1
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. EMBO Rep 2025:10.1038/s44319-025-00476-8. [PMID: 40389758 DOI: 10.1038/s44319-025-00476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~50 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available information is limited by the incomplete data and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional, and evolutionary studies to generate an integrated dataset and associated visualizations of these sensory neuron pathways, creating an unprecedented resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. Such examples emphasize the power of this resource to promote further understanding of the construction, function, and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jérôme Mermet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Keita Endo
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Jiang L, Wang P, Li C, Shen D, Chen A, Qian H, Zhao Q. Compensatory effects of other olfactory genes after CRISPR/cas9 editing of BmOR56 in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101275. [PMID: 38901107 DOI: 10.1016/j.cbd.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Bombyx mori is an oligophagous economic insect. Cis-Jasmone is one of the main substances in mulberry leaf that attract silkworm for feeding and BmOR56 is its receptor. Potential interaction ways between BmOR56 and cis-Jasmone were explored, which included some crucial amino acids such as Gln172, Val173, Ser176, Lys182, His322, and Arg345. BmOR56 was edited using CRISPR/cas9 for Qiufeng, and a homozygous knockout strain QiufengM was obtained. Compared with Qiufeng, the feeding ability of QiufengM on mulberry leaf did not change significantly, but on artificial diet decreased significantly. QiufengM also showed a dependence on the concentration of mulberry leaf powder. The result indicated that other olfactory genes had a compensatory effect on the attractance of mulberry leaf after the loss of BmOR56. Transcriptome analysis of antennae showed that many genes differentially expressed between Qiufeng and QiufengM, which involved in olfactory system, glucose metabolism, protein metabolism, amino acid metabolism, and insect hormone biosynthesis. Particularly, BmIR21, BmOR53 and BmOR27 were significantly up-regulated, which may have a compensatory effect on BmOR56 loss. In addition, detoxification mechanism was activated and may cause the passivation of feeling external signals in silkworm.
Collapse
Affiliation(s)
- Li Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Pingyang Wang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Cong Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Liu X, Shi L, Khashaveh A, Shan S, Lv B, Gu S, Zhang Y. Loss of Binding Capabilities in an Ecologically Important Odorant Receptor of the Fall Armyworm, Spodoptera frugiperda, by a Single Point Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13003-13013. [PMID: 37625381 DOI: 10.1021/acs.jafc.3c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Olfaction plays a crucial role in locating food sources, mates, and spawning sites in the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). In the current study, SfruOR14, a highly conserved odorant receptor (OR) in lepidopteran species, was newly uncovered in S. frugiperda. In two-electrode voltage clamp recordings, the SfruOR14/Orco complex was narrowly tuned to six volatile compounds including phenylacetaldehyde (PAA), benzaldehyde, heptaldehyde, (E)-2-hexen-1-al, cinnamaldehyde, and 2-phenylethanol, among which PAA showed the strongest binding affinity. Subsequent homology modeling and molecular docking revealed that Phe79, His83, Tyr149, Pro176, Gln177, Leu202, and Thr348 in SfruOR14 were the key binding residues against the six ligands. Finally, as a result of site-directed mutagenesis, the SfruOR14His83Ala mutant completely lost its binding capabilities toward all ligands. Taken together, our findings provide valuable insights into understanding the interaction between SfruOR14 and the chemical ligands including PAA, which can help to design novel olfactory modulators for pest control.
Collapse
Affiliation(s)
- Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longfei Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Huff RM, Pitts RJ. Functional conservation of Anopheline linalool receptors through 100 million years of evolution. Chem Senses 2022; 47:bjac032. [PMID: 36458901 PMCID: PMC9717389 DOI: 10.1093/chemse/bjac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Insects rely on olfactory receptors to detect and respond to diverse environmental chemical cues. Detection of semiochemicals by these receptors modulates insect behavior and has a direct impact on species fitness. Volatile organic compounds (VOCs) are released by animals and plants and can provide contextual cues that a blood meal host or nectar source is present. One such VOC is linalool, an enantiomeric monoterpene, that is emitted from plants and bacteria species. This compound exists in nature as one of two possible stereoisomers, (R)-(-)-linalool or (S)-(+)-linalool. In this study, we use a heterologous expression system to demonstrate differential responsiveness of a pair of Anopheline odorant receptors (Ors) to enantiomers of linalool. The mosquitoes Anopheles gambiae and Anopheles stephensi encode single copies of Or29 and Or53, which are expressed in the labella of An. gambiae. (S)-(+)-linalool activates Or29 orthologs with a higher potency than (R)-(-)-linalool, while the converse is observed for Or53 orthologs. The conservation of these receptors across a broad range of Anopheline species suggests they may function in the discrimination of linalool stereoisomers, thereby influencing the chemical ecology of mosquitoes. One potential application of this knowledge would be in the design of novel attractants or repellents to be used in integrated pest management practices.
Collapse
Affiliation(s)
- Robert M Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
6
|
Pitts RJ, Huff RM, Shih SJ, Bohbot JD. Identification and functional characterization of olfactory indolergic receptors in Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103653. [PMID: 34600101 DOI: 10.1016/j.ibmb.2021.103653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In mosquitoes, indolic compounds are detected by a group of olfactory indolergic Odorant Receptors (indolORs). The ancient origin of indole and 3-methylindole as chemical signals suggest that they may be detected by insects outside the Culicidae clade. To test this hypothesis, we have identified potential indolOR genes in brachyceran flies based on sequence homology. Because of the crucial roles of indolic compounds in oviposition and foraging, we have focused our attention on the housefly Musca domestica. Using a heterologous expression system, we have identified indolOR transcript expression in the female antennae, and have characterized MdomOR30a and MdomOR49b as 3-methylindole and indole receptors, respectively. We have identified a set of 92 putative indolOR genes encoded in the genomes of Culicoidea, Psychodidae and brachycera, described their phylogenetic relationships, and exon/intron structures. Further characterization of indolORs will impact our understanding of insect chemical ecology and will provide targets for the development of novel odor-based tools that can be integrated into existing vector surveillance and control programs.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, USA
| | - Robert M Huff
- Department of Biology, Baylor University, Waco, TX, USA
| | - Shan Ju Shih
- Department of Biology, Baylor University, Waco, TX, USA
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| |
Collapse
|