1
|
Aissa T, Aissaoui-Zid D, Moslah W, Khamessi O, Ksiksi R, Oltermann M, Ruck M, Zid MF, Srairi-Abid N. Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development. J Inorg Biochem 2024; 260:112672. [PMID: 39079338 DOI: 10.1016/j.jinorgbio.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.
Collapse
Affiliation(s)
- Taissir Aissa
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Wassim Moslah
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Oussema Khamessi
- University of Tunis El Manar, Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, Tunis, Tunisia.; Higher Institute of Biotechnology of Sidi Thabet ISBST, University of Manouba, 2020 Ariana,Tunisia
| | - Regaya Ksiksi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia; The Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG) of Soukra, Carthage University, 49 Avenue "August 13" Choutrana, II-2036 Soukra, Tunisia
| | - Maike Oltermann
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| |
Collapse
|
2
|
Chatkon A, Haller KJ, Haller JP. Substitutional/positional disorder of biguanide and guanylurea in the structure of a decavanadate complex [(Bg)(HV 10O 285-)] 0.4[(HGU +)(V 10O 286-)] 0.6(H 2Met 2+) 2(H 3O +)·8H 2O. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:456-466. [PMID: 39221976 DOI: 10.1107/s2052520624006929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
A hydrated salt of decavanadate containing diprotonated metforminium(2+) (H2Met2+), hydronium (H3O+) and either neutral biguanide (Bg) or monoprotonated guanylurea (HGU+) exhibits a previously seen complex charge-stabilized hydrogen-bonded network [Chatkon et al. (2022). Acta Cryst. B78, 798-808]. Charge balance is achieved in two ways through substitutional disorder: a 0.6 occupied HGU+ cation is paired with a V10O286- anion, and a 0.4 occupied neutral Bg molecule is paired with a HV10O285- anion, with the remaining charge in both cases balanced by two H2Met2+ dications and one H3O+ monocation. Bg/HGU+ moieties exhibit bifurcated N-H...O hydrogen bonding to the H3O+ cation and are substitutionally/positionally disordered along with the H3O+ cation about an inversion center. The HGU+ V10O286- synthon seen in the previous study occurs again. Bg exhibits bifurcated hydrogen bonding from two amino groups to two rows of cluster O atoms running diagonally across the equatorial plane of the HV10O285- anion with a return hydrogen bond from the cluster H atom to the imino N atom of the Bg. Thus, a Bg...cluster synthon similar to the HGU+...cluster synthon previously reported is found. The disordered moieties occupy spaces with excess volume in the 3-D network structure. Interestingly, when the crystallographic unit cell of the current compound, whose X-ray data was collected at 100 K, is compared with that of a previous compound exhibiting the same supramolecular framework, unit-cell parameter c does not shorten as a and b expectantly do because of the lower data collection temperature. The lack of contraction on unit-cell parameter c is possibly due to the supramolecular structure.
Collapse
Affiliation(s)
- Aungkana Chatkon
- Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 30000, Thailand
| | - Kenneth J Haller
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Joseph P Haller
- Home School, PO Box 43, Chom Surong, Nakhon Ratchasima, 30001, Thailand
| |
Collapse
|
3
|
Dridi R, Abdelkafi-Koubaa Z, Srairi-Abid N, Socha B, Zid MF. One-pot synthesis, structural investigation, antitumor activity and molecular docking approach of two decavanadate compounds. J Inorg Biochem 2024; 255:112533. [PMID: 38547784 DOI: 10.1016/j.jinorgbio.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Two bases-decavanadates coordination compounds [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O (1) and [(C7H11N2)4][Mg(H2O)6][O28V10].4H2O (2) have been synthesized and well characterized using vibrational spectroscopy (infrared), UV-Visible analysis and single crystal X-ray diffraction technique. The formula unit, for both compounds, is composed by the decavanadate [V10O28]6-, hydrated magnesium ion, a counter anion and free water molecules. The transition metal adopts octahedral geometries in both compound (1) and (2). The existence of a multitude of hydrogen bonding interactions for both compounds provides a stable three-dimensional supramolecular structure. Optical absorption reveals a band gap energy indicating the semi-conductive nature of the compound. In this study, the cytotoxic and the anti-proliferative activities of compounds (1) and (2) on human cancer cells (U87 and MDA-MB-231) were investigated. Both compounds demonstrated dose-dependent anti-proliferative activity on U87 and MDA-MB-231 with respective IC50 values of 0.82 and 0.31 μM and 1.4 and 1.75 μM. These data provide evidence on the potential anticancer activity of [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O and [(C7H11N2)4][Mg(H2O)2][O28V10].4H2O. Molecular docking of the compounds was also examined. Molecular docking studies were performed for both compounds against four target receptors and revealed better binding affinity with these targets in comparison to Cisplatin. Moreover, molecular docking investigations suggest that these compounds may function as potential inhibitors of proteins in brain and breast cells, exhibiting greater efficiency compared to Cisplatin.
Collapse
Affiliation(s)
- Rihab Dridi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia.
| | - Zaineb Abdelkafi-Koubaa
- University of Tunis El Manar, Salah Azaiz Institute, LR21SP01, Laboratory of Personalized Medicine, Precision Medicine and Investigation in Oncology, Tunis 1006, Tunisia.; University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, Tunis 1002, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, Tunis 1002, Tunisia
| | - Bhavesh Socha
- Department of Physics, Sardar Patel University, Gujarat, India
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia
| |
Collapse
|
4
|
Corona-Motolinia ND, Martínez-Valencia B, Noriega L, Sánchez-Gaytán BL, Melendez FJ, García-García A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, Castro ME, González-Vergara E. Tris(2-Pyridylmethylamine)V(O)2 Complexes as Counter Ions of Diprotonated Decavanadate Anion: Potential Antineoplastic Activity. Front Chem 2022; 10:830511. [PMID: 35252118 PMCID: PMC8888438 DOI: 10.3389/fchem.2022.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The synthesis and theoretical-experimental characterization of a novel diprotanated decavanadate is presented here due to our search for novel anticancer metallodrugs. Tris(2-pyridylmethyl)amine (TPMA), which is also known to have anticancer activity in osteosarcoma cell lines, was introduced as a possible cationic species that could act as a counterpart for the decavanadate anion. However, the isolated compound contains the previously reported vanadium (V) dioxido-tpma moieties, and the decavanadate anion appears to be diprotonated. The structural characterization of the compound was performed by infrared spectroscopy and single-crystal X-ray diffraction. In addition, DFT calculations were used to analyze the reactive sites involved in the donor-acceptor interactions from the molecular electrostatic potential maps. The level of theory mPW1PW91/6–31G(d)-LANL2DZ and ECP = LANL2DZ for the V atom was used. These insights about the compounds’ main interactions were supported by analyzing the noncovalent interactions utilizing the AIM and Hirshfeld surfaces approach. Molecular docking studies with small RNA fragments were used to assess the hypothesis that decavanadate’s anticancer activity could be attributed to its interaction with lncRNA molecules. Thus, a combination of three potentially beneficial components could be evaluated in various cancer cell lines.
Collapse
Affiliation(s)
- Nidia D. Corona-Motolinia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Beatriz Martínez-Valencia
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Francisco J. Melendez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amalia García-García
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: María Eugenia Castro, ; Enrique González-Vergara,
| |
Collapse
|
5
|
Louati M, Neacsa DM, Ksiksi R, Autret-Lambert C, Zid MF. Synthesis, structural, spectroscopic and thermal studies of a decavanadate complex (C4NH10)4[H2V10O28].2H2O. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Louati M, Ksiksi R, Elbini-Dhouib I, Mlayah-Bellalouna S, Doghri R, Srairi-Abid N, Zid MF. Synthesis, structure and characterization of a novel decavanadate, Mg(H2O)6(C4N2H7)4V10O28·4H2O, with a potential antitumor activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity. INORGANICS 2021. [DOI: 10.3390/inorganics9090067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biological molecules because of its high negative charge and oxygen-rich surface, this cluster is being widely studied both in vitro and in vivo as a treatment for several global health problems such as diabetes mellitus, cancer, and Alzheimer’s disease. Here, we report a new decavanadate compound with organic molecules synthesized in an aqueous solution and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The decavanadate anion was combined with 2-aminopyrimidine to form the compound [2-ampymH]6[V10O28]·5H2O (1). In the crystal lattice, organic molecules are stacked by π–π interactions, with a centroid-to-centroid distance similar to that shown in DNA or RNA molecules. Furthermore, computational DFT calculations of Compound 1 corroborate the hydrogen bond interaction between pyrimidine molecules and decavanadate anions, as well as the π–π stacking interactions between the central pyrimidine molecules. Finally, docking studies with test RNA molecules indicate that they could serve as other potential targets for the anticancer activity of decavanadate anion.
Collapse
|
8
|
Mahmoud GA, Ibrahim ABM, Mayer P. (NH
4
)
2
[Ni(H
2
O)
6
]
2
V
10
O
28
⋅ 4H
2
O; Structural Analysis and Bactericidal Activity against Pathogenic Gram Negative Bacteria. ChemistrySelect 2021. [DOI: 10.1002/slct.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ahmed B. M. Ibrahim
- Department of Chemistry Faculty of Science Assiut University Assiut 71516 Egypt
| | - Peter Mayer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13, Haus D 81377 München Germany
| |
Collapse
|
9
|
Cooper MA, Hawthorne FC, Kampf AR, Hughes JM. Identifying Protonated Decavanadate Polyanions. ACTA ACUST UNITED AC 2019. [DOI: 10.3749/canmin.1800069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mark A. Cooper
- Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Frank C. Hawthorne
- Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Anthony R. Kampf
- Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
| | - John M. Hughes
- Department of Geology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
10
|
Treviño S, González-Vergara E. Metformin-decavanadate treatment ameliorates hyperglycemia and redox balance of the liver and muscle in a rat model of alloxan-induced diabetes. NEW J CHEM 2019; 43:17850-17862. [DOI: 10.1039/c9nj02460c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2024]
Abstract
MetfDeca treatment ameliorate glucose and insulin levels, and reduce the levels of oxidized glutathione, reactive oxygen species, malondialdehyde, and 4-hydroxyalkenal; the superoxide and catalase activities, and glutathione levels were regulated.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| | - Enrique González-Vergara
- Laboratorio de Bioinorgánica Aplicada
- Centro de Química ICUAP
- Benemérita Universidad Autónoma de Puebla
- Puebla
- Mexico
| |
Collapse
|
11
|
Synthesis, structure and antitumor studies of a novel decavanadate complex with a wavelike two-dimensional network. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E. Decavanadate Salts of Cytosine and Metformin: A Combined Experimental-Theoretical Study of Potential Metallodrugs Against Diabetes and Cancer. Front Chem 2018; 6:402. [PMID: 30333969 PMCID: PMC6176007 DOI: 10.3389/fchem.2018.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P1 ¯ space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate μ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
13
|
Missina JM, Gavinho B, Postal K, Santana FS, Valdameri G, de Souza EM, Hughes DL, Ramirez MI, Soares JF, Nunes GG. Effects of Decavanadate Salts with Organic and Inorganic Cations on Escherichia coli, Giardia intestinalis, and Vero Cells. Inorg Chem 2018; 57:11930-11941. [DOI: 10.1021/acs.inorgchem.8b01298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Glaucio Valdameri
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Campus Jardim Botânico, Jardim Botânico, 80210-170 Curitiba, Paraná, Brazil
| | | | - David L. Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marcel I. Ramirez
- Fundação Osvaldo Cruz, Av. Brazil, Manguinhos, 4365 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
14
|
Crans DC, Peters BJ, Wu X, McLauchlan CC. Does anion-cation organization in Na+-containing X-ray crystal structures relate to solution interactions in inhomogeneous nanoscale environments: Sodium-decavanadate in solid state materials, minerals, and microemulsions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
|
16
|
Sures DJ, Serapian SA, Kozma K, Molina PI, Bo C, Nyman M. Electronic and relativistic contributions to ion-pairing in polyoxometalate model systems. Phys Chem Chem Phys 2017; 19:8715-8725. [DOI: 10.1039/c6cp08454k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experiment and theory delineate covalency, electrostatic association, and relativistic effect contributions to polyoxometalate-alkali ion-pairs in water.
Collapse
Affiliation(s)
- Dylan J. Sures
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | - Stefano A. Serapian
- Institut Català d'Investigació Química (ICIQ)
- The Barcelona Institute of Science and Technology
- 17. 43007 Tarragona
- Spain
| | - Károly Kozma
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | | | - Carles Bo
- Institut Català d'Investigació Química (ICIQ)
- The Barcelona Institute of Science and Technology
- 17. 43007 Tarragona
- Spain
| | - May Nyman
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|
17
|
Sánchez-Lara E, Pérez-Benítez A, Treviño S, Mendoza A, Meléndez F, Sánchez-Mora E, Bernès S, González-Vergara E. Synthesis and 3D Network Architecture of 1- and 16-Hydrated Salts of 4-Dimethylaminopyridinium Decavanadate, (DMAPH)6[V10O28]·nH2O. CRYSTALS 2016; 6:65. [DOI: 10.3390/cryst6060065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two hybrid materials based on decavanadates (DMAPH)6[V10O28]·H2O, (1) and (DMAPH)6[V10O28]·16H2O, (2) (where DMAPH = 4-dimethylaminopyridinium) were obtained by reactions under mild conditions at T = 294 and 283 K, respectively. These compounds are pseudopolymorphs, which crystallize in monoclinic P 2 1 / n and triclinic P 1 ¯ space groups. The structural analysis revealed that in both compounds, six cations DMAPH+ interact with decavanadate anion through N-H∙∙∙Odec hydrogen bonds; in 2, the hydrogen-bonding association of sixteen lattice water molecules leads to the formation of an unusual network stabilized by decavanadate clusters; this hydrogen-bond connectivity is described using graph set notation. Compound 2 differs basically in the water content which in turn increases the π∙∙∙π interactions coming from pyridinium rings. Elemental and thermal analysis (TGA/DSC) as well as FT-IR, FT-Raman, for 1 and 2 are consistent with both structures and are also presented.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| | - Aarón Pérez-Benítez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| | - Angel Mendoza
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| | - Francisco Meléndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, C. P. 72570 Puebla, Mexico
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, C. P. 72570 Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, C. P. 72570 Puebla, Mexico
| |
Collapse
|
18
|
Sánchez-Lombardo I, Baruah B, Alvarez S, Werst KR, Segaline NA, Levinger NE, Crans DC. Size and shape trump charge in interactions of oxovanadates with self-assembled interfaces: application of continuous shape measure analysis to the decavanadate anion. NEW J CHEM 2016. [DOI: 10.1039/c5nj01788b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using 51V NMR spectroscopy, dynamic light scattering and continuous shape analysis to characterize two polyoxometalate-encapsulation in reverse micelles.
Collapse
Affiliation(s)
| | - Bharat Baruah
- Department of Chemistry
- Colorado State University
- Colorado 80523-1872
- USA
- Department of Chemistry
| | - Santiago Alvarez
- Departament de Química Inorganica
- Institut de Química Teorica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Katarina R. Werst
- Department of Chemistry
- Colorado State University
- Colorado 80523-1872
- USA
| | | | - Nancy E. Levinger
- Department of Chemistry
- Colorado State University
- Colorado 80523-1872
- USA
| | - Debbie C. Crans
- Department of Chemistry
- Colorado State University
- Colorado 80523-1872
- USA
| |
Collapse
|
19
|
Sánchez-Lombardo I, Sánchez-Lara E, Pérez-Benítez A, Mendoza Á, Bernès S, González-Vergara E. Synthesis of Metforminium(2+) Decavanadates - Crystal Structures and Solid-State Characterization. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
A New Dicationic Ring [(Water)6–(Ammonium)2] Acts as a Building Block for a Supramolecular 3D Assembly of Decavanadate Clusters and 4-(N,N-dimethylamino)pyridinium Ions. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0779-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Chatkon A, Barres A, Samart N, Boyle SE, Haller KJ, Crans DC. Guanylurea metformium double salt of decavanadate, (HGU+)4(HMet+)2(V10O286−)·2H2O. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Luo SY, Wu XL, Hu QP, Wang JX, Liu CZ, Sun YY. Structural characterization of a new decavanadate compound with organic molecules and inorganic ions. J STRUCT CHEM+ 2012. [DOI: 10.1134/s0022476612050125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Han LW, Lin JX, Lü J, Cao R. New types of hybrid solids of tetravanadate polyanions and cucurbituril. Dalton Trans 2012; 41:10080-4. [DOI: 10.1039/c2dt30559c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Turner TL, Nguyen VH, McLauchlan CC, Dymon Z, Dorsey BM, Hooker JD, Jones MA. Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J Inorg Biochem 2011; 108:96-104. [PMID: 22005446 DOI: 10.1016/j.jinorgbio.2011.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022]
Abstract
Multiple studies report apparent effects of vanadium on various systems in vivo and in vitro. Vanadium species may be possible deterrents for the growth of the Leishmania parasite, which causes the sometimes deadly diseases known as leishmaniasis. The current studies focus specifically on decavanadate V(10)O(28)(6-) (V10), which has a potential to be a potent effector for disease treatment. The X-ray structure of a new solvate salt of V10, namely (NH(4))(6)V(10)O(28)·5H(2)O, is also reported. Other vanadium complexes with imidazole carboxylate, anthranilate, or picolinate were also evaluated. The yellow-orange oxoanion, used as the (NH(4))(6)V(10)O(28)·6H(2)O salt, was tested (at 1-100 μM) directly with two strains of Leishmania tarentolae promastigotes in culture to evaluate the effect on cell viability. Vanadium coordination complexes are known effective inhibitors of phosphatases. Using the artificial phosphatase substrate para-nitrophenylphosphate in the presence of a bovine calf intestine alkaline phosphatase enzyme, V10 (from 5 to 100 μM) was shown to be a mixed inhibitor for this enzyme and decreased the activity of the other two phosphatases tested. The effect of V10 and the other vanadium complexes on the activity of phosphoglycerate mutase B (PGAM), an important enzyme in glycolysis and gluconeogenesis, was also evaluated. At 10 μM, V10 was the most potent inhibitor of PGAM, with an apparent reduction of about 50%. Taken together, we speculate that V10 could have a role in treating Leishmania diseases.
Collapse
Affiliation(s)
- Timothy L Turner
- Illinois State University, Department of Chemistry, Normal, IL 61790–4160, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Konaka S, Ozawa Y, Shonaka T, Watanabe S, Yagasaki A. [H(x)TeV9O28]((5-x)-) (x=1 and 2): vanadotellurates with decavanadate structure. Inorg Chem 2011; 50:6183-8. [PMID: 21644558 DOI: 10.1021/ic200438p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new vanadotellurates, [HTeV(9)O(28)](4-) and [H(2)TeV(9)O(28)](3-) have been synthesized and structurally characterized as tetra-n-butylammonium (TBA) salts: TBA(4)[HTeV(9)O(28)]·2CH(3)CN [triclinic, space group P ̅1, a = 16.7102(6) Å, b = 17.4680(7) Å, c = 17.9634(7) Å, α = 74.412(1)°, β = 67.494(1)°, γ = 74.160(2)°, Z = 2] and TBA(3)[H(2)TeV(9)O(28)] [monoclinic, space group P2(1)/c, a = 13.0013(5) Å, b = 19.157(1) Å, c = 28.453(1) Å, β = 97.222(2)°, Z = 4]. The results of the structural analyses indicate that the four O atoms that bridge two V atoms on the Te side are the most basic ones in the structure. The results of density-functional theory (DFT) calculations support this view.
Collapse
Affiliation(s)
- Saki Konaka
- Department of Chemistry, Kwansei Gakuin University, Sanda 669-1337, Japan
| | | | | | | | | |
Collapse
|
26
|
Ng SW. Triclinic modification of tetra-kis-(triethyl-ammonium) dihydrogeno-deca-vanadate(V). Acta Crystallogr Sect E Struct Rep Online 2011; 67:m811-2. [PMID: 21754685 PMCID: PMC3120463 DOI: 10.1107/s1600536811019696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
Abstract
In the title ammonium polyoxometallate salt, (C6H16N)4[H2V10O28], the anion features O atoms engaged in μ6-, μ3- and μ2-bridging of adjacent VV atoms, confering an octahedral coordination at each of the twenty unique metal atoms. Two anions are linked by μ3- and μ2-bridged OH units across a center of inversion, forming a dimer which is linked to the cations by N—H⋯O hydrogen bonds. The cation is disordered over two positions in a 0.776 (4):0.224 (4) ratio in one of the two independent ion pairs in the asymmetric unit, and 0.627 (10):0.373 (10) in the other.
Collapse
Affiliation(s)
- Seik Weng Ng
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Truflandier LA, Boucher F, Payen C, Hajjar R, Millot Y, Bonhomme C, Steunou N. DFT-NMR Investigation and 51V 3QMAS Experiments for Probing Surface OH Ligands and the Hydrogen-Bond Network in a Polyoxovanadate Cluster: The Case of Cs4[H2V10O28]·4H2O. J Am Chem Soc 2010; 132:4653-68. [DOI: 10.1021/ja908973y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel A. Truflandier
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Florent Boucher
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christophe Payen
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Redouane Hajjar
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yannick Millot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christian Bonhomme
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Nathalie Steunou
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
28
|
A new polymeric chain in the dihydrogendecavanadate(V)–decavanadate(V) [NH2(CH2)4]5[V10O28H2]0.5[V10O28]0.5 obtained by in situ synthesis of the organic cation. INORG CHEM COMMUN 2010. [DOI: 10.1016/j.inoche.2009.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Yi Z, Yu X, Xia W, Zhao L, Yang C, Chen Q, Wang X, Xu X, Zhang X. Influence of the steric hindrance of organic amines on the supramolecular network based on polyoxovanadates. CrystEngComm 2010. [DOI: 10.1039/b916793p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Yan J, Zhao H, Li Z, Xing Y, Zeng X, Ge M, Niu S. A Self-Assembled 3D Hydrogen Bonded Network Constructed from Polyoxovanadate and Protonated Organic Substrate With a Solvent Hydrolysis Reaction. J CLUST SCI 2009. [DOI: 10.1007/s10876-009-0274-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Graia M, Ksiksi R, Driss A. Nonapiperidinium monohydrogen deca-vanadate tetra-nitrate. Acta Crystallogr Sect E Struct Rep Online 2009; 65:m953-4. [PMID: 21583402 PMCID: PMC2977420 DOI: 10.1107/s1600536809026555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/07/2009] [Indexed: 11/24/2022]
Abstract
The title compound, (C5H12N)9[HV10O28](NO3)4, contains a monoprotonated decavanadate polyanion which lies on an inversion center. All the piperidinium cations adopt chair conformations. In the crystal structure, intermolecular N—H⋯O hydrogen bonds form chains along [001]. As well as half of a polyanion, the asymmetric unit contains one full and two half-occupancy nitrate ions and four full occupancy and one half-occupancy piperidinium cations; the half-occupancy piperidinium cation is disordered over two general sites with occupancies of 0.32 and 0.18, and is, in turn, disordered over an inversion center.
Collapse
Affiliation(s)
- Mohsen Graia
- Laboratoire de Matériaux et de Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis-El Manar, 2092 El Manar II Tunis, Tunisia
| | | | | |
Collapse
|
32
|
Microwave Assisted Crystal Growth of a New Organic—Decavanadate Assembly: [V10O27(OH)] · 2(C6N2H14) · (C6N2H13) · (C6N2H12) · 2H2O. J Inorg Organomet Polym Mater 2009. [DOI: 10.1007/s10904-009-9271-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Lin JX, Lü J, Cao R, Chen JT, Su CY. Supramolecular assembly from decavanadate anion and decamethylcucurbit[5]uril. Dalton Trans 2009:1101-3. [DOI: 10.1039/b817537n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Thomas J, Agarwal M, Ramanan A, Chernova N, Whittingham MS. Copper pyrazole directed crystallization of decavanadates: synthesis and characterization of {Cu(pz)}4[{Cu(pz)3}2V10O28] and (Hpz)2[{Cu(pz)4}2V10O28]·2H2O. CrystEngComm 2009. [DOI: 10.1039/b815840a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Decavanadates with [Et3NH]+ and [Me2HN(CH2)2NHMe2]2+: Variation in protonation state and self-assembly. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yraola F, García-Vicente S, Marti L, Albericio F, Zorzano A, Royo M. Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem Biol Drug Des 2007; 69:423-8. [PMID: 17581236 DOI: 10.1111/j.1747-0285.2007.00516.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new vanadium salt, hexakis(benzylammonium) decavanadate (V) dihydrate (C(7)NH(10))(6)(V(10)O(28)).2H(2)O (1), has been synthesized as well as characterized chemically and biologically. An in vitro enzyme assay revealed that compound 1 is oxidized to the same extent as a combination of benzylamine and vanadate by the enzyme semicarbazide-sensitive amine oxidase (SSAO), and therefore can be considered an SSAO substrate. It also stimulates glucose uptake in isolated rat adipocytes in a dose-dependent manner. We describe here the results of (51)V-NMR experiments that, combined with the in vitro results, corroborate that compound 1 could act as a prodrug of di-peroxovanadate ([V(OH)(2)(OO)(2)(OH)(2)](2-)) insulin mimetics.
Collapse
Affiliation(s)
- Francesc Yraola
- Combinatorial Chemistry Unit, Barcelona Science Park, Josep Samitier 1, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Honda D, Ikegami S, Inoue T, Ozeki T, Yagasaki A. Protonation and Methylation of an Anderson-Type Polyoxoanion [IMo6O24]5-. Inorg Chem 2007; 46:1464-70. [PMID: 17256846 DOI: 10.1021/ic061881z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of protonated and methylated Anderson-type molybdoperiodates as well as the unprotonated [IMo6O24]5- have been synthesized and structurally characterized as tetra-n-butylammonium salts: [(n-C4H9)4N]5[IMo6O24] [monoclinic, space group C2/c, a = 33.6101(3) A, b = 15.2575(1) A, c = 24.0294(2) A, beta = 126.9569(3) degrees , Z = 4], [(n-C4H9)4N]4[IMo6O23(OH)] [monoclinic, space group P21/c, a = 9.5587(1) A, b = 24.1364(2) A, c = 18.2788(2) A, beta = 90.1562(5) degrees , Z = 2], [(n-C4H9)4N]3[IMo6O22(OH)2].2DMF [monoclinic, space group P21/a, a = 17.6105(4) A, b = 15.5432(5) A, c = 29.3316(9) A, beta = 91.475(3) degrees , Z = 4], [(n-C4H9)4N]4[IMo6O23(OMe)].3H2O [orthorhombic, space group Pbca, a = 17.0679(4) A, b = 25.6998(6) A, c = 20.7428(4) A, Z = 4], [(n-C4H9)4N]3[IMo6O22(OMe)2] [monoclinic, space group P21/n, a = 10.4009(1) A, b = 14.6658(3) A, c = 23.5395(4) A, beta = 100.324(1) degrees , Z = 2]. In all of these compounds, the [IMo6O24]5- anion is protonated or methylated selectively at O atoms shared by two Mo atoms. The results have also revealed that the protonated Anderson-type molybdoperiodates readily react with methanol in a very selective manner, while the unprotonated [IMo6O24]5- anion does not react with methanol under similar conditions.
Collapse
Affiliation(s)
- Daisuke Honda
- Department of Chemistry, Kwansei Gakuin University, Sanda 669-1337, Japan
| | | | | | | | | |
Collapse
|
38
|
Aureliano M, Gândara RMC. Decavanadate effects in biological systems. J Inorg Biochem 2005; 99:979-985. [PMID: 15833319 DOI: 10.1016/j.jinorgbio.2005.02.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 02/07/2023]
Abstract
Vanadium biological studies often disregarded the formation of decameric vanadate species known to interact, in vitro, with high-affinity with many proteins such as myosin and sarcoplasmic reticulum calcium pump and also to inhibit these biochemical systems involved in energy transduction. Moreover, very few in vivo animal studies involving vanadium consider the contribution of decavanadate to vanadium biological effects. Recently, it has been shown that an acute exposure to decavanadate but not to other vanadate oligomers induced oxidative stress and a different fate in vanadium intracellular accumulation. Several markers of oxidative stress analyzed on hepatic and cardiac tissue were monitored after in vivo effect of an acute exposure (12, 24 h and 7 days), to a sub-lethal concentration (5 mM; 1 mg/kg) of two vanadium solutions ("metavanadate" and "decavanadate"). It was observed that "decavanadate" promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in mitochondria in particular when "decavanadate" is administered. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo and in vitro effects induced by vanadium in biological systems.
Collapse
Affiliation(s)
- Manuel Aureliano
- CBME, Dept. Química e Bioquímica, FCT, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | |
Collapse
|