Drosophila melanogaster expressing these AgoCSPs in the broad body or midgut showed higher tolerance to cyantraniliprole than control flies with the same genetic background; AgoCSP4 was more effective in broad body tissue, and AgoCSP1 and AgoCSP5 were more effective in the midgut, indicating that broad body and midgut tissues may be involved in the insecticide resistance mediated by the AgoCSPs examined. The present results strongly indicate that AgoCSPs participate in xenobiotic detoxification by sequestering and masking toxic insecticide molecules, providing insights into new factors involved in resistance development in A. gossypii.
Collapse
Affiliation(s)
- Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
37
|
Rabelo MM, Santos IB, Paula-Moraes SV. Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance Stability to Diamide and Pyrethroid Insecticides in the United States. INSECTS 2022; 13:insects13040365. [PMID: 35447807 PMCID: PMC9030708 DOI: 10.3390/insects13040365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Spodoptera exigua is a polyphagous pest, commonly known as beet armyworm. This pest is distributed worldwide and causes yield reduction in a variety of crops. Chemical control using synthetic insecticides is the primary strategy to manage beet armyworm. In the United States, beet armyworm resistance to both chlorantraniliprole and bifenthrin insecticides was first reported in 2020. Here we examined beet armyworm fitness and stability of resistance to chlorantraniliprole and pyrethroid insecticides, since knowledge of the stability of resistance is a crucial aspect when recommending rotation of insecticides with different mode of action. Our results have indicated no decrease in bifenthrin resistance for at least a three-year period (i.e., 27 generations) when insecticide exposure was suspended. However, susceptibility to chlorantraniliprole dropped approximately 160-fold through this three-year period. Our results indicate that beet armyworm resistance to bifenthrin is stable, but unstable to chlorantraniliprole. Unstable resistance can be successfully managed at field level by switching off the selection pressure with replacement of the insecticide other than a pyrethroid. Abstract In the United States, beet armyworm resistance to both chlorantraniliprole and bifenthrin insecticides was first reported in 2020. Here we examined beet armyworm fitness and stability of resistance to chlorantraniliprole and pyrethroid insecticides since knowledge of the stability of resistance is a crucial aspect when recommending rotation of insecticides with different mode of action. Concentration-mortality bioassays were performed with field and laboratory susceptible populations. The F2, F13, and F27 generations of the field-derived population, maintained in the laboratory without insecticide, were exposed to commercial formulations of bifenthrin and chlorantraniliprole using the leaf-dip bioassay method (IRAC n. 007). Insects from F27 had the fitness components (survival, body weight, development time) documented and compared by LSM in each insecticide concentration tested. The resistance ratio to chlorantraniliprole reached 629, 80, 15-fold at F2, F13, and F27, respectively. These results contrast with an over 1000-fold resistance ratio to bifenthrin in all generations. The field-derived population had fitness reduced by chlorantraniliprole, but not by bifenthrin. In summary, the resistance of beet armyworm to bifenthrin was stable with no shift in fitness. In contrast, resistance to chlorantraniliprole was not stable through the generations kept in the laboratory without selection pressure, likely due to fitness cost.
Collapse
|
38
|
Zuo YY, Xue YX, Wang ZY, Ren X, Aioub AAA, Wu YD, Yang YH, Hu ZN. Knockin of the G275E mutation of the nicotinic acetylcholine receptor (nAChR) α6 confers high levels of resistance to spinosyns in Spodoptera exigua. INSECT SCIENCE 2022; 29:478-486. [PMID: 33998150 DOI: 10.1111/1744-7917.12922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Spinosyns, including spinosad and spinetoram, act on the insect central nervous system, gradually paralyzing or destroying the target insect. Spinosad resistance is associated with loss-of-function mutations in the nicotinic acetylcholine receptor (nAChR) α6 subunit in a number of agricultural pests. Using gene editing, nAChR α6 has been verified as a target for spinosyns in five insect species. Recently, a point mutation (G275E) in exon 9 of nAChR α6 was identified in spinosad-resistant strains of Thrips palmi and Tuta absoluta. To date, no in vivo functional evidence has been obtained to support that this mutation is involved in spinosyn resistance in lepidopteran pests. In this study, the G275E mutation was introduced into the nAChR of Spodoptera exigua using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) gene-editing technology. Reverse transcriptase-polymerase chain reaction and sequencing confirmed that this mutation was present in exon 9 of the nAChR transcripts in the edited 275E strain. The results of bioassays showed that the 275E strain was highly resistant to spinosad (230-fold) and spinetoram (792-fold) compared to the unedited background strain, directly confirming that the G275E mutation of the nAChR α6 subunit confers high levels of spinosyn resistance in S. exigua. Inheritance analysis showed that the resistance trait is autosomal and incompletely recessive. This study employs a reverse genetics approach to validate the functional role played by the G275E mutation in nAChR α6 of S. exigua in spinosyns resistance and provides another example of the use of CRISPR/Cas9 gene-editing technology to confirm the role played by candidate target site mutations in insecticide resistance.
Collapse
Affiliation(s)
- Ya-Yun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu-Xin Xue
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ze-Yu Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Xuan Ren
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Yi-Dong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Hua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhao-Nong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| |
Collapse
|
39
|
Elias Oliveira Padovez F, Hideo Kanno R, Omoto C, Sartori Guidolin A. Fitness costs associated with chlorantraniliprole resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) strains with different genetic backgrounds. PEST MANAGEMENT SCIENCE 2022; 78:1279-1286. [PMID: 34854222 DOI: 10.1002/ps.6746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spodoptera frugiperda (J.E. Smith) is a difficult pest to manage mainly because of its resistance to insecticides and Bt proteins. We evaluated fitness costs of S. frugiperda resistant strains to diamide insecticides with different genetic backgrounds aiming to highlight the importance of using isogenic strains. We established a near-isogenic strain of S. frugiperda resistant to diamides (Iso-RR), using a chlorantraniliprole resistant strain (RR) selected from a field-collected population and a susceptible reference strain (SS). Fitness costs were assayed using strains with close-related genetic backgrounds (Iso-RR and SS) and strains with distant-related genetic backgrounds (RR and SS). RESULTS No fitness cost associated with chlorantraniliprole resistance in S. frugiperda was observed using the Iso-RR strain, based on life history traits. The only parameter that differs between Iso-RR and SS strains was the mean length of a generation (T), whereas the Iso-RR strain presented T = 35.8 and SS strain showed T = 34.6. On the other hand, a significant fitness cost was detected using the RR strain. All population growth parameters differ between RR and SS strains. Based on the intrinsic rate of population increase (rm ) parameter, the relative fitness estimated was 1.02 for the Iso-RR strain and 0.64 for the RR strain. CONCLUSION The genetic background of the resistant strains alters fitness cost outcomes. The RR strain showed fitness costs associated with resistance, but the Iso-RR did not. Our work supports the decision-making process of resistance management programs and adds to the growing body of research that enlightens the importance of strain genetics in fitness cost experiments.
Collapse
Affiliation(s)
- Fernando Elias Oliveira Padovez
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, Brazil
| | - Rubens Hideo Kanno
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, Brazil
| | - Aline Sartori Guidolin
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, Brazil
| |
Collapse
|
40
|
Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernández-Grandon GM, Desneux N, Rehman M, Fahad S, Lu Y. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1746-1762. [PMID: 34709552 DOI: 10.1007/s11356-021-16974-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Hubei, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Nicolas Desneux
- UMR ISA, Université Côte d'Azur, INRAE, CNRS, 06000, Nice, France
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
41
|
Shabbir MZ, Yang X, Batool R, Yin F, Kendra PE, Li ZY. Bacillus thuringiensis and Chlorantraniliprole Trigger the Expression of Detoxification-Related Genes in the Larval Midgut of Plutella xylostella. Front Physiol 2021; 12:780255. [PMID: 34966290 PMCID: PMC8710669 DOI: 10.3389/fphys.2021.780255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diamondback moth (DBM), Plutella xylostella (L.), has developed resistance to many insecticides. The molecular mechanism of DBM resistance to Bt-G033A combined with chlorantraniliprole (CL) remains undefined. Methods: In this study, field-resistant strains of Plutella xylostella to three pesticides, namely, Bacillus thuringiensis (Bt) toxin (Bt-G033A), CL, and a mixture of Bt + CL, were selected to evaluate the resistance level. Additionally, transcriptomic profiles of a susceptible (SS-DBM), field-resistant (FOH-DBM), Bt-resistant (Bt-DBM), CL-resistant (CL-DBM), and Bt + CL-resistant (BtC-DBM) strains were performed by comparative analysis to identify genes responsible for detoxification. Results: The Bt-G033A was the most toxic chemical to all the DBM strains among the three insecticides. The comparative analysis identified 25,518 differentially expressed genes (DEGs) between pairs/combinations of strains. DEGs were enriched in pathways related to metabolic and catalytic activity and ABC transporter in resistant strains. In total, 17 metabolic resistance-related candidate genes were identified in resistance to Bt-G033A, CL, and Bt + CL by co-expression network analysis. Within candidate genes, the majority was upregulated in key genes including cytochrome P450, glutathione S-transferase (GST), carboxylesterase, and acetylcholinesterase in CL- and BtC-resistant strains. Furthermore, aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, trypsin, and ABC transporter genes were eminent as Bt-resistance-related genes. Expression patterns of key genes by the quantitative real-time PCR (qRT-PCR) proved the credibility of transcriptome data and suggest their association in the detoxification process. Conclusion: To date, this study is the most comprehensive research presenting functional transcriptome analysis of DBM using Bt-G033A and CL combined insecticidal activity.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Xiangbing Yang
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
42
|
Ahmed S, Roy MC, Al Baki MA, Jung JK, Lee D, Kim Y. CRISPR/Cas9 mutagenesis against sex pheromone biosynthesis leads to loss of female attractiveness in Spodoptera exigua, an insect pestt. PLoS One 2021; 16:e0259322. [PMID: 34788305 PMCID: PMC8598075 DOI: 10.1371/journal.pone.0259322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Virgin female moths are known to release sex pheromones to attract conspecific males. Accurate sex pheromones are required for their chemical communication. Sex pheromones of Spodoptera exigua, a lepidopteran insect, contain unsaturated fatty acid derivatives having a double bond at the 12th carbon position. A desaturase of S. exigua (SexiDES5) was proposed to have dual functions by forming double bonds at the 11th and 12th carbons to synthesize Z9,E12-tetradecedienoic acid, which could be acetylated to be a main sex pheromone component Z9,E12-tetradecenoic acetate (Z9E12-14:Ac). A deletion of SexiDES5 using CRISPR/Cas9 was generated and inbred to obtain homozygotes. Mutant females could not produce Z9E12-14:Ac along with Z9-14:Ac and Z11-14:Ac. Subsequently, pheromone extract of mutant females did not induce a sensory signal in male antennae. They failed to induce male mating behavior including hair pencil erection and orientation. In the field, these mutant females did not attract any males while control females attracted males. These results indicate that SexiDES5 can catalyze the desaturation at the 11th and 12th positions to produce sex pheromone components in S. exigua. This study also suggests an application of the genome editing technology to insect pest control by generating non-attractive female moths.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, Korea
| | | | | | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Daeweon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
43
|
Huang JM, Sun H, He LF, Liu C, Ge WC, Ni H, Gao CF, Wu SF. Double ryanodine receptor mutations confer higher diamide resistance in rice stem borer, Chilo suppressalis. PEST MANAGEMENT SCIENCE 2021; 77:4971-4979. [PMID: 34223694 DOI: 10.1002/ps.6539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The striped rice stem borer, Chilo suppressalis (Lepidoptera: Pyraidae), is one of the most serious rice pests in China. Chlorantraniliprole was used extensively for C. suppressalis control over the past ten years, and some field populations have developed high resistance. In this study, we report the chlorantraniliprole resistance status of C. suppressalis in China and the resistance mechanism. RESULTS Significant geographical variations of chlorantraniliprole susceptibility were observed among 28 C. suppressalis field populations in 2019-2020. The LC50 values varied from 2907.874 mg L-1 (XS19) to 1.524 mg L-1 (QW19). Most tested field populations collected from Zhejiang, Jiangxi, Hunan and Anhui provinces in 2020 showed a high level of resistance to chlorantraniliprole (RR = 311.9-2060.1), whereas Jiangsu and Sichuan province populations remained susceptible. Analysis of RyR mutations showed that mutations of I4758M, Y4667D, Y4667C and Y4891F were present in resistant populations of C. suppressalis with different levels of chlorantraniliprole resistance. The frequency of the Y4667C mutation was correlated with chlorantraniliprole resistance in YY19 (RR = 702.6) and YY20 (RR = 1426.8) populations, with the homozygous mutation frequencies of 15.6% and 29.4%, respectively. High contributions of the I4758M and Y4667C double mutation to diamide resistance was demonstrated with CRISPR/Cas9-modified D. melanogaster. Flies bearing the Y4667C mutation (I4758M and Y4667C double mutation in C. suppressalis) exhibited high resistance to chlorantraniliprole (RR = 172.1), and moderate resistance to cyantraniliprole (RR = 79.2) and tetra chlorantraniliprole (RR = 43.6), which were higher than that of single mutations. CONCLUSIONS Chlorantraniliprole resistance in C. suppressalis is intensifying in China. RyR double mutations (i.e. I4758M and Y4667C) confer higher diamide resistance than single mutations.
Collapse
Affiliation(s)
- Jing-Mei Huang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Hao Sun
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Lin-Feng He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Chong Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Ge
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Huan Ni
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Jiang D, Qian C, Wang D, Wang F, Zhao S, Yang Y, Baxter SW, Wang X, Wu Y. Varying contributions of three ryanodine receptor point mutations to diamide insecticide resistance in Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:4874-4883. [PMID: 34176224 DOI: 10.1002/ps.6534] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although decoding the molecular mechanisms underlying insecticide resistance has often proven difficult, recent progress has revealed that specific mutations in the ryanodine receptor (RyR) of the diamondback moth, Plutella xylostella, can confer resistance to diamide insecticides. The extent to which specific RyR mutations contribute to the diamide resistance phenotype, the associated genetic traits and fitness costs remain limited. RESULTS Three field-evolved PxRyR mutations (G4946E, I4790 M, and I4790 K) were respectively introgressed into a common susceptible background strain (IPP-S) of P. xylostella with marker-assisted backcrossing. The mutations alone can result in moderate to high levels of resistance to five commercial diamides (flubendiamide, chlorantraniliprole, cyantraniliprole, tetraniliprole, and cyclaniliprole), and the resistance intensity mediated by the three mutations was hierarchical in order of I4790 K (1199- to >2778-fold) > G4946E (39- to 739-fold) > I4790 M (16- to 57-fold). Flubendiamide resistance was autosomal and incompletely recessive, and was significantly linked with the introgressed mutations in the three constructed strains. In addition, the resistance levels to flubendiamide of hybrid progeny from any two resistant strains fell in between the status of their parents. Furthermore, by comparing the net replacement rate, the fitness of 4946E, 4790 M and 4790 K strains were 0.77, 0.93 and 0.92 relative to the IPP-S strain, respectively. CONCLUSION Three independent PxRyR mutations confer varying degrees of resistance to diamides in P. xylostella. Among the three mutations, I4790 K confers highest levels of resistance (> 1000-fold) to all five commercial diamides. The findings can guide resistance management practices for diamides in P. xylostella and other arthropods.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cheng Qian
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danhui Wang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Falong Wang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shan Zhao
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Simon W Baxter
- Bio21 Institute, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Xingliang Wang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
46
|
Zhu B, Li L, Wei R, Liang P, Gao X. Regulation of GSTu1-mediated insecticide resistance in Plutella xylostella by miRNA and lncRNA. PLoS Genet 2021; 17:e1009888. [PMID: 34710088 PMCID: PMC8589219 DOI: 10.1371/journal.pgen.1009888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The evolution of resistance to insecticides is well known to be closely associated with the overexpression of detoxifying enzymes. Although the role of glutathione S-transferase (GST) genes in insecticide resistance has been widely reported, the underlying regulatory mechanisms are poorly understood. Here, one GST gene (GSTu1) and its antisense transcript (lnc-GSTu1-AS) were identified and cloned, and both of them were upregulated in several chlorantraniliprole-resistant Plutella xylostella populations. GSTu1 was confirmed to be involved in chlorantraniliprole resistance by direct degradation of this insecticide. Furthermore, we demonstrated that lnc-GSTu1-AS interacted with GSTu1 by forming an RNA duplex, which masked the binding site of miR-8525-5p at the GSTu1-3′UTR. In summary, we revealed that lnc-GSTu1-AS maintained the mRNA stability of GSTu1 by preventing its degradation that could have been induced by miR-8525-5p and thus increased the resistance of P. xylostella to chlorantraniliprole. Our findings reveal a new noncoding RNA-mediated pathway that regulates the expression of detoxifying enzymes in insecticide-resistant insects and offer opportunities for the further understanding of the mechanisms of insecticide and drug resistance. The development of insecticide resistance in insect pests is a worldwide concern and a major problem in agriculture. Understanding the genetics of insecticide resistance is critical for effective crop protection. Plutella. xylostella (L.), a major pest of cruciferous crops, has developed resistance to almost all kinds of insecticide, and has become one of the most resistant pests in the world. Overexpression of detoxification enzymes is closely associated with insecticide resistance, but researches on their regulatory mechanism are still very limited. Here, GSTu1 was identified to be upregulated in several chlorantraniliprole-resistant P. xylostella populations and was confirmed to be involved in chlorantraniliprole resistance by direct degradation of this insecticide. Further, lnc-GSTu1-AS transcribed from the opposite DNA strand to GSTu1 was identified to be able to enhance the mRNA stability of GSTu1 by blocking miRNA activity, and thus increased the resistance of P. xylostella to chlorantraniliprole. The results provide further insights into the mechanisms underlying metabolic resistance.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Rui Wei
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail:
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Yao S, Yang Y, Xue Y, Zhao W, Liu X, Du M, Yin X, Guan R, Wei J, An S. New insights on the effects of spinosad on the development of Helicoverpa armigera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112452. [PMID: 34198186 DOI: 10.1016/j.ecoenv.2021.112452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Helicoverpa armigera (cotton bollworm) is one of the most destructive pests worldwide. Due to resistance to Bacillus thuringiensis and conventional insecticides, an effective management strategy to control this pest is urgently needed. Spinosad, a natural pesticide, is considered an alternative; however, the mechanism underlying the developmental effects of sublethal spinosad exposure remains elusive. In this study, the mechanism was examined using an insect model of H. armigera. Results confirmed that exposure to sublethal spinosad led to reduced larval wet weight, delayed larval developmental period, caused difficulty in molting, and deformed pupae. Further investigation demonstrated that exposure to sublethal spinosad caused a significant decrease in 20E titer and increase in JH titer, thereby leading to the discordance between 20E and JH titers, and consequently alteration in the expression levels of HR3 and Kr-h1. These results suggested that sublethal spinosad caused hormonal disorders in larvae, which directly affect insect development. Our study serves as a reference and basis for the toxicity evaluation of spinosad on molting and pupation in insect metamorphosis, which may contribute to identifying targets for effective control of cotton bollworm.
Collapse
Affiliation(s)
- Shuangyan Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Yang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuying Xue
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
48
|
Samurkas A, Yao L, Hadiatullah H, Ma R, Xie Y, Sundarraj R, Zuilhof H, Yuchi Z. Ryanodine receptor as insecticide target. Curr Pharm Des 2021; 28:26-35. [PMID: 34477510 DOI: 10.2174/1381612827666210902150224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
Ryanodine receptor (RyR) is one of the primary targets of commercial insecticides. The diamide insecticide family, including flubendiamide, chlorantraniliprole, cyantraniliprole, etc, targets insect RyRs and can be used to control a wide range of destructive agricultural pests. The diamide insecticides are highly selective against lepidopteran and coleopteran pests with relatively low toxicity for non-target species, such as mammals, fishes, and beneficial insects. However, recently mutations identified on insect RyRs have emerged and caused resistance in several major agricultural pests throughout different continents. This review paper summarizes the recent findings on structure and function of insect RyRs as insecticide target. Specifically, we examine the structures of RyRs from target and non-target species, which reveals the molecular basis for insecticide action and selectivity. We also examine the structural and functional changes of RyR caused by the resistance mutations. Finally, we examine the progress in RyR structure-based insecticide design, and discuss how this might help the development of new generation of green insecticides.
Collapse
Affiliation(s)
- Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Yao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ruifang Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunxun Xie
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
50
|
Zuo Y, Shi Y, Zhang F, Guan F, Zhang J, Feyereisen R, Fabrick JA, Yang Y, Wu Y. Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genet 2021; 17:e1009680. [PMID: 34252082 PMCID: PMC8297932 DOI: 10.1371/journal.pgen.1009680] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023] Open
Abstract
The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement of putative resistance genes for improved monitoring, management, and countering of field-evolved insecticide resistance. The avermectins, emamectin benzoate (EB) and abamectin are relatively new pesticides with reduced environmental risk that target a wide number of insect pests, including the beet armyworm, Spodoptera exigua, an important global pest of many crops. Unfortunately, field resistance to avermectins recently evolved in the beet armyworm, threatening the sustainable use of this class of insecticides. Here, we report a high-quality chromosome-level assembly of the beet armyworm genome and use bulked segregant analysis (BSA) to identify the locus of avermectin resistance, which mapped on 15-16 Mbp of chromosome 17. Knockout of the CYP9A186 gene that maps within this region by CRISPR/Cas9 gene editing fully restored EB susceptibility, implicating this gene in avermectin resistance. Heterologous expression and in vitro functional assays further confirm that a natural substitution (F116V) found in the substrate recognition site 1 (SRS1) of the CYP9A186 protein results in enhanced metabolism of EB and abamectin. Hence, the combined approach of coupling gene editing with BSA allows for the rapid identification of metabolic resistance genes responsible for insecticide resistance, which is critical for effective monitoring and adaptive management of insecticide resistance.
Collapse
Affiliation(s)
- Yayun Zuo
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Shi
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fang Guan
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianpeng Zhang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey A. Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, United States of America
| | - Yihua Yang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (YY); (YW)
| | - Yidong Wu
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (YY); (YW)
| |
Collapse
|