1
|
Nunes MDS, McGregor AP. Developmental evolution in fast-forward: insect male genital diversification. Trends Genet 2025; 41:345-356. [PMID: 39578177 DOI: 10.1016/j.tig.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Insect male genitalia are among the fastest evolving structures of animals. Studying these changes among closely related species represents a powerful approach to dissect developmental processes and genetic mechanisms underlying phenotypic diversification and the underlying evolutionary drivers. Here, we review recent breakthroughs in understanding the developmental and genetic bases of the evolution of genital organs among Drosophila species and other insects. This work has helped reveal how tissue and organ size evolve and understand the appearance of morphological novelties, and how these phenotypic changes are generated through altering gene expression and redeployment of gene regulatory networks. Future studies of genital evolution in Drosophila and a wider range of insects hold great promise to help understand the specification, differentiation, and diversification of organs more generally.
Collapse
Affiliation(s)
- Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
2
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Jiang YX, Li MY, Han Q, Tan JL, Wang ZY, Jing TZ. Transgenic poplar (Populus davidiana×P. bolleana Loucne) expressing dsRNA of insect chitinase gene: lines identification and resistance assay. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:21. [PMID: 39225032 PMCID: PMC11369501 DOI: 10.1093/jisesa/ieae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Poplar is a valuable tree species that is distributed all over the world. However, many insect pests infest poplar trees and have caused significant damage. To control poplar pests, we transformed a poplar species, Populus davidiana × P. bolleana Loucne, with the dsRNA of the chitinase gene of a poplar defoliator, Clostera anastomosis (Linnaeus) (Lepidoptera: Notodontidae), employing an Agrobaterium-mediated approach. The transgenic plant has been identified by cloning the T-DNA flanking sequences using TAIL-PCR and quantifying the expression of the dsRNA using qPCR. The toxicity assay of the transgenic poplar lines was carried out by feeding the target insect species (C. anastomosis). The results showed that, in C. anastomosis, the activity of chitinase was significantly decreased, consistent with the expression on mRNA levels, and the larval mortality was significantly increased. These results suggested that the transgenic poplar of dsRNA could be used for pest control.
Collapse
Affiliation(s)
- Yun-Xiao Jiang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Man-Yu Li
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Qing Han
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jia-Lin Tan
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Zi-Yan Wang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Tian-Zhong Jing
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Li C, Li CQ, Chen ZB, Liu BQ, Sun X, Wei KH, Li CY, Luan JB. Wolbachia symbionts control sex in a parasitoid wasp using a horizontally acquired gene. Curr Biol 2024; 34:2359-2372.e9. [PMID: 38692276 DOI: 10.1016/j.cub.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.
Collapse
Affiliation(s)
- Ce Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kai-Heng Wei
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen-Yi Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
5
|
Chen Y, Zhang Y, Ai S, Xing S, Zhong G, Yi X. Female semiochemicals stimulate male courtship but dampen female sexual receptivity. Proc Natl Acad Sci U S A 2023; 120:e2311166120. [PMID: 38011549 PMCID: PMC10710021 DOI: 10.1073/pnas.2311166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
Chemical communication plays a vital role in mate attraction and discrimination among many insect species. Here, we document a unique example of semiochemical parsimony, where four chemicals act as both aphrodisiacs and anti-aphrodisiacs in different contexts in Bactrocera dorsalis. Specifically, we identified four female-specific semiochemicals, ethyl laurate, ethyl myristate, ethyl cis-9-hexadecenoate, and ethyl palmitate, which serve as aphrodisiacs to attract male flies and arouse male courtship. Interestingly, these semiochemicals, when sexually transferred to males during mating, can function as anti-aphrodisiacs, inhibiting the receptivity of subsequent female mates. We further showed that the expression of elongase11, a key enzyme involved in the biosynthesis of these semiochemicals, is under the control of doublesex, facilitating the exclusive biosynthesis of these four semiochemicals in females and guaranteeing effective chemical communication. The dual roles of these semiochemicals not only ensure the attractiveness of mature females but also provide a simple yet reliable mechanism for female mate discrimination. These findings provide insights into chemical communication in B. dorsalis and add elements for the design of pest control programs.
Collapse
Affiliation(s)
- Yaoyao Chen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Yuhua Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Shupei Ai
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Shuyuan Xing
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
6
|
Huang HJ, Zhang JL, Zhang CX. Insight into phenotypic plasticity in planthoppers. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101106. [PMID: 37625640 DOI: 10.1016/j.cois.2023.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Planthoppers possess an impressive ability to exhibit phenotypic plasticity, which allows them to adjust their morphology for migration, overwintering, and adaptation to different environmental conditions. The wing and color polyphenism are the two most outward morphologies. Wing polyphenism serves as a classic illustration of a life history trade-off between reproduction and migration, while color polyphenism is potentially correlated with the insect development and immunity. In this review, we present the important contributions that link environment cues to wing and color polyphenism, and highlight recent advances in insulin/insulin-like growth factor signaling-forkhead transcription factor subgroup O (FoxO) pathway-mediated wing development and tyrosine-melanin pathway-mediated coloration. Further work, particularly in the identification of the genes that FoxO regulates and in the elucidation of the intracellular signals that link the stimuli to the tyrosine-melanin pathway, is required.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jin-Li Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Institute of Insect Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Verhulst EC, Pannebakker BA, Geuverink E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101023. [PMID: 36958587 DOI: 10.1016/j.cois.2023.101023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Endosymbionts are maternally transmitted, and therefore benefit from maximizing female offspring numbers. Parthenogenesis-induction (PI) is the most effective type of manipulation for transmission, but has solely been detected in haplodiploid species, whereas cytoplasmic incompatibility (CI) is detected frequently across the arthropod phylum, including haplodiploids. This puzzling observation led us to hypothesize that the molecular sex-determination mechanism of the haplodiploid host may be a constraining factor in the ability of endosymbionts to induce parthenogenesis. Recent insights indicate that PI-endosymbionts may be able to directly manipulate sex-determination genes to induce the necessary steps required for PI in haplodiploids. However, sex-determination cascades vary extensively, so PI-induction would require a specialized and host-dependent tool set. Contrastingly, CI-related genes target conserved cell-cycle mechanisms, are located on mobile elements, and spread easily. Finally, endosymbiont-manipulations may have a strong impact on the effectiveness of haplodiploid biocontrol agents, but can also be used to enhance their efficacy.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Wageningen Univer sity & Research, Laboratory of Entomology, The Netherlands.
| | - Bart A Pannebakker
- Wageningen University & Research, Laboratory of Genetics, The Netherlands
| | - Elzemiek Geuverink
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), The Netherlands.
| |
Collapse
|
8
|
CRISPR/Cas9-Mediated Mutagenesis of Sex-Specific Doublesex Splicing Variants Leads to Sterility in Spodoptera frugiperda, a Global Invasive Pest. Cells 2022; 11:cells11223557. [PMID: 36428986 PMCID: PMC9688123 DOI: 10.3390/cells11223557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith), an emerging invasive pest worldwide, has posed a serious agricultural threat to the newly invaded areas. Although somatic sex differentiation is fundamentally conserved among insects, the sex determination cascade in S. frugiperda is largely unknown. In this study, we cloned and functionally characterized Doublesex (dsx), a "molecular switch" modulating sexual dimorphism in S. frugiperda using male- and female-specific isoforms. Given that Lepidoptera is recalcitrant to RNAi, CRISPR/Cas9-mediated mutagenesis was employed to construct S. frugiperda mutants. Specifically, we designed target sites on exons 2, 4, and 5 to eliminate the common, female-specific, and male-specific regions of S. frugiperda dsx (Sfdsx), respectively. As expected, abnormal development of both the external and internal genitalia was observed during the pupal and adult stages. Interestingly, knocking out sex-specific dsx variants in S. frugiperda led to significantly reduced fecundity and fertility in adults of corresponding sex. Our combined results not only confirm the conserved function of dsx in S. frugiperda sex differentiation but also provide empirical evidence for dsx as a potential target for the Sterile Insect Technique (SIT) to combat this globally invasive pest in a sustainable and environmentally friendly way.
Collapse
|
9
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|