1
|
Castro AE, De Ungria MCA. Methods used in microbial forensics and epidemiological investigations for stronger health systems. Forensic Sci Res 2023; 7:650-661. [PMID: 36817258 PMCID: PMC9930754 DOI: 10.1080/20961790.2021.2023272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review discusses microbial forensics as an emerging science that finds application in protecting human health. It is important to distinguish naturally acquired infections from those caused by the intentional release of microorganisms to the environment. This information is crucial in formulating procedures against the spread of infectious diseases and prosecuting persons who may be involved in acts of biocrime, bioterrorism, or biowarfare. A comparison between epidemiological investigations and microbial forensic investigations is provided. In addition, a discussion on how microbial forensics strengthens health systems is included in this review. Microbial forensic investigations and epidemiologic examinations employ similar concepts and involve identifying and characterising the microbe of interest. Both fields require formulating an appropriate case definition, determining a pathogen's mode of transmission, and identifying the source(s) of infection. However, the two subdisciplines differ in their objectives. An epidemiological investigation aims to identify the pathogen's source to prevent the spread of the disease. Microbial forensics focuses on source-tracking to facilitate the prosecution of persons responsible for the spread of a pathogen. Both fields use molecular techniques in analysing and comparing DNA, gene products, and biomolecules to identify and characterise the microorganisms of interest. We included case studies to show methods used in microbial forensic investigations, a brief discussion of the public significance of microbial forensic systems, and a roadmap for establishing a system at a national level. This system is expected to strengthen a country's capacity to respond to public health emergencies. Several factors must be considered in establishing national microbial forensic systems. First is the inherent ubiquity, diversity, and adaptability of microorganisms that warrants the use of robust and accurate molecular typing systems. Second, the availability of facilities and scientists who have been trained in epidemiology, molecular biology, bioinformatics, and data analytics. Human resources and infrastructure are critical requirements because formulating strategies and allocating resources in times of infectious disease outbreaks must be data-driven. Establishing and maintaining a national microbial forensic system to strengthen capacities in conducting forensic and epidemiological investigations should be prioritised by all countries, accompanied by a national policy that sets the legislative framework and provides for the system's financial requirements.
Collapse
Affiliation(s)
- Arizaldo E. Castro
- Microbial Ecology of Terrestrial and Aquatic Systems Laboratory, Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines,CONTACT Arizaldo E. Castro
| | - Maria Corazon A. De Ungria
- DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City, Philippines,Program on Biodiversity, Ethnicity, and Forensics, Philippine Genome Center, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Evaluation of 16S rRNA Hypervariable Regions for Bioweapon Species Detection by Massively Parallel Sequencing. Int J Microbiol 2020; 2020:8865520. [PMID: 33061983 PMCID: PMC7533751 DOI: 10.1155/2020/8865520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022] Open
Abstract
Molecular detection and classification of the bacterial groups in a sample are relevant in several areas, including medical research and forensics. Sanger sequencing of the 16S rRNA gene is considered the gold standard for microbial phylogenetic analysis. However, the development of massively parallel sequencing (MPS) offers enhanced sensitivity and specificity for microbiological analyses. In addition, 16S rRNA target amplification followed by MPS facilitates the combined use of multiple markers/regions, better discrimination of sample background, and higher sample throughput. We designed a novel set of 16S rRNA gene primers for detection of bacterial species associated with clinical, bioweapon, and biohazards microorganisms via alignment of 364 sequences representing 19 bacterial species and strains relevant to medical and forensics applications. In silico results indicated that the hypervariable regions (V1V2), (V4V5), and (V6V7V8) support the resolution of a selected group of bacteria. Interspecies and intraspecies comparisons showed 74.23%–85.51% and 94.48%–99.98% sequencing variation among species and strains, respectively. Sequence reads from a simulated scenario of bacterial species mapped to each of the three hypervariable regions of the respective species with different affinities. The minimum limit of detection was achieved using two different MPS platforms. This protocol can be used to detect or monitor as low as 2,000 genome equivalents of bacterial species associated with clinical, bioweapon, and biohazard microorganisms and potentially can distinguish natural outbreaks of pathogenic microorganisms from those occurring by intentional release.
Collapse
|
3
|
Abstract
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes.
Collapse
Affiliation(s)
- Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes. Sci Rep 2016; 6:25904. [PMID: 27174456 PMCID: PMC4865750 DOI: 10.1038/srep25904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions.
Collapse
|
5
|
Abstract
Biothreats are a high priority concern for public safety and national security. The field of microbial forensics was developed to analyze evidence associated with biological crimes in which microbes or their toxins are used as weapons. Microbial forensics is the scientific discipline dedicated to analyzing evidence from a bioterrorism act, biocrime, hoax, or inadvertent microorganism/toxin release for attribution purposes. Microbial forensics combines the practices of epidemiology with the characterization of microbial and microbial-related evidence to assist in determining the specific source of the sample, as individualizing as possible, and/or the methods, means, processes and locations involved to determine the identity of the perpetrator(s) of an attack.
Collapse
|
6
|
Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA, Murch RS, Sajantila A, Schmedes SE, Ternus KL, Turner SD, Minot S. Validation of high throughput sequencing and microbial forensics applications. INVESTIGATIVE GENETICS 2014; 5:9. [PMID: 25101166 PMCID: PMC4123828 DOI: 10.1186/2041-2223-5-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/09/2014] [Indexed: 01/29/2023]
Abstract
High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nancy D Connell
- Rutgers New Jersey Medical School, Center for Biodefense, Rutgers University, Newark, New Jersey, USA
| | - Anna Bielecka-Oder
- Department of Epidemiology, The General K. Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Rita R Colwell
- CosmosID®, 387 Technology Dr, College Park, MD, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cindi R Corbett
- Bioforensics Assay Development and DiagnosticsSection, Science Technology and Core Services Division, National Microbiology Laboratory, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, OK, USA
| | - Mats Forsman
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | | | - Alemka Markotic
- University Hospital for Infectious Diseases “Fran Mihaljevic” and Medical School University of Rijeka, Zagreb, Croatia
| | - Stephen A Morse
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Stephen D Turner
- Public Health Sciences, Bioinformatics Core Director, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
7
|
Karlsson OE, Belák S, Granberg F. The Effect of Preprocessing by Sequence-Independent, Single-Primer Amplification (SISPA) on Metagenomic Detection of Viruses. Biosecur Bioterror 2013; 11 Suppl 1:S227-34. [DOI: 10.1089/bsp.2013.0008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Lambrou GI, Koultouki E, Adamaki M, Moschovi M. Resolving Sample Traces in Complex Mixtures with Microarray Analyses. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This chapter reviews the microarray technology and deal with the majority of aspects regarding microarrays. It focuses on today’s knowledge of separation techniques and methodologies of complex signal, i.e. samples. Overall, the chapter reviews the current knowledge on the topic of microarrays and presents the analyses and techniques used, which facilitate such approaches. It starts with the theoretical framework on microarray technology; second, the chapter gives a brief review on statistical methods used for microarray analyses, and finally, it contains a detailed review of the methods used for discriminating traces of nucleic acids within a complex mixture of samples.
Collapse
|
9
|
Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol 2010; 28:611-8. [PMID: 20961641 DOI: 10.1016/j.tibtech.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/14/2023]
Abstract
New sequencing technologies have made the production of bacterial genome sequences increasingly easy, and it can be confidently forecasted that vast genomic databases will be generated in the next few years. Here, we detail how collections of bacterial genomes from a particular species (population genomics libraries) have already been used to improve the design of several diagnostic assays for bacterial pathogens. Genome sequencing itself is also becoming more commonly used for epidemiological, forensic and clinical investigations. There is an opportunity for the further development of bioinformatic tools to bring even further value to bacterial diagnostic genomics.
Collapse
|
10
|
Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques 2009; 46:339-40, 342-50. [PMID: 19480629 DOI: 10.2144/000113136] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular biology tools have enhanced the capability of the forensic scientist to characterize biological evidence to the point where it is feasible to analyze minute samples and achieve high levels of individualization. Even with the forensic DNA field's maturity, there still are a number of areas where improvements can be made. These include: enabling the typing of samples of limited quantity and quality; using genetic information and novel markers to provide investigative leads; enhancing automation with robotics, different chemistries, and better software tools; employing alternate platforms for typing DNA samples; developing integrated microfluidic/microfabrication devices to process DNA samples with higher throughput, faster turnaround times, lower risk of contamination, reduced labor, and less consumption of evidentiary samples; and exploiting high-throughput sequencing, particularly for attribution in microbial forensics cases. Knowledge gaps and new directions have been identified where molecular biology will likely guide the field of forensics. This review aims to provide a roadmap to guide those interested in contributing to the further development of forensic genetics.
Collapse
|
11
|
Jackson SA, Mammel MK, Patel IR, Mays T, Albert TJ, LeClerc JE, Cebula TA. Interrogating genomic diversity of E. coli O157:H7 using DNA tiling arrays. Forensic Sci Int 2007; 168:183-99. [PMID: 16934953 DOI: 10.1016/j.forsciint.2006.06.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Here, we describe a novel microarray-based approach for investigating the genomic diversity of Escherichia coli O157:H7 in a semi-high throughput manner using a high density, oligonucleotide-based microarray. This microarray, designed to detect polymorphisms at each of 60,000 base-pair (bp) positions within an E. coli genome, is composed of overlapping 29-mer oligonucleotides specific for 60 equally spaced, 1000-bp loci of the E. coli O157:H7 strain EDL933 chromosome. By use of a novel 12-well microarray that permitted the simultaneous investigation of 12 strains, the genomes of 44 individual isolates of E. coli O157:H7 were interrogated. These analyses revealed more than 150 single nucleotide polymorphisms (SNPs) and several deletions and amplifications in the test strains. Pyrosequencing was used to confirm the usefulness of the novel SNPs by determining their allelic frequency among a collection of diverse isolates of E. coli O157:H7. The tiling DNA microarray system would be useful for the tracking and identification of individual strains of E. coli O157:H7 needed for forensic investigations.
Collapse
Affiliation(s)
- Scott A Jackson
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | | | | | | | | | | | | |
Collapse
|