1
|
Yuan M, Huan X, Yang X, Fan M, Yin J, Ma Y, Deng B, Cao H, Han Y, Xu F. Simultaneous extraction of five heavy metal ions from root vegetables via dual-frequency ultrasound-assisted enzymatic digestion. Food Chem 2024; 454:139741. [PMID: 38805922 DOI: 10.1016/j.foodchem.2024.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was developed for synchronous green extraction of five heavy metal ions in root vegetables. The combination of α-amylase, cellulase, and papain showed significant advantageous in extracting heavy metal ions. Under optimized dual-frequency ultrasonic conditions, the extraction rates of Cr, As, Cd, Pb, and Hg in carrots reached 99.04%, 105.88%, 104.65%, 104.10%, and 103.13% respectively. And the extraction process is highly efficient, completing in just 15 min. Compared to conventional microwave-assisted acid hydrolysis method, this technique eliminates the need for high-temperature concentrated acid, enhancing its environmental sustainability while maintaining mild reaction conditions, making it ideal for biosensors application. Additionally, simultaneous extraction and detection of four heavy metals in lotus roots were successfully achieved by using DUED and a fluorescent paper-based microfluidic chip. The obtained results are consistent with those obtained using conventional methods.
Collapse
Affiliation(s)
- Min Yuan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinyan Huan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Xiaojun Yang
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Menghan Fan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiaqi Yin
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - YingQing Ma
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Bo Deng
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Hui Cao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiyi Han
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China.
| | - Fei Xu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Janssen F, Courtin CM, Wouters AGB. Aqueous phase extractable protein of wheat bran and germ for the production of liquid and semi-solid foods. Crit Rev Food Sci Nutr 2024; 64:9585-9603. [PMID: 37203963 DOI: 10.1080/10408398.2023.2214615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To achieve a more sustainable global food production, a shift from animal to plant protein based food is necessary. At the same time, these plant proteins are preferentially derived from side-streams of industrial processes. Wheat bran and germ represent two major side-streams of the wheat milling industry, and contain aqueous-phase soluble proteins with a well-balanced amino acid composition. To successfully use wheat bran and germ proteins in novel plant-based liquid and semi-solid foods, they need to (i) be rendered extractable and (ii) contribute functionally to stabilizing the food system. Prior heat treatment and the occurrence of intact cell walls are important barriers in this regard. Several strategies have been applied to overcome these issues, including physical processing and (bio)chemical modification. We here present a comprehensive, critical overview of the aqueous-phase extraction of protein from (modified) wheat bran and germ. Moreover, we discuss the functionality of the extracted protein, specifically in the context of liquid (foam- and emulsion-type) and semi-solid (gel-type) food applications. In each section, we identify important knowledge gaps and highlight several future prospects that could further increase the application potential of wheat bran and germ proteins in the food industry.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Khan ZS, Amir S, Sokač Cvetnić T, Jurinjak Tušek A, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). PLANTS (BASEL, SWITZERLAND) 2023; 12:2904. [PMID: 37631116 PMCID: PMC10458638 DOI: 10.3390/plants12162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.
Collapse
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, C-II Johar Town, Lahore 54700, Pakistan
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Zhang ZH, Cheng WL, Li XD, Wang X, Yang FW, Xiao JS, Li YX, Zhao GP. Extraction, bioactive function and application of wheat germ protein/peptides: A review. Curr Res Food Sci 2023; 6:100512. [PMID: 37215742 PMCID: PMC10196331 DOI: 10.1016/j.crfs.2023.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
The aging population and high incidence of age-related diseases are major global societal issues. Consuming bioactive substances as part of our diet is increasingly recognized as essential for ensuring a healthy life for older adults. Wheat germ protein has a reasonable peptide structure and amino acid ratio but has not been fully utilized and exploited, resulting in wasted wheat germ resources. This review summarizes reformational extraction methods of wheat germ protein/peptides (WGPs), of which different methods can be selected to obtain various WGPs. Interestingly, except for some bioactive activities found earlier, WGPs display potential anti-aging activity, with possible mechanisms including antioxidant, immunomodulatory and intestinal flora regulation. However, there are missing in vitro and in vivo bioactivity assessments of WGPs. WGPs possess physicochemical properties of good foamability, emulsification and water retention and are used as raw materials or additives to improve food quality. Based on the above, further studies designing methods to isolate particular types of WGPs, determining their nutritional and bioactive mechanisms and verifying their activity in vivo in humans are crucial for using WGPs to improve human health.
Collapse
Affiliation(s)
- Zhi-hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Wei-long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
- National Center of Technology Innovation for Dairy, Inner Mongolia, 013757, China
| | - Xiu-de Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Wang
- Food Quality and Safety, Agricultural University of Hebei Bohai Campus, Cangzhou, 071001, China
| | - Fang-wei Yang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun-song Xiao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yi-xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Guo-ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
- National Center of Technology Innovation for Dairy, Inner Mongolia, 013757, China
| |
Collapse
|
5
|
Ren Z, Xie L, Okyere SK, Wen J, Ran Y, Nong X, Hu Y. Antibacterial Activity of Two Metabolites Isolated From Endophytic Bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Front Microbiol 2022; 13:860009. [PMID: 35602058 PMCID: PMC9121010 DOI: 10.3389/fmicb.2022.860009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Ageratina adenophora, as an invasive and poisonous weed, seriously affects the ecological diversity and development of animal husbandry. Weed management practitioners have reported that it is very difficult to control A. adenophora invasion. In recent years, many researchers have focused on harnessing the endophytes of the plant as a useful resource for the development of pharmacological products for human and animal use. This study was performed to identify endophytes with antibacterial properties from A. adenophora. Agar well diffusion method and 16S rRNA gene sequencing technique were used to screen and identify endophytes with antibacterial activity. The response surface methodology and prep- high-performance liquid chromatography were used to determine the optimizing fermentation conditions and isolate secondary metabolites, respectively. UV-visible spectroscopy, infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrum were used to determine the structures of the isolated metabolites. From the experiment, we isolated a strain of Bacillus velezensis Ea73 (GenBank no. MZ540895) with broad-spectrum antibacterial activity. We also observed that the zone of inhibition of B. velezensis Ea73 against Staphylococcus aureus was the largest when fermentation broth contained 6.55 g/L yeast extract, 6.61 g/L peptone, 20.00 g/L NaCl at broth conditions of 7.95 pH, 51.04 h harvest time, and a temperature of 27.97°C. Two antibacterial peptides, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), were successfully extracted from B. velezensis Ea73. These two peptides exhibited mild inhibition against S. aureus and Escherichia coli. Therefore, we isolated B. velezensis Ea73 with antibacterial activity from A. adenophora. Hence, its metabolites, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), could further be developed as a substitute for human and animal antibiotics.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
- *Correspondence: Yanchun Hu
| |
Collapse
|
6
|
He X, Wang B, Zhao B, Yang F. Ultrasonic Assisted Extraction of Quinoa ( Chenopodium quinoa Willd.) Protein and Effect of Heat Treatment on Its In Vitro Digestion Characteristics. Foods 2022; 11:foods11050771. [PMID: 35267403 PMCID: PMC8909454 DOI: 10.3390/foods11050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
To extract and utilise the protein in quinoa efficiently, we investigated the effect of rate of quinoa protein isolate (QPI) extraction by ultrasound-assisted alkaline extraction and traditional alkaline extraction methods using single-factor experiments and Box-Behnken design. The effect of different heat treatment temperature and time on QPI functional properties and in vitro digestion characteristics were also investigated. The results showed that the optimal conditions of ultrasound- assisted alkaline extraction process were: ultrasonic time 99 min, solid-liquid ratio 1:20 w:v, ultrasonic temperature 47 °C, and pH 10, and its extraction rate and purity were 74.67 ± 1.08% and 87.17 ± 0.58%, respectively. It was 10.18% and 5.49% higher than that of the alkali-soluble acid precipitation method, respectively. The isoelectric point (pI) of QPI obtained by this method was 4.5. The flexibility and turbidity of QPI had maximum values at 90 °C, 30 min, and 121 °C, 30 min, which were 0.42 and 0.94, respectively. In addition, heat treatment changed the 1.77–2.79 ppm protein characteristic region in QPI’s nuclear magnetic resonance hydrogen spectroscopy (1H NMR). After heating at 90 °C and 121 °C for 30 min, the hydrolysis degree and total amino acid content at the end of digestion (121 °C, 30 min) were significantly lower than those of untreated QPI by 20.64% and 27.85%. Our study provides basic data for the efficient extraction and utilisation of QPI.
Collapse
|
7
|
Zhang L, Zhang M, Sun X, Chen F, Wu Q. Effects of
AOT
reverse micelle extraction on structure and emulsifying properties of soybean protein. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lifen Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Mingzhu Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Xiaoyang Sun
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Fusheng Chen
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Qian Wu
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| |
Collapse
|
8
|
Biswal AK, Panda PK, Yang JM, Misra PK. Isolation, process optimisation and characterisation of the protein from the de-oiled cake flour of Madhuca latifolia. IET Nanobiotechnol 2021; 14:654-661. [PMID: 33108320 DOI: 10.1049/iet-nbt.2020.0029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This work reports the isolation of the protein from the flour of an underutilised agro waste, a de-oiled cake of Madhuca latifolia using the bis (2-ethylehexyl) sodium sulfosuccinate salt reverse micelle and the characterisation of the protein through various techniques. The experimental conditions for the extraction were optimised using Box-Behnken design. The highest yield of the protein was achieved when the extraction parameters, i.e. KCl concentration, KCl amount, and pH of the medium, were 0.5 M, 1.25 ml, and 9.02, respectively. The experimental yield (75.56%) obtained under the optimised conditions matched extremely well with the predicted yield (75.19%). The analysis of the biochemical composition envisaged the occurrence of 2S albumin, 7S globulin, and 11S globulin as the major components in the protein. The X-ray diffraction pattern supported the β-sheets structure of the protein. The imaging of the protein through a scanning electron microscope revealed the shape and surface of the protein to be spherical and smooth, respectively. Thus, the protein isolate of the de-oiled cake flour of Madhuca latifolia could be utilised towards food product development and relevant fields.
Collapse
Affiliation(s)
- Achyuta Kumar Biswal
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, 768019 Odisha, India
| | - Pradeep Kumar Panda
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jen-Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pramila Kumari Misra
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, 768019 Odisha, India.
| |
Collapse
|
9
|
Wang Z, Zhao X, Hu H, Wang M, Zhang X, Liu H. Improved backward extraction of walnut protein using AOT reverse micelles with microwave and its characteristics. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenxi Wang
- Key Laboratory of Forestry Ecology and Industrial Technology in the Arid Area of Xinjiang Education Department, College of Forestry and Horticulture Xinjiang Agricultural University Urumqi China
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition, Culinary Institute University of Jinan Jinan China
| | - Haifang Hu
- Science and Technology Promotion Office Xinjiang Academy of Forestry Sciences Urumqi China
| | - Meng Wang
- Department of Food Science and Nutrition, Culinary Institute University of Jinan Jinan China
| | - Xiaowei Zhang
- Department of Food Science and Nutrition, Culinary Institute University of Jinan Jinan China
| | - Hongkai Liu
- Department of Food Science and Nutrition, Culinary Institute University of Jinan Jinan China
| |
Collapse
|
10
|
Ma S, Li X, Sun Y, Mi R, Li Y, Wen Z, Meng N, Yi L, Du X, Li S. Enzymatic Hydrolysis of Defatted Antheraea pernyi (Lepidoptera: Saturniidae) Pupa Protein by Combined Neutral Protease Yield Peptides With Antioxidant Activity. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:5. [PMID: 33693805 PMCID: PMC7947994 DOI: 10.1093/jisesa/ieab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, peptides were prepared from defatted Antheraea pernyi (Lepidoptera: Saturniidae) pupa protein via hydrolysis with combined neutral proteases. Single-factor tests and response surface methodology (RSM) were used to determine the optimal hydrolysis condition suitable for industrial application. Optimal hydrolysis of the defatted pupa protein was found to occur at an enzyme concentration of 4.85 g/liter, a substrate concentration of 41 g/liter, a hydrolysis temperature of 55°C, and a hydrolysis time of 10 h and 40 min. Under these conditions, the predicted and actual rates of hydrolysis were 45.82% and 45.75%, respectively. Peptides with a molecular weight of less than 2,000 Da accounted for 90.5% of the total peptides generated. Some of the peptides were antioxidant peptides as revealed by sequencing and functional analysis. The antioxidant activity of the mixed peptides was subsequently confirmed by an antioxidant activity assay. The results showed that peptides with high antioxidant activity could be obtained from the hydrolysis of A. pernyi pupa protein.
Collapse
Affiliation(s)
- Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Xuejun Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Yongxin Sun
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Yajie Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Zhixin Wen
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Nan Meng
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Li Yi
- Shanghai Jianqiao University, Shanghai, China
| | - Xingfan Du
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Shuying Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| |
Collapse
|
11
|
Jalali-Jivan M, Garavand F, Jafari SM. Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds. Adv Colloid Interface Sci 2020; 283:102227. [PMID: 32781299 DOI: 10.1016/j.cis.2020.102227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Bioactive components possess various functionalities and are most interested for different food, nutraceutical and pharmaceutical formulations. The current review will discuss the preparation methods and fabrication techniques to design microemulsions (MEs) for the solubilization, separation, encapsulation and purification of various agro-food bioactive compounds. ME systems have shown suitable potential in enhancing oil recovery, protein extraction, and isolation of bioactive compounds. Moreover, the capability of ME based systems as drug and nutraceutical delivery cargos, and synthesis of various organic and inorganic nanoparticles, especially using biopolymers, will be investigated. ME liquid membranes are also developed as nano-extractor/nano-reactor vehicles, capable of simultaneous extraction, encapsulation or even synthesis of hydrophilic and lipophilic bioactive compounds for food, nutraceutical and drug applications.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Food Colloids and Rheology Lab, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
12
|
Neira-Vielma AA, Iliná A, Álvarez GM, Nascimento CO, Aguilar CN, Martínez-Hernández JL, Carneiro-da-Cunha MDG. Recovery and purification of Aspergillus niger phytase from crude extract using AOT / isooctane reversed micelles. ACTA ACUST UNITED AC 2020; 26:e00471. [PMID: 32509541 PMCID: PMC7264062 DOI: 10.1016/j.btre.2020.e00471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023]
Abstract
The application of the reverse micelles resulted in purification of A. niger phytase. It was possible purify phytase from A. niger by reversed micelles in short period time. Reversed micelles proved to be a viable alternative for phytase purification. Phytase remained active after extraction using AOT/isooctane reversed micelles. The phytase purity and activity were confirmed by SDS-PAGE and zymogram analyzes.
This work describes the successful extraction of Aspergillus niger phytase from a crude extract (CE) obtained from solid-state fermentation by reversed micelle system using anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane achieved in two simple steps: forward and backward extractions. The effects of potassium chloride (KCl) concentration, pH of the aqueous solution, and AOT concentration that affect the system were examined. The best result for the forward extraction was obtained with the CE solution at pH 4.0, 50 mM KCl, and 100 mM AOT, while for the backward extraction the best result was achieved with a stripping aqueous solution at pH 5.5 containing 200 mM KCl, achieving a purification factor of 4.03, 1.15 times higher than that reported for the conventional purification process. Phytase purity was demonstrated by SDS-PAGE (89 kDa) and its activity by zymogram, confirming the efficiency of the process with low time consumption (∼40 min).
Collapse
Affiliation(s)
- Alberto A Neira-Vielma
- Food Research Department, Universidad Autónoma de Coahuila, México. Blvd. V. Carranza S/N. Col. República, CP 25280, Saltillo, Coahuila, México.,Departamento de Bioquímica/Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego s/n, CEP 50.670-420, Recife, PE, Brazil
| | - Anna Iliná
- Nanobiociences Group, Universidad Autónoma de Coahuila, Blvd. V. Carranza S/N. Col. República, CP 25280, Saltillo, Coahuila, México
| | - Georgina Michelena Álvarez
- Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar (ICIDCA), Vía Blanca #804 y Carretera Central, Zona postal 10, código 11 000, San Miguel del Padrón Ciudad de La Habana, Cuba
| | - Cynthia O Nascimento
- Faculdade São Miguel, Rua João Fernandes Vieira 458/459, CEP 50.050-215, Recife, PE, Brazil
| | - Cristóbal Noé Aguilar
- Food Research Department, Universidad Autónoma de Coahuila, México. Blvd. V. Carranza S/N. Col. República, CP 25280, Saltillo, Coahuila, México
| | - José Luis Martínez-Hernández
- Nanobiociences Group, Universidad Autónoma de Coahuila, Blvd. V. Carranza S/N. Col. República, CP 25280, Saltillo, Coahuila, México
| | - Maria das Graças Carneiro-da-Cunha
- Departamento de Bioquímica/Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego s/n, CEP 50.670-420, Recife, PE, Brazil
| |
Collapse
|
13
|
Sy Mohamad SF, Mohd Said F, Abdul Munaim MS, Mohamad S, Azizi Wan Sulaiman WM. Application of experimental designs and response surface methods in screening and optimization of reverse micellar extraction. Crit Rev Biotechnol 2020; 40:341-356. [PMID: 31931631 DOI: 10.1080/07388551.2020.1712321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Reverse micellar extraction (RME) has emerged as a versatile and efficient tool for downstream processing (DSP) of various biomolecules, including structural proteins and enzymes, due to the substantial advantages over conventional DSP methods. However, the RME system is a complex dependency of several parameters that influences the overall selectivity and performance of the RME system, hence this justifies the need for optimization to obtain higher possible extraction results. For the last two decades, many experimental design strategies for screening and optimization of RME have been described in literature. The objective of this article is to review the use of different experimental designs and response surface methodologies that are currently used to screen and optimize the RME system for various types of biomolecules. Overall, this review provides the rationale for the selection of appropriate screening or optimization techniques for the parameters associated with both forward and backward extraction during the RME of biomolecules.
Collapse
Affiliation(s)
- Sharifah Fathiyah Sy Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Mimi Sakinah Abdul Munaim
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Shahril Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
14
|
Sun X, Bandara N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Identification of the Secondary Structure of Protein Isolated from Deoiled Cake Flour of Mahua (Madhuca Latifolia). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.10.382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Kinugasa T, Okabe K, Jinno K, Uchida K, Nishii Y. Improvement of lysozyme recovery method from the precipitate of protein-anionic surfactant complexes. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1374971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Takumi Kinugasa
- Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, Japan
| | - Kanako Okabe
- Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, Japan
| | - Kenta Jinno
- Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, Japan
| | - Kiyohito Uchida
- Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, Japan
| | - Yasuhiro Nishii
- Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama, Japan
| |
Collapse
|
18
|
Chakraborty S, Rao PS, Mishra HN. Modeling the inactivation kinetics of fruit bromelain in pineapple during high-pressure and thermal treatments. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Li Y, Yin L, Zheng L, Xu L, Xu Y, Zhao Y, Qi Y, Yao J, Han X, Liu K, Peng J. Application of high-speed counter-current chromatography coupled with a reverse micelle solvent system to separate three proteins from Momordica charantia. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 895-896:77-82. [PMID: 22465200 DOI: 10.1016/j.jchromb.2012.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
High-speed counter-current chromatography (HSCCC) coupled with a reverse micelle solvent system was successfully developed to separate three proteins from Momordica charantia. Suitable HSCCC conditions were carefully optimized as follows: the stationary phase was a reverse micellar phase composed of isooctane and 50mM bis-(2-ethylhexyl)-1-sulfosuccinate sodium (AOT). The mobile phase contained mobile phase A (50mM Tris-HCl buffer containing 50mM KCl at pH 7.0) for forward-extraction and mobile phase B (50mM Tris-HCl buffer containing 0.5M KCl at pH 10.0) for back-extraction. The flow rate, detection wavelength and column temperature were set at 1.5 ml/min, 280 nm and 4 °C, respectively. Under these conditions, three fractions (I, II and III) were separated, which showed high purity when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The structures of these proteins were then identified by MALDI-TOF/TOF-MS/MS and compared with the NCBInr database. Fractions I and III were identified as resistance-like protein P-B and pentatricopeptide repeat-containing protein, respectively, which were found in M. charantia for the first time. However, fraction II, which is thought to be a new protein, was not identified, and further investigations on this fraction are required. The anticancer activities of these three proteins on the human gastric cancer cell line SGC-7901 were evaluated in vitro. The results indicated that fraction II has excellent anticancer activity (IC(50)=0.116 mg/ml for 48 h treatment). This is the first report on the use of HSCCC to isolate proteins from M. charantia.
Collapse
Affiliation(s)
- Yingnan Li
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Yin L, Sun C, Han X, Xu L, Xu Y, Qi Y, Peng J. Preparative purification of bromelain (EC 3.4.22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system. Food Chem 2011; 129:925-932. [DOI: 10.1016/j.foodchem.2011.05.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
|
22
|
Zhu KX, Sun XH, Chen ZC, Peng W, Qian HF, Zhou HM. Comparison of functional properties and secondary structures of defatted wheat germ proteins separated by reverse micelles and alkaline extraction and isoelectric precipitation. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.081] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhao X, Wei Z, Du F, Zhu J. Effects of surfactant and salt species in reverse micellar forward extraction efficiency of isoflavones with enriched protein from soy flour. Appl Biochem Biotechnol 2010; 162:2087-97. [PMID: 20473722 DOI: 10.1007/s12010-010-8984-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Suitability of reverse micelles of anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT) and sodium dodecyl sulfate (SDS), cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and nonionic surfactant polyoxyethylene p-t-octylphenol (TritonX-100) in organic solvent isooctane for extraction of soy isoflavone-enriching proteins was investigated. The results showed that the order of combined isoflavone contents was SDS>CTAB>Triton X-100>AOT, while the order of protein recovery was SDS>AOT>TritonX-100>CTAB. As compared with ACN-HCl extraction, the total amount of isoflavones was lower than reverse micellar extraction. Ion strength was one of the important conditions to control extraction of isoflavone-enriching proteins with AOT reversed micelles. For the six salt systems, KNO(3), KCl, MgCl(2), CaCl(2), NaCl, and Na(2)SO(4), extracted fraction of isoflavone-enriching proteins was measured. Salt solutions greatly influenced the extraction efficiency of isoflavones in an order of KNO(3)>MgCl(2)>CaCl(2)>KCl>NaCl>Na(2)SO(4), while protein in an order of MgCl(2)>CaCl(2)>NaCl>KNO(3)>Na(2)SO(4)>KCl.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | | | | | | |
Collapse
|
24
|
Zou Y, Xie C, Fan G, Gu Z, Han Y. Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|