1
|
Kugeler KJ, Scotty E, Hinckley AF, Hook SA, Nawrocki CC, Nikolai AM, Linz AM, Meece J, Schotthoefer AM. Epidemiology of Lyme Disease as Identified Through Electronic Health Records in a Large Midwestern Health System, 2016-2019. Open Forum Infect Dis 2025; 12:ofae758. [PMID: 39906321 PMCID: PMC11793028 DOI: 10.1093/ofid/ofae758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Background Lyme disease is the most common vector-borne disease in the United States; however, its frequency is not reliably measured through surveillance. Electronic health records (EHR) might capture the frequency and characteristics of Lyme disease cases more accurately. We queried EHR from 1 health system to describe the epidemiology of Lyme disease cases in Wisconsin during 2016-2019. Methods Within a cohort of persons evaluated for Lyme disease, we applied a Lyme disease case definition based on first-line antibiotics within 14 days of a Lyme disease diagnosis code or test order or on the same day as a related keyword in clinical notes. We compared characteristics of cases to those of cases reported through surveillance and reviewed medical charts to assess case definition validity. Results Among 67 289 possible Lyme disease events in the cohort, 13 494 (20.1%) met our Lyme disease case definition. Cases were more common among males, children 5-9 years, older adults, White non-Hispanic persons, and in the summer months. EHR-based Lyme disease incidence was 4-8 times that reported through surveillance. The EHR definition had moderately high sensitivity (83.4%) and specificity (71.1%) for confirmed and probable Lyme disease. Conclusions EHR queries show promise to capture the incidence of Lyme disease more completely and provide more robust clinical information than public health surveillance. Demographic and seasonal characteristics of EHR-identified cases were comparable to those identified through surveillance. Further algorithm refinement might improve accuracy of measuring Lyme disease in EHR systems.
Collapse
Affiliation(s)
- Kiersten J Kugeler
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, USA
| | - Erica Scotty
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Alison F Hinckley
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, USA
| | - Sarah A Hook
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, USA
| | - Courtney C Nawrocki
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, USA
| | - Anne M Nikolai
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Alexandra M Linz
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Jennifer Meece
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Anna M Schotthoefer
- Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
2
|
Alcón-Chino MET, Bonoldi VLN, Pereira RMR, Gazeta GS, Carvalho JPRS, Napoleão-Pêgo P, Durans AM, Souza ALA, De-Simone SG. New Epitopes for the Serodiagnosis of Human Borreliosis. Microorganisms 2024; 12:2212. [PMID: 39597601 PMCID: PMC11596413 DOI: 10.3390/microorganisms12112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lyme disease, a zoonotic infection caused by the bacterium Borrelia burgdorferi, is transmitted to humans through the bites of infected ticks. Its diagnosis primarily relies on serological methods; however, the existing borreliosis techniques have shown a variable sensitivity and specificity. Our study aimed to map IgG epitopes from five outer membrane proteins (Omp) from B. burgdorferi [Filament flagellar 41kD (PI1089), flagellar hook-associated protein (Q44767), Flagellar hook k2 protein (O51173), Putative Omp BURGA03 (Q44849), and 31 kDa OspA (P0CL66)] lipoprotein to find specific epitopes for the development of accurate diagnosis methods. Using the spot synthesis technique, a library of 380 peptides was constructed to identify linear B cell epitopes recognized by human IgG in response to specific B. burgdorferi-associated proteins. The reactivity of this epitope when chemically synthesized was then evaluated using ELISA with a panel of the patient's sera. Cross-reactivity was assessed through data bank access and in vitro analysis. Among the 19 epitopes identified, four were selected for further investigation based on their signal intensity, secondary structure, and peptide matching. Validation was performed using ELISA, and ROC curve analysis demonstrated a sensitivity of ≥85.71%, specificity of ≥92.31, accuracy of ≥90.7, and AUC value of ≥0.91 for all peptides. Our cross-reactivity analysis demonstrated that the Burg/02/huG, Burg/03/huG, and Burg/12/huG peptides were not reactive to antibodies from patients with Leptospirosis and syphilis compared to those from the B. burgdorferi group. These peptides indicated an excellent performance in distinguishing between B. burgdorferi-infected and non-infected individuals and exhibited a neglected reactivity to antibodies in sera from patients with Leptospirosis and syphilis. These peptides are promising targets for recombinant development, potentially leading to more accurate serological tests and vaccines.
Collapse
Affiliation(s)
- Mônica E. T. Alcón-Chino
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Virgínia L. N. Bonoldi
- Clinical Hospital, Faculty of Medicine, São Paulo University, São Paulo 05403-000, SP, Brazil;
| | - Rosa M. R. Pereira
- Faculty of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Gilberto S. Gazeta
- Laboratory of Ticks and Other Wingless Arthropods-National Reference for Vectors of Rickettsioses, Instituto Oswaldo Cruz-IOC, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil;
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
| | - Andressa M. Durans
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
| | - André L. A. Souza
- Multidisciplinary Biochemistry Teaching Laboratory, UNIG, Nova Iguaçu 26260-045, RJ, Brazil;
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.T.A.-C.); (J.P.R.S.C.); (P.N.-P.); (A.M.D.)
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics, Oswaldo Cruz Institut, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
3
|
Clark KL, Hartman S. PCR Detection of Bartonella spp. and Borreliella spp. DNA in Dry Blood Spot Samples from Human Patients. Pathogens 2024; 13:727. [PMID: 39338918 PMCID: PMC11435347 DOI: 10.3390/pathogens13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Lyme disease is the most commonly reported vector-borne disease in the United States. Bartonella constitute an additional zoonotic pathogen whose public health impact and diversity continue to emerge. Rapid, sensitive, and specific detection of these and other vector-borne pathogens remains challenging, especially for patients with persistent infections. This report describes an approach for DNA extraction and PCR testing for the detection of Bartonella spp. and Borreliella spp. from dry blood spot (DBS) specimens from human patients. The present study included extraction of DNA and PCR testing of DBS samples from 105 patients with poorly defined, chronic symptoms labeled as Lyme-Like Syndromic Illness (LLSI). Bartonella spp. DNA was detected in 20/105 (19%) and Borreliella spp. DNA was detected in 41/105 (39%) patients with LLSI. Neither group of organisms was detected in DBS samples from 42 healthy control subjects. Bartonella spp. 16S-23S rRNA internal transcribed spacer sequences were highly similar to ones previously identified in yellow flies, lone star ticks, a human patient from Florida, mosquitoes in Europe, or B. apihabitans and choladocola strains from honeybees. These human strains may represent new genetic strains or groups of human pathogenic species of Bartonella. The 41 Borreliella spp. flaB gene sequences obtained from human patients suggested the presence of four different species, including B. burgdorferi, B. americana, B. andersonii, and B. bissettiae/carolinensis-like strains. These results suggest that specific aspects of the DBS DNA extraction and PCR approach enabled the detection of Bartonella spp. and Borreliella spp. DNA from very small amounts of human whole blood from some patients, including specimens stored on filter paper for 17 years.
Collapse
Affiliation(s)
- Kerry L. Clark
- Department of Public Health, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | |
Collapse
|
4
|
Telford SR, Stewart PE, Bloom ME. Increasing Risk for Tick-Borne Disease: What Should Clinicians Know? JAMA Intern Med 2024; 184:973-974. [PMID: 38829668 DOI: 10.1001/jamainternmed.2024.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This clinical insights article examines reasons behind the increase in tick-borne diseases and what clinicians should know about diagnosis and mitigation.
Collapse
Affiliation(s)
- Sam R Telford
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | - Philip E Stewart
- Biology of Vector Borne Viruses, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Marshall E Bloom
- Biology of Vector Borne Viruses, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
5
|
Paintsil E. Editorial: Emerging and reemerging global pediatric infectious diseases amidst vanishing pediatric infectious diseases workforce. Curr Opin Pediatr 2024; 36:133-135. [PMID: 38446143 DOI: 10.1097/mop.0000000000001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Affiliation(s)
- Elijah Paintsil
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine
- Department of Pediatrics, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Because both incidence and awareness of tick-borne infections is increasing, review of major infections and recent advances related to their diagnosis and management is important. RECENT FINDINGS A new algorithm, termed modified two-tier testing, for testing for antibodies to Borrelia burgdorferi , the cause of Lyme disease, has been approved and may replace traditional two-tier testing. In addition, doxycycline is now acceptable to use for treatment of and/or prophylaxis for Lyme disease for up to 21 days in children of any age. Borrelia miyamotoi , a bacterium in the relapsing fever type of Borrelia, is the first of this type of Borrelia that is transmitted by hard-bodied ticks such as Ixodes scapularis. SUMMARY Awareness of these infections and advances in their diagnosis and treatment is important to assure the best outcomes for affected patients. Table 1 contains a summary of infections discussed.
Collapse
Affiliation(s)
- Emma Taylor-Salmon
- Department of Pediatrics, Yale School of Medicine
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Eugene D Shapiro
- Department of Pediatrics, Yale School of Medicine
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Önal U, Saraç-Pektaş F, Sağlık İ. Is There a Role for Dark Field Microscopy in the Diagnosis of Lyme Disease?A Narrative Review. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:281-286. [PMID: 38633860 PMCID: PMC10986710 DOI: 10.36519/idcm.2023.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024]
Abstract
The diagnosis of Lyme disease is becoming more common in Turkey. Nonetheless, some physicians are not aware of the diagnostic principles that should be followed when faced with a suspected patient and could use tests that are not recommended, such as darkfield microscopy. Dark field microscopy is a diagnostic technique to visualize the spirochetes that cause Lyme disease; however, it is not recommended for the diagnosis of Lyme disease. One of the main limitations of dark field microscopy is its low sensitivity. Another limitation is its high false-positivity rate, as other microorganisms and cellular debris can be mistaken for spirochetes, leading to a misdiagnosis thatmay result in unnecessary treatment. Therefore, this study aimed to review the literature on the role of dark field microscopy as a diagnostic method for Lyme disease and inform physicians about recommended approaches in line with the recommendations of national or international guidelines. An electronic search of Pubmed, Scopus, and Web of Science was performed using the following medical subject headings (MeSH) search terms: Lyme borreliosis, Lyme disease, Borrelia burgdorferi, diagnosis, and microscopy. With this narrative review, we aimed to inform physicians better and improve patient care for patients with suspected Lyme disease.
Collapse
Affiliation(s)
- Uğur Önal
- Department of Infectious Diseases and Clinical Microbiology, Uludağ University School of Medicine, Bursa, Türkiye
| | - Fatma Saraç-Pektaş
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - İmran Sağlık
- Department of Microbiology, Uludağ University School of Medicine, Bursa, Türkiye
| |
Collapse
|
8
|
Porwancher R, Levin A, Trevejo R. Immunoblot Criteria for Diagnosis of Lyme Disease: A Comparison of CDC Criteria to Alternative Interpretive Approaches. Pathogens 2023; 12:1282. [PMID: 38003747 PMCID: PMC10674374 DOI: 10.3390/pathogens12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
The current Centers for Disease Control and Prevention (CDC) interpretive criteria for serodiagnosis of Lyme disease (LD) involve a two-tiered approach, consisting of a first-tier EIA, IFA, or chemiluminescent assay, followed by confirmation of positive or equivocal results by either immunoblot or a second-tier EIA. To increase overall sensitivity, single-tier alternative immunoblot assays have been proposed, often utilizing antigens from multiple Borrelia burgdorferi strains or genospecies in a single immunoblot; including OspA and OspB in their antigen panel; requiring fewer positive bands than permitted by current CDC criteria; and reporting equivocal results. Published reports concerning alternative immunoblot assays have used relatively small numbers of LD patients and controls to evaluate novel multi-antigen assays and interpretive criteria. We compared the two most commonly used alternative immunoblot interpretive criteria (labeled A and B) to CDC criteria using data from multiple FDA-cleared IgG and IgM immunoblot test kits. These single-tier alternative interpretive criteria, applied to both IgG and IgM immunoblots, demonstrated significantly more false-positive or equivocal results in healthy controls than two-tiered CDC criteria (12.4% and 35.0% for Criteria A and B, respectively, versus 1.0% for CDC criteria). Due to limited standardization and high false-positive rates, the presently evaluated single-tier alternative immunoblot interpretive criteria appear inferior to CDC two-tiered criteria.
Collapse
Affiliation(s)
- Richard Porwancher
- Section of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Princeton Infectious Diseases Associates, LLC, Plainsboro, NJ 08536, USA
| | - Andrew Levin
- Kephera Diagnostics, LLC, Framingham, MA 01702, USA;
| | - Rosalie Trevejo
- Epidemiologist, Acute and Communicable Disease Prevention, Oregon Health Authority, Portland, OR 97232, USA;
| |
Collapse
|
9
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|