1
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
2
|
Kamei T, Miyazaki J, Hori R, Saito H, Takahashi T, Shinohara KI, Miura M, Suzuki H. Spectral and HPLC Analyses of Synthesized Butin and Butein. Chem Pharm Bull (Tokyo) 2024; 72:648-657. [PMID: 38972722 DOI: 10.1248/cpb.c24-00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Butin and butein are significant bioactive flavanones derived from plants, existing as tautomers of each other. However, their physicochemical attributes, such as their spectral profiles under varying experimental conditions in aqueous solutions and established chromatographic methods for distinguishing between them, remain undetermined. In this study, we determined the basic properties of butin and butein using conventional spectroscopic, reversed-phase, and chiral HPLC analyses. The spectra of the synthesized butin and butein were analyzed using a UV-Vis spectrophotometer in several solvents with different polarities as well as in aqueous solutions at various pH values. Furthermore, the behavior of the measured spectra was reproduced by calculations to reveal the effects of the solvent and pH on the spectra of butin and butein in organic and aqueous solutions. Subsequently, we assessed the structural stability of butin and butein using reversed-phase HPLC, which revealed that butein is unstable compared with butin in a general culture medium. The synthesized butin was effectively separated into R- and S-isomers with positive and negative Cotton effects, respectively, via HPLC using a chiral column. These findings will aid in uncovering the individual properties of both butin and butein that may have been concealed by their tautomerism and enable the synthesis of S-butin, which is typically challenging and time-consuming to isolate.
Collapse
Affiliation(s)
- Takashi Kamei
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Jun Miyazaki
- Department of Natural Sciences, School of Engineering, Tokyo Denki University
| | - Ryoga Hori
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Tatsuo Takahashi
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Ken-Ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Masakazu Miura
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Hirokazu Suzuki
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| |
Collapse
|
3
|
Tan H, Huang Y, Dong S, Bai Z, Chen C, Wu X, Chao M, Yan H, Wang S, Geng D, Gao F. A Chiral Nanocomplex for Multitarget Therapy to Alleviate Neuropathology and Rescue Alzheimer's Cognitive Deficits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303530. [PMID: 37635125 DOI: 10.1002/smll.202303530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition characterized by inflammation, beta-amyloid (Aβ) plaques, and neurodegeneration, which currently lack effective treatments. Chiral nanomaterials have emerged as a promising option for treating neurodegenerative disorders due to their high biocompatibility, strong sustained release ability, and specific enantiomer selectivity. The development of a stimulus-responsive chiral nanomaterial, UiO-66-NH2 @l-MoS2 QDs@PA-Ni (MSP-U), for the treatment of AD is reported. MSP-U is found to stimulate neural stem cell (NSCs) differentiation, promote in situ hydrogen (H2 ) production, and clear Aβ plaques. l-MoS2 QDs modified with l-Cysteine (l-Cys) effectively enhance the differentiation of NSCs into neurons through circularly polarized near-infrared radiation. Doped-phytic acid nickel (PA-Ni) improves the activity of l-MoS2 QDs in scavenging reactive oxygen species at the lesion site via photocatalytic H2 production. Loading l-MoS2 QDs with UiO-66 type metal oxide suppresses electron-hole recombination effect, thereby achieving rapid charge separation and improving transport of photogenerated electrons, leading to significantly improved H2 production efficiency. The photothermal effect of MSP-U also clears the generated Aβ plaques. In vivo evaluations show that MSP-U improves spatial cognition and memory, suggesting a promising potential candidate for the treatment of AD using chiral nanomaterials.
Collapse
Affiliation(s)
- Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Shaoshen Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
4
|
Baghel K, Niranjan MK, Srivastava R. Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 2023; 22:2205-2218. [PMID: 37266906 DOI: 10.1007/s43630-023-00442-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Light has a very important function in the regulation of the normal physiology including the neuroendocrine system, biological rhythms, cognitive behavior, etc. The variation in photoperiod acts as a stressor due to imbalance in endogenous hormones. Estrogen and its receptors ER alpha and beta play a vital role in the control of stress response in birds. The study investigates the estrogenic effects of a well-known medicinal plant Withania somnifera (WS), mediated by estrogen receptor alpha (ERα) in the hypothalamic pre-optic area (POA) and paraventricular nuclei (PVN). Further the study elucidates its anti-oxidants and anti-apoptotic activities in the brain of Japanese quail. To validate this hypothesis, mature male quails were exposed to long day length for 3 months and then transferred to intermediate day length to become photorefractory (PR) while controls were still continued under long daylength. Supplementation of WS root extract in PR quail increases plasma estrogen and lowers corticosterone. Further, in PR quail the variation in light downregulates immunoreactivity of ERα, oxidative stress and antioxidant enzyme activities i.e. superoxide dismutase and catalase in the brain. Neuronal apoptosis was observed in the POA and PVN of PR quail as indicated by the abundant expression of Caspase-3 and p53 which reduces after the administration of WS root extract. The neuronal population also found to decrease in PR although it increased in WS administered quails. Further, the study concluded that change in photoperiod from 3 months exposure of 16L: 8D to 13.5L: 10.5D directly activates neuronal apoptosis via expression of Caspase3 and p53 expression in the brain and increases neuronal and gonadal oxidative stress while WS root extract reverses them via enhanced estrogen and its receptor ERα expression in the hypothalamic pre-optic and PVN area of Japanese quail.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | | | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
5
|
Ohmoto M, Takemoto M, Daikoku T. Butein inhibits corticosterone-induced apoptosis of Neuro2A cells by maintaining MEK-ERK signaling. IBRO Neurosci Rep 2023; 14:447-452. [PMID: 37252631 PMCID: PMC10212788 DOI: 10.1016/j.ibneur.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Stress-induced overactivation of glucocorticoid signaling may contribute to mental illness by inducing neuronal death and dysfunction. We previously reported that pretreatment with the plant flavonoid butein inhibits corticosterone (CORT)-induced apoptosis of Neuro2A (N2A) cells. In the current study, we examined whether MEK-ERK and PI3K-AKT signaling pathways are involved in neuroprotection by butein. N2A cells were pre-incubated with serum-free DMEM containing 0.5 μM butein for 30 min, and then incubated with serum-free DMEM containing 0.5 µM butein, 50 µM CORT, 50 µM LY294002, or 50 µM PD98059 as indicated for 24 h. We subsequently performed the MTT assay and the western blot analysis. As expected, CORT considerably reduced N2A cell viability and increased relative expression of the apoptosis effector cleaved caspase-3, whereas pretreatment with butein blocked these cytotoxic effects. Treatment with CORT alone also decreased both AKT and ERK protein phosphorylation. Butein pretreatment had no effect on AKT phosphorylation, and only partially reversed the reduction in phosphorylated ERK. However, cotreatment with butein and the PI3K inhibitor LY294002 during CORT exposure enhanced ERK phosphorylation, whereas cotreatment with butein and the ERK phosphorylation/activation inhibitor PD98059 enhanced AKT phosphorylation, suggesting that MEK-ERK negatively regulates AKT phosphorylation. Moreover, the protective efficacy of butein was blocked by PD98059 cotreatment but not LY294002 cotreatment. These findings suggest that butein protects neurons against glucocorticoid-induced apoptosis by sustaining ERK phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Masanori Ohmoto
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Masaya Takemoto
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tohru Daikoku
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
6
|
Cheng A, Zhang Y, Sun J, Huang D, Sulaiman JE, Huang X, Wu L, Ye W, Wu C, Lam H, Shi Y, Qian PY. Pterosin sesquiterpenoids from Pteris laeta Wall. ex Ettingsh. protect cells from glutamate excitotoxicity by modulating mitochondrial signals. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116308. [PMID: 36822346 DOI: 10.1016/j.jep.2023.116308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Pteris (Pteridaceae) has been used as a traditional herb for a long time. In particular, Pteris laeta Wall. ex Ettingsh. has been widely used in traditional Chinese medicine to treat nervous system diseases and some pterosin sesquiterpenes from Pteris show neuroprotective activity, but their underlying molecular mechanisms remain elusive. Therefore, to investigate the neuroprotective activity and working mechanism of pterosin sesquiterpenes from P. laeta Wall. ex Ettingsh. will provide a better understanding and guidance in using P. laeta Wall. ex Ettingsh. as a traditional Chinese medicine. AIM OF THE STUDY We aim to develop effective treatments for neurodegenerative diseases from pterosin sesquiterpenes by evaluating their neuroprotective activity and investigating their working mechanisms. MATERIALS AND METHODS Primary screening on the glutamate-induced excitotoxicity cell model was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Fluorescent-activated cell sorting (FACS) was used to analyze the activation level of glutamate receptors and mitochondria membrane potential after treatment. Transcriptomics and proteomics analysis was performed to identify possible targets of pterosin B. The key pathways were enriched by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The core targets were visualized by a protein-protein interaction network using STRING. The mRNA and protein expressions were evaluated using real-time quantitative polymerase chain reaction (Q-PCR) and western blot, respectively. Immunocytochemistry was performed to monitor mitochondrial and apoptotic proteins. Cellular reactive oxygen species (ROS) were measured by ROS assay, and Ca2+ was stained with Fluo-4 AM to quantify intracellular Ca2+ levels. RESULTS We found pterosin B from Pteris laeta Wall. ex Ettingsh. showed significant neuroprotective activity against glutamate excitotoxicity, enhancing cell viability from 43.8% to 105% (p-value: <0.0001). We demonstrated that pterosin B worked on the downstream signaling pathways of glutamate excitotoxicity rather than directly blocking the activation of glutamate receptors. Pterosin B restored mitochondria membrane potentials, alleviated intracellular calcium overload from 107.4% to 95.47% (p-value: 0.0006), eliminated cellular ROS by 36.55% (p-value: 0.0143), and partially secured cells from LPS-induced inflammation by increasing cell survival from 46.75% to 58.5% (p-value: 0.0114). Notably, pterosin B enhanced the expression of nuclear factor-erythroid factor 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) by 2.86-fold (p-value: 0.0006) and 4.24-fold (p-value: 0.0012), and down-regulated Kelch-like ECH-associated protein 1 (KEAP1) expression by 2.5-fold (p-value: 0.0107), indicating that it possibly promotes mitochondrial biogenesis and mitophagy to maintain mitochondria quality control and homeostasis, and ultimately inhibits apoptotic cell death. CONCLUSIONS Our work revealed that pterosin B protected cells from glutamate excitotoxicity by targeting the downstream mitochondrial signals, making it a valuable candidate for developing potential therapeutic agents in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Yan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Duli Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xin Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Long Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China; SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, 518060, China
| | - Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Yusheng Shi
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
| |
Collapse
|
7
|
A Famous Chinese Medicine Formula: Yinhuo Decoction Antagonizes the Damage of Corticosterone to PC12 Cells and Improves Depression by Regulating the SIRT1/PGC-1α Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3714857. [PMID: 35281603 PMCID: PMC8916861 DOI: 10.1155/2022/3714857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
The study aimed to explore the antidepressant effect of Yinhuo Decoction and further to explore its underlying molecular mechanism acting on depressant. Here, high-performance liquid chromatography (HPLC) analysis was used to the composition analysis. Postmenopausal depression (PMD) model and corticosterone (CORT)-induced cell model were constructed. Adrenal coefficient and hematoxylin and eosin staining were applied to assess changes in the adrenal glands. MTT staining, Hoechst 33342 staining, and JC-1 fluorescence staining were used to detect the PC12 activity and apoptosis. CORT and oxidative stress indicators were measured using commercial kits. Western blot and immunohistochemical were used to detect the protein expression of GCR. In addition, genes related to SIRT1/PGC-1α pathway were also tested. In PMD model mice, Yinhuo Decoction evidently increased adrenal coefficient and relieved adrenal lesions. Meanwhile, we observed that Yinhuo Decoction reduced the CORT and GCR levels. In CORT-treated PC12 cells, Yinhuo Decoction remarkably reduced cytotoxicity and apoptosis. Besides, Yinhuo Decoction attenuated the oxidative stress response. Mechanically, we confirmed that Yinhuo Decoction reduced CORT-induced PC12 damage by regulating SIRT1/PGC-1α pathway. Thus, we concluded that Yinhuo Decoction antagonized CORT-induced injury in PC12 cells and improved depression in PMD mice. This provided a new direction for the treatment of depression.
Collapse
|
8
|
He Y, Xu L, Li Y, Tang Y, Rao S, Lin R, Liu Z, Chen H. Synergistic integration of dihydro-artemisinin with γ-aminobutyric acid results in a more potential anti-depressant. Bioorg Chem 2021; 110:104769. [PMID: 33677247 DOI: 10.1016/j.bioorg.2021.104769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
Three hybrids of dihydro-artemisinin (DHA) with β-aminopropionic acid, γ-aminobutyric acid, and histamine have been designed and synthesized. The conjugate of DHA with GABA labelled as 5b was confirmed the most active candidate against both Cort- and SNP-induced PC12 cell impairments with EC50 value of 8.04 ± 0.35, and 9.38 ± 0.56 μM, respectively. 5b was clearly highlighted as a good modulator on protein expression of Akt, Bcl-2, and Bax, indicating its functions against programmed cell apoptosis. 5b significantly reversed the Cort-induced excessive calcium influx and release from internal organelles. It was demonstrated the ability to express increased levels of β-tubulin III and to up-regulate phosphorylation level of cAMP response element-binding protein (CREB), leading to cell differentiation. It can penetrate blood - brain barrier (BBB) with propriate stability. Altogether, these data strongly support that 5b is a potential anti-depressant.
Collapse
Affiliation(s)
- Yepu He
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Liyu Xu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yanbing Li
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yinying Tang
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Shuwen Rao
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Rongtian Lin
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|