1
|
Cai R, Ma Y, Wang Z, Yuan Y, Guo H, Sheng Q, Yue T. Inactivation activity and mechanism of pulsed light against Alicyclobacillus acidoterrestris vegetative cells and spores in concentrated apple juice. Int J Food Microbiol 2024; 413:110576. [PMID: 38246025 DOI: 10.1016/j.ijfoodmicro.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Alicyclobacillus acidoterrestris has received much attention due to its unique thermo-acidophilic property and implication in the spoilage of pasteurized juices. The objective of this study was to evaluate the sterilization characteristics and mechanisms of pulsed light (PL) against A. acidoterrestris vegetative cells and spores in apple juice. The results indicated that bacteria cells in apple juice (8-20°Brix) can be completely inactivated within the fluence range of 20.25-47.25 J/cm2, which mainly depended on the soluble solids content (SSC) of juice, and the spores in apple juice (12°Brix) can be completely inactivated by PL with the fluence of 54.00 J/cm2. The PL treatment can significantly increase the leakage of reactive oxygen species (ROS) and proteins from cells and spores. Fluorescence studies of bacterial adenosine triphosphate (ATP) indicated that the loss of ATP was evident. Scanning electron microscopy and confocal laser scanning microscope presented that PL-treated cells or spores had serious morphological damage, which reduced the integrity of cell membrane and led to intracellular electrolyte leakage. In addition, there were no significant negative effects on total sugars, total acids, total phenols, pH value, SSC and soluble sugars, and organic acid content decreased slightly during the PL treatment. The contents of esters and acids in aroma components had a certain loss, while that of alcohols, aldehydes and ketones were increased. These results demonstrated that PL treatment can effectively inactivate the bacteria cells and spores in apple juice with little effect on its quality. This study provides an efficient method for the inactivation of A. acidoterrestris in fruit juice.
Collapse
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Yali Ma
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Hong Guo
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Qinglin Sheng
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China.
| |
Collapse
|
2
|
Zhang HA, Pratap-Singh A, Kitts DD. Effect of pulsed light on curcumin chemical stability and antioxidant capacity. PLoS One 2023; 18:e0291000. [PMID: 37656767 PMCID: PMC10473471 DOI: 10.1371/journal.pone.0291000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
Curcumin is the major bioactive component in turmeric with potent antioxidant activity. Little is known about how pulsed light (PL) technology (an emerging non-thermal food processing technology relying on high intensity short duration flashes of light) can affect the chemical stability and antioxidant capacity of curcumin. This study found that PL treatment of fluence levels from 0 to 12.75 J/cm2 produced a fluence-dependent reduction in curcumin content. These results paralleled the production of a tentative curcumin dimer, identified as a potential photochemical transformation product. PL-treated curcumin at relatively higher fluence levels decreased chemical-based ORAC and ABTS antioxidant capacity, relative to control (P < 0.05). This contrasted the effect observed to increase coincidently both intracellular antioxidant capacity (e.g., DCFH-DA (P < 0.05)) and GSH/GSSG ratio (P < 0.05), respectively, in cultured differentiated Caco-2 cells. In conclusion, the application of PL on curcumin results in photochemical transformation reactions, such as dimerization, which in turn, can enhance biological antioxidant capacity in differentiated Caco-2 cells.
Collapse
Affiliation(s)
- Huiying Amelie Zhang
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| | - Anubhav Pratap-Singh
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kitts
- Faculty of Land of Food Systems, Food Science, Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Deng W, Zheng H, Zhu Z, Deng Y, Shi Y, Wang D, Zhong Y. Effect of Surfactant Formula on the Film Forming Capacity, Wettability, and Preservation Properties of Electrically Sprayed Sodium Alginate Coats. Foods 2023; 12:foods12112197. [PMID: 37297442 DOI: 10.3390/foods12112197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Surfactants are always added to coating formulations to ensure good adhesion of edible coatings to a product's surface and to maintain freshness. In this study, the effects of the mix surfactants Tween 20 and Span 80 with different hydrophile-lipophile balance (HLB) values on the film-forming ability, wettability, and preservation capacity of blueberry sodium alginate coating were investigated. The results indicated that Tween 20 obviously ensured favorable wettability and improved the uniformity and mechanical properties of the resulting film. While the addition of Span 80 reduced the mean particle size of the coating, enhanced the water resistance of the film, and helped to reduce blueberry weight loss. A sodium alginate coating with low viscosity and medium HLB could better inhibit the galactose, sucrose, and linoleic acid metabolism of blueberries, reduce the consumption of phenols, promote the accumulation of flavonoids, and thus display superior coating performance. In summary, sodium alginate coating with medium HLB had comprehensive advantages in film-forming ability and wettability and was conducive to the fresh-keeping role.
Collapse
Affiliation(s)
- Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zichun Zhu
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., Shanghai 201108, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Duma-Kocan P, Rudy M, Gil M, Stanisławczyk R, Żurek J, Zaguła G. The Impact of a Pulsed Light Stream on the Quality and Durability of the Cold-Stored Longissimus Dorsal Muscle of Pigs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4063. [PMID: 36901071 PMCID: PMC10002303 DOI: 10.3390/ijerph20054063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effect of pulsed light application (exposure to a pulsed light beam (PL) of 400 Hz for a period of 60 s, with an energy dose of 600 mW and wavelengths of 660 and 405 nm) on the physicochemical, technological, and sensory properties, as well as the nutritional value and shelf life of cold-storage pig longissimus dorsi muscle. Each muscle was divided into six parts, three of which were control samples, and the rest were exposed to pulsed light. The detailed laboratory tests of the meat were conducted 1, 7, and 10 days after slaughter. The meat was cold stored at +3 °C ± 0.5 °C. The study showed that the application of pulsed light has a favorable effect on lowering the TBARS index, oxidation-reduction potential, and water activity values. In addition, the application of PL had no statistically significant effect on the variation in the perception of selected sensory characteristics of meat. Furthermore, PL processing, as a low-energy-intensive method that can be environmentally friendly and thus have a large potential for implementation, is an innovative way to extend the shelf life, especially of raw meat, without a negative impact on its quality. This is of particular importance for food security (especially in the quantitative and qualitative aspects of food, but also in terms of food safety).
Collapse
Affiliation(s)
- Paulina Duma-Kocan
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Marian Gil
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Cwiklinskiej 2, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food and Nutrition Technology, College of Natural Science, University of Rzeszow, Cwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
5
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
González‐Casado S, López‐Gámez G, Martín‐Belloso O, Elez‐Martínez P, Soliva‐Fortuny R. Pulsed light of near-infrared and visible light wavelengths induces the accumulation of carotenoids in tomato fruits during post-treatment time. J Food Sci 2022; 87:3913-3924. [PMID: 35983588 PMCID: PMC9805007 DOI: 10.1111/1750-3841.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023]
Abstract
Pulsed light (PL) is proposed as a novel strategy for the food industry to enhance the antioxidant potential of fruits and vegetables for industrial uses. The main aim of this work is to evaluate the impact of postharvest PL treatments of different spectral ranges on the carotenoid concentration as well as quality attributes of tomatoes during post-treatment time. Doses of wide-spectrum light (180-1100 nm), full-spectrum without ultraviolet (UV)-C wavelengths (305-1100 nm), and visible (VIS) + near-infrared light (NIR) (400-1100 nm) were compared. Total carotenoids, lycopene, and chlorophyll contents were spectrophotometrically assessed just after treatments and 1, 5, and 10 days post-treatment. PL treatments accelerated the accumulation of both total carotenoids and lycopene concentrations in tomato fruits. Nevertheless, the efficacy of PL depended on the applied spectral range. Tomato subjected to VIS + NIR treatment exhibited the greatest enhancement in total carotenoids (31 %) and lycopene (35 %) content at day 5 post-treatment and quality attributes were not affected. Conversely, UV-light exposure did not enhance carotenoid concentrations. These results evidenced that VIS + NIR treatments induced a faster accumulation of carotenoids without negatively affecting tomato quality attributes. PRACTICAL APPLICATION: The integration of visible and near-infrared (VIS + NIR) light filters in pulsed light (PL) processing allows enhancing the accumulation of bioactive compounds in tomato tissues in a sustainable way, which can be processed to obtain derived products (e.g., juices, purees) with health-promoting properties. PL technology is characterized by a lack of residual compounds and the absence of applying chemicals potentially harmful to humans. Industries can attract the attention of consumers through their application, which allows offering this added value.
Collapse
Affiliation(s)
| | - Gloria López‐Gámez
- Department of Food TechnologyUniversity of Lleida—Agrotecnio‐CeRCA CenterLleidaSpain
| | - Olga Martín‐Belloso
- Department of Food TechnologyUniversity of Lleida—Agrotecnio‐CeRCA CenterLleidaSpain
| | - Pedro Elez‐Martínez
- Department of Food TechnologyUniversity of Lleida—Agrotecnio‐CeRCA CenterLleidaSpain
| | - Robert Soliva‐Fortuny
- Department of Food TechnologyUniversity of Lleida—Agrotecnio‐CeRCA CenterLleidaSpain
| |
Collapse
|
7
|
Pulsed Light Processing in the Preservation of Juices and Fresh-Cut Fruits: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Basak S, Mahale S, Chakraborty S. Changes in quality attributes of pulsed light and thermally treated mixed fruit beverages during refrigerated storage (4 °C) condition. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Basak S, Chakraborty S. The potential of nonthermal techniques to achieve enzyme inactivation in fruit products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhang L, Du L, Shi T, Xie M, Liu X, Yu M. Effects of pulsed light on germination and gamma-aminobutyric acid synthesis in brown rice. J Food Sci 2022; 87:1601-1609. [PMID: 35201612 DOI: 10.1111/1750-3841.16087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
This study observed the effects of pulsed light (PL) on the germination and gamma-aminobutyric acid (GABA) production of brown rice and analyzed the correlations among glutamic acid (Glu) content, glutamate decarboxylase (GAD) activity, and GABA content in germinating brown rice. Both germination and GABA content were increased by exposure to PL, and this effect was evident when brown rice was exposed to PL immediately after being soaked. The PL group had significantly higher Glu and GABA content than the control check (CK) group which was unexposed to PL during the germination of brown rice. Glu content peaked at 18 h and GABA peaked at 24h in the PL group, which were 12 h and 6 h earlier than the CK group, respectively. GAD activity of the PL group peaked 12 h after germination, 6 h earlier than the CK group. PL exposure also increased the free amino acid content in the earliest stage of brown-rice germination. During brown-rice germination, the production of GABA is regulated by GAD activity and is significantly positively correlated with Glu content. PL treatment had a significant effect on GAD activity and Glu content during the germination process of brown rice and helped to increase its GABA content. PRACTICAL APPLICATION: This study has shown that pulsed light exposure is an efficient and stable processing method for producing brown rice with high GABA. This will provide a new direction for developing novel germination grain foods.
Collapse
Affiliation(s)
- Liangchen Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, People's Republic of China
| | - Linchun Du
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, People's Republic of China
| | - Taiyuan Shi
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, People's Republic of China
| | - Mengxi Xie
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, People's Republic of China
| | - Xiaojing Liu
- Center for Disease Control and Prevention of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Miao Yu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
11
|
Jubinville E, Trudel-Ferland M, Amyot J, Jean J. Inactivation of hepatitis A virus and norovirus on berries by broad-spectrum pulsed light. Int J Food Microbiol 2022; 364:109529. [PMID: 35026446 DOI: 10.1016/j.ijfoodmicro.2021.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022]
Abstract
Foodborne diseases are still a major global health and economic burden, and are mainly caused by viral pathogens, such as human norovirus and hepatitis A virus, which may remain infective for long times on food contact surfaces and on produce. The strategies of viral inactivation applied in the industry are not generally suitable for delicate foods such as berries. Brief exposure to high-intensity white light (UV to IR) has been shown to inactivate many bacteria. The effectiveness of this treatment against foodborne viruses on fresh produce is largely unknown. We show that pulsed light treatment causes a moderate drop in the luminosity (L*, which ranges from bright (high) to dark (low)) of blueberries (to 36.31 ± 0.99 from 42.47 ± 1.17) and affects the luminosity of lettuce slightly but does not affect the appearance of strawberries, blackberries or raspberries. Hepatitis A virus and murine norovirus 1 are thus reduced by 2 log cycles. Viral inactivation on blackberries was less effective. These results will help food industries evaluate the suitability of pulsed light disinfecting technology for specific fruits and vegetables.
Collapse
Affiliation(s)
- Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Janie Amyot
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada.
| |
Collapse
|
12
|
Liu Z, Hu S, Soteyome T, Bai C, Liu J, Wang Z, Kjellerup BV, Xu Z. Intense pulsed light for inactivation of foodborne gram-positive bacteria in planktonic cultures and bacterial biofilms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Postharvest Treatment of Chinese Kale (Brassica oleracea var. alboglabra) by Pulse Light to Removal of Microbial Load, Pesticide Residue and Integrity of Physicochemical Quality and Phytochemical Constituent. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Existence of microorganisms, pesticide residue on fresh vegetables has a potential hazard to human health. The demand for safe green Chinese kale (Brassica oleracea var. alboglabra) has increased recently. Chinese kale is a healthy botanical attached to the Brassicaceae class. It contains numerous nutritional and phytochemical constituents beneficial for human health. Besides health benefits, this green vegetable also poses food safety concerns due to pathogen and pesticide residue during cultivation. Non-thermal physical technology like pulsed light (PL) will be a promising alternative to eradicate microbial and pesticide residue while preserving the best physicochemical properties and phytochemical components. This research evaluated the influence of different pulsed light intensities (1.2-10.8 J/cm2) on the removal of microbial load and pesticide residue as well as weight attrition, texture hardness, dry matter, vitamin C, total phenolic content in the treated Chinese kale. Results showed that pulsed light intensity 8.4 J/cm2 was appropriate to completely eliminate pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, Salmonella; pesticide substances such as carbendazim, abamectin, cypermethrin, chlorpyrifos ethyl, mancozeb. At pulsed light intensity 8.4 J/cm2, weight attrition in the treated sample was lower than weight attrition in the untreated; meanwhile textural hardness, dry matter, ascorbic acid and total phenolic content remained higher in the treated sample compared to the untreated. The results reveals that the pulsed light technique should be applied as a promising decontamination approach for removal of the pathogen as well as pesticide residue with minor impact on physicochemical properties and phytochemical constituents.
Collapse
|
14
|
Zhang J, Yagoub AEA, Sun Y, S Mujumdar A, Ma H, Wahia H, Zhou C. Intensive pulsed light pretreatment combined with controlled temperature and humidity for convection drying to reduce browning and improve quality of dried shiitake mushrooms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5608-5617. [PMID: 33709503 DOI: 10.1002/jsfa.11212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The change of surface color caused by browning during the drying process of shiitake mushrooms seriously affects its market circulation. Intensive pulsed light (IPL) as a non-heat-treatment method can reduce enzyme activity by changing the enzyme structure. Therefore, in this study, the use of IPL pretreatment before drying was aimed to reduce the adverse reactions caused by the browning reaction during the drying processing of shiitake mushrooms. RESULTS Shiitake mushrooms pretreated with 25 pulses of IPL energy of 400 J reduced the initial polyphenol oxidase enzyme activity, the browning index, and browning degree values by 42.83%, 43.02%, and 47.54% respectively. The IPL pretreatment enhanced the polysaccharides and reducing sugars contents and it reduced 5-hydroxymethylfurfural generation in the dried shiitake mushrooms. The pretreatment also improved the surface color, the antioxidant activity, and retained the umami taste characteristics in the dried shiitake mushroom. CONCLUSION The IPL pretreatment combined with controlled temperature and humidity for convection drying could be a suitable method to improve the quality of dried shiitake mushrooms. Therefore, this study provides a new pretreatment method for materials that are prone to browning during drying. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Yanhui Sun
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, China
| | - Arun S Mujumdar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Canada
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, China
| |
Collapse
|
15
|
Vargas-Ramella M, Pateiro M, Gavahian M, Franco D, Zhang W, Mousavi Khaneghah A, Guerrero-Sánchez Y, Lorenzo JM. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Rybak K, Wiktor A, Pobiega K, Witrowa-Rajchert D, Nowacka M. Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
18
|
Kang T, You Y, Hoptowit R, Wall MM, Jun S. Effect of an oscillating magnetic field on the inhibition of ice nucleation and its application for supercooling preservation of fresh-cut mango slices. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Zhang J, Yu X, Xu B, Yagoub AEA, Mustapha AT, Zhou C. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00816-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr 2020; 62:362-382. [DOI: 10.1080/10408398.2020.1816892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Wenli Wang
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | - Marcelo Cristianini
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | | |
Collapse
|
23
|
Cell wall composition of alginate coated and pulsed light treated fresh-cut cantaloupes ( Cucumis melo L. Var. Reticulatus Cv. Glamour) during chilled storage. Journal of Food Science and Technology 2020; 57:2206-2221. [PMID: 32431347 DOI: 10.1007/s13197-020-04257-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
This study was to investigate the effects of optimised alginate coating combined with repetitive pulsed light (RPL) on cell wall composition of fresh-cut cantaloupes during chilled storage. Fresh-cut cantaloupes were coated with alginate (1.86%, w/v) followed by RPL treatment (0.9 J cm-2 at every 48 h up to 26 days) during storage of 36 days. Cell wall composition of fresh-cut cantaloupes was determined at every 12 days while microscopic analysis was conducted on day 2 and day 36. Alginate was effective in maintaining high pectin fractions of fresh-cut cantaloupes while RPL showed greater contribution in maintaining hemicellulose fraction. However, the combination of alginate and RPL was the most effective treatment to maintain the overall cell wall fractions that contributed to the cell wall integrity of fresh-cut cantaloupes during storage. The alginate + RPL samples also had the greatest cell turgidity and shape with well-defined cell walls at the end of storage.
Collapse
|
24
|
Effect of Chitosan/Nano-Titanium Dioxide/Thymol and Tween Films on Ready-to-Eat Cantaloupe Fruit Quality. COATINGS 2019. [DOI: 10.3390/coatings9120828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of chitosan/nano-titanium dioxide coating with antimicrobial agents on ready to eat cantaloupe fruit by chilling was investigated. In comparison with uncoated samples, ascorbic acid and juice leakage in chitosan/nano-titanium dioxide (CH/TiO2) treated fruit were significantly maintained. Likewise, the decrease of malondialdehyde (MDA) and total soluble solids (TSS) in chitosan/nano-titanium dioxide/thymol/tween (CH/TiO2/TT) coated fruits was also inhibited. Total mold and yeast population counts decreased from 2.60 to 1.60 log CFU/g, respectively. Moreover, activities of water (AW) and polyphenol oxidase (PPO) were also much lower than those in control sample fruit. The results indicated that (CH/TiO2/TT) coating was effective in enhancing the shelf life with acceptable in the internal and the external cantaloupe fruit quality.
Collapse
|
25
|
Fgaier S, de Almeida Lopes MM, de Oliveira Silva E, Aarrouf J, Urban L. Xenon lamps used for fruit surface sterilization can increase the content of total flavonols in leaves of Lactuca sativa L. without any negative effect on net photosynthesis. PLoS One 2019; 14:e0223787. [PMID: 31634363 PMCID: PMC6802843 DOI: 10.1371/journal.pone.0223787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
One (1P), two (2P), three (3P) or four (4P) pulses of light supplied by a xenon lamp, were applied to young lettuce plants grown in pots. The lamp used in the trial was similar to those used for fruit surface sterilization. Total flavonols were measured in leaves using the Dualex method. In a first trial conducted in greenhouse conditions, 6 days after the pulsed light (PL) treatment, flavonols were increased by 312% and 525% in the 3P and 4P treatments, respectively, in comparison to the those in the untreated control. Changes in the chlorophyll fluorescence parameters suggest that the PL treatment may induce limited and transient damage to the photosynthetic machinery and that the damage increases with the increasing number of pulses. The performance parameters were not significantly affected by PL and recovered fully by 6 days after the treatments. The 1P and the 2P treatments 6 days after the treatment showed a 28.6% and a 32.5% increase, respectively, in net photosynthetic assimilation, when compared to that of the control. However, 8 days after the treatment, there was no longer a difference between the treatments and the control in net photosynthetic assimilation. Eight days after the light treatment, the 3P treatment showed a 38.4% increase in maximal net photosynthetic assimilation over that of the control, which is an indication of positive long-term adaptation of photosynthetic capacity. As a whole, our observations suggest that PL could be used on field or greenhouse crops to increase their phytochemical content. No long-lasting or strong negative effects on photosynthesis were associated with PL within the range of doses we tested; some observations even suggest that certain treatments could result in an additional positive effect. This conclusion is supported by a second trial conducted in phytotrons. More studies are required to better understand the roles of the different wavelengths supplied by PL and their interactions.
Collapse
Affiliation(s)
- Salah Fgaier
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Avignon Université, Avignon, France
- NOVAGENETIC, Anjou Actiparc, Longué Jumelle, France
| | | | | | - Jawad Aarrouf
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Avignon Université, Avignon, France
| | - Laurent Urban
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Avignon Université, Avignon, France
| |
Collapse
|
26
|
Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 2019; 60:2837-2855. [PMID: 31547681 DOI: 10.1080/10408398.2019.1664979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Florence Charles
- QualiSud, Université d'Avignon, CIRAD, Université Montpellier, Montpellier SupAgro, Université de La Réunion, Avignon, France
| | - Francisco J Barba
- Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, València, Spain
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| |
Collapse
|
27
|
Wiktor A, Mandal R, Pratap Singh A. Pulsed Light treatment below a Critical Fluence (3.82 J/cm 2) minimizes photo-degradation and browning of a model Phenolic (Gallic Acid) Solution. Foods 2019; 8:E380. [PMID: 31480632 PMCID: PMC6770825 DOI: 10.3390/foods8090380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022] Open
Abstract
Pulsed light (PL) is one of the most promising non-thermal technologies used in food preservation and processing. Its application results in reduction of microbial load as well as influences the quality of food. The data about the impact of PL on bioactive compounds is ambiguous, therefore the aim of this study was to analyze the effect of PL treatment of a gallic acid aqueous solution-as a model system of phenolic abundant liquid food matrices. The effect of PL treatment was evaluated based on colour, phenolic content concentration and antioxidant activity measured by DPPH assay using a design of experiments approach. The PL fluence (which is the cumulative energy input) was varied by varying the pulse frequency and time. Using Response Surface Methodology, prediction models were developed for the effect of fluence on gallic acid properties. It was demonstrated that PL can modify the optical properties of gallic acid and cause reactions and degradation of gallic acid. However, application of PL did not significantly alter the overall quality of the model gallic acid solution at low fluence levels. Cluster analysis revealed that below 3.82 J/cm2, changes in gallic acid were minimal, and this fluence level could be used as the critical level for food process design aiming to minimize nutrient loss.
Collapse
Affiliation(s)
- Artur Wiktor
- Food, Nutrition and Health, University of British Columbia, 2205, East Mall, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food Sciences, Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health, University of British Columbia, 2205, East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anubhav Pratap Singh
- Food, Nutrition and Health, University of British Columbia, 2205, East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
28
|
Leal IL, Silva Rosa YC, Silva Penha J, Cruz Correia PR, Silva Melo P, Guimarães DH, Barbosa JDV, Druzian JI, Machado BAS. Development and application starch films: PBAT with additives for evaluating the shelf life of Tommy Atkins mango in the fresh‐cut state. J Appl Polym Sci 2019. [DOI: 10.1002/app.48150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ingrid Lessa Leal
- Department of Food and BiotechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
- Food Science Program, Pharmacy FacultyFederal University of Bahia, Ademar de Barros Avenue, Ondina 40170‐115 Salvador Bahia Brazil
| | - Yasmin Carolino Silva Rosa
- Department of Food and BiotechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| | - Josenai Silva Penha
- Department of Food and BiotechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| | - Paulo Romano Cruz Correia
- Food Science Program, Pharmacy FacultyFederal University of Bahia, Ademar de Barros Avenue, Ondina 40170‐115 Salvador Bahia Brazil
| | - Pollyana Silva Melo
- Department of Materials EngineeringUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| | - Danilo Hansen Guimarães
- Department of Materials EngineeringUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| | - Josiane Dantas Viana Barbosa
- Health Institute of TechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| | - Janice Izabel Druzian
- Food Science Program, Pharmacy FacultyFederal University of Bahia, Ademar de Barros Avenue, Ondina 40170‐115 Salvador Bahia Brazil
| | - Bruna Aparecida Souza Machado
- Department of Food and BiotechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
- Health Institute of TechnologyUniversity Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Orlando Gomes Avenue, 1845 ‐ Piatã 41650‐010 Salvador Bahia Brazil
| |
Collapse
|
29
|
Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Collazo C, Noguera V, Aguiló-Aguayo I, Abadias M, Colás-Medà P, Nicolau I, Viñas I. Assessing water-assisted UV-C light and its combination with peroxyacetic acid and Pseudomonas graminis CPA-7 for the inactivation and inhibition of Listeria monocytogenes and Salmonella enterica in fresh-cut 'Iceberg' lettuce and baby spinach leaves. Int J Food Microbiol 2019; 297:11-20. [PMID: 30852362 DOI: 10.1016/j.ijfoodmicro.2019.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The effectiveness of ultraviolet C light (UV-C) delivered in water (WUV) or in peroxyacetic acid (PAA) for the inactivation and inhibition of L. monocytogenes and S. enterica in ready-to-eat 'Iceberg lettuce' and baby spinach leaves, was evaluated throughout chilled storage in modified atmosphere packaging (MAP). The inhibition of pathogen's growth by sequential pretreatments with UV-C in PAA and then biocontrol using Pseudomonas graminis CPA-7 was assessed during MAP storage at 5 °C and upon a breakage of the cold-storage chain. In fresh-cut lettuce, 0 1 kJ/m2 UV-C, in water or in 40 mg/L PAA, inactivated both pathogens by up to 2.1 ± 0.7 log10, which improved the efficacy of water-washing by up to 1.9 log10 and showed bacteriostatic effects on both pathogens. In baby spinach leaves, the combination of 0 3 kJ/m2 UV-C and 40 mg/L PAA reduced S. enterica and L. monocytogenes populations by 1.4 ± 0.2 and 2.2 ± 0.3 log10 respectively, which improved water-washing by 0.8 ± 0.2 log10. Combined treatments (0.1 or 0 3 kJ/m2 WUV and 40 mg/L PAA) inactivated both pathogens in the process solution from lettuce or spinach single sanitation, respectively. Pretreating lettuce with UV-C in PAA reduced L. monocytogenes and S. enterica's growth by up to 0.9 ± 0.1 log10 with respect to the PAA-pretreated control after 6 d at 5 °C in MAP. Upon a cold-chain breakage, CPA-7 prevented S. enterica growth in PAA-pretreated lettuce, whereas showed no effect on L. monocytogenes in any of both matrices. Low-dose UV-C in PAA is a suitable preservation strategy for improving the safety of ready-to-eat leafy greens and reducing the risk of cross contamination.
Collapse
Affiliation(s)
- Cyrelys Collazo
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Violeta Noguera
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Ingrid Aguiló-Aguayo
- Institut de Recerca i Tecnologia Agroalimentàries, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Maribel Abadias
- Institut de Recerca i Tecnologia Agroalimentàries, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Pilar Colás-Medà
- Institut de Recerca i Tecnologia Agroalimentàries, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Spain
| | - Iolanda Nicolau
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Inmaculada Viñas
- Food Technology Department, University of Lleida, XaRTA-Postharvest, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
31
|
Cao X, Huang R, Chen H. Evaluation of Food Safety and Quality Parameters for Shelf Life Extension of Pulsed Light Treated Strawberries. J Food Sci 2019; 84:1494-1500. [PMID: 31059142 DOI: 10.1111/1750-3841.14613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
Strawberry is a healthy fruit with numerous health-benefit compounds. Unfortunately, it is highly perishable and occasionally can be contaminated with foodborne pathogens. The overall goal of this study is to evaluate pulsed light (PL) processing for disinfection of strawberries, extension of shelf life, and preservation of quality attributes and compounds that are beneficial to health. Preliminary screening of PL conditions based on visual appearance of strawberries was conducted, and 3 PL treatments were identified for full evaluation. Salmonella inoculum was artificially deposited onto the skin of strawberries via spot-inoculation or dip-inoculation. The 3 PL treatments slightly reduced the level of inoculated Salmonella on strawberries, ranging from approximately 0.4 to 0.8 log reduction. They also slowed down the visible mold development on strawberries by 2 to 4 days compared with the untreated control. Regarding the natural yeasts and molds, the quality attributes (weight loss and firmness), and the bioactive compounds (total anthocyanin, total phenolics, and total antioxidant activity). The 3 PL treatment showed no significant or negligible difference comparing to the control group. Overall, the 3 PL treatments demonstrated potential in extending the shelf life of strawberries. The quality attributes or the bioactive compounds of strawberries showed no significant or minimal change after these PL treatments. PRACTICAL APPLICATION: Pulsed light (PL) processing for strawberry decontamination and shelf life extension was evaluated. Results demonstrated that PL processing could have the potency to improve strawberry shelf life without significantly affecting the quality and bioactive compounds of strawberries.
Collapse
Affiliation(s)
- Xinang Cao
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| | - Runze Huang
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| | - Haiqiang Chen
- Dept. of Animal and Food Sciences, Univ. of Delaware, Newark, DE, 19716-2150, U.S.A
| |
Collapse
|
32
|
Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Vidal V, Laurent S, Charles F, Sallanon H. Fine monitoring of major phenolic compounds in lettuce and escarole leaves during storage. J Food Biochem 2019; 43:e12726. [PMID: 31353660 DOI: 10.1111/jfbc.12726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
Abstract
Two varieties of lettuce (Lactuca sativa L. var. crispa and capitata) and one variety of escarole (Cichorium endivia var. latifolium) were chosen due to their different browning sensitivity during storage as minimally processed products. The changes in the compositions and contents of the primary polyphenolic compounds were investigated during the first few hours of storage and then after 1, 2, 3, and 6 days of storage at 6°C and revealed sharp variations. Browning development, activity of phenylalanine ammonia lyase, and concentration of ascorbic acid were also examined during storage. The content of chicoric acid, which was the most abundant phenolic compound, varied substantially during the first 24 hr of storage and between the different varieties. Oak leaf lettuce, which was the most sensitive variety to browning, was characterized by a higher maintained chicoric acid level with a constant decreased chlorogenic acid level during the storage period. PRACTICAL APPLICATIONS: Browning development is responsible for the short shelf life of minimally processed vegetables, such as lettuce (Lactuca sativa). Polyphenolic compounds, as substrates of enzymatic reactions, are involved in the browning susceptibility of leaves. Comparisons of the profiles and contents of these compounds in different leaves showed dramatic variations during storage. This study provides additional information to better control, optimize minimally processed produce and select more suitable leaves for the fresh-cut industry.
Collapse
Affiliation(s)
- Véronique Vidal
- UMR Qualisud, Université d'Avignon et des pays de Vaucluse, Avignon, France
| | - Sandrine Laurent
- UMR Qualisud, Université d'Avignon et des pays de Vaucluse, Avignon, France
| | - Florence Charles
- UMR Qualisud, Université d'Avignon et des pays de Vaucluse, Avignon, France
| | - Huguette Sallanon
- UMR Qualisud, Université d'Avignon et des pays de Vaucluse, Avignon, France
| |
Collapse
|
34
|
Montoya Ú, Zuluaga R, Castro C, Vélez L, Gañán P. Starch and Starch/Bacterial Nanocellulose Films as Alternatives for the Management of Minimally Processed Mangoes. STARCH-STARKE 2018. [DOI: 10.1002/star.201800120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Úrsula Montoya
- Facultad de Ingeniería Agroindustrial; Universidad Pontificia Bolivariana; Circular 1° No 70-01 Medellín Colombia
| | - Robin Zuluaga
- Facultad de Ingeniería Agroindustrial; Universidad Pontificia Bolivariana; Circular 1° No 70-01 Medellín Colombia
| | - Cristina Castro
- Facultad de Ingeniería Textil; Universidad Pontificia Bolivariana; Circular 1° No 70-01 Medellín Colombia
| | - Lina Vélez
- Facultad de Ingeniería Agroindustrial; Universidad Pontificia Bolivariana; Circular 1° No 70-01 Medellín Colombia
| | - Piedad Gañán
- Facultad de Ingeniería Química; Universidad Pontificia Bolivariana; Circular 1° No 70-01 Medellín Colombia
| |
Collapse
|
35
|
Tinello F, Lante A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Valdivia-Nájar CG, Martín-Belloso O, Soliva-Fortuny R. Kinetics of the changes in the antioxidant potential of fresh-cut tomatoes as affected by pulsed light treatments and storage time. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Koh PC, Noranizan MA, Karim R, Nur Hanani ZA, Lasik-Kurdyś M. Combination of alginate coating and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo
L. reticulatus
cv. Glamour). J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei Chen Koh
- Faculty of Food Science and Technology, Department of Food Technology; Universiti Putra Malaysia; Serdang Malaysia
| | - Mohd Adzahan Noranizan
- Faculty of Food Science and Technology, Department of Food Technology; Universiti Putra Malaysia; Serdang Malaysia
| | - Roselina Karim
- Faculty of Food Science and Technology, Department of Food Technology; Universiti Putra Malaysia; Serdang Malaysia
| | - Zainal Abedin Nur Hanani
- Faculty of Food Science and Technology, Department of Food Technology; Universiti Putra Malaysia; Serdang Malaysia
| | - Małgorzata Lasik-Kurdyś
- Faculty of Food Science and Nutrition, Department of Fermentation and Biosynthesis; Poznań University of Life Sciences; Poznań Poland
| |
Collapse
|
38
|
Avalos-Llano KR, Martín-Belloso O, Soliva-Fortuny R. Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut strawberries. Food Chem 2018; 264:393-400. [DOI: 10.1016/j.foodchem.2018.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 10/24/2022]
|
39
|
Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Salinas-Roca B, Soliva-Fortuny R, Welti-Chanes J, Martín-Belloso O. Effect of pulsed light, edible coating, and dipping on the phenolic profile and antioxidant potential of fresh-cut mango. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- B. Salinas-Roca
- Department of Food Technology, Agrotecnio Center; University of Lleida, Rovira Roure 191; 25198 Lleida Spain
| | - R. Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center; University of Lleida, Rovira Roure 191; 25198 Lleida Spain
| | - J. Welti-Chanes
- Centro de Biotecnología FEMSA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico; 64849 Monterrey Mexico
| | - O. Martín-Belloso
- Department of Food Technology, Agrotecnio Center; University of Lleida, Rovira Roure 191; 25198 Lleida Spain
- Centro de Biotecnología FEMSA; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico; 64849 Monterrey Mexico
| |
Collapse
|
41
|
Pinela J, Ferreira ICFR. Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Crit Rev Food Sci Nutr 2017; 57:2095-2111. [PMID: 26192014 DOI: 10.1080/10408398.2015.1046547] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Minimally processed fruits and vegetables are one of the major growing sectors in food industry. This growing demand for healthy and convenient foods with fresh-like properties is accompanied by concerns surrounding efficacy of the available sanitizing methods to appropriately deal with food-borne diseases. In fact, chemical sanitizers do not provide an efficient microbial reduction, besides being perceived negatively by the consumers, dangerous for human health, and harmful to the environment, and the conventional thermal treatments may negatively affect physical, nutritional, or bioactive properties of these perishable foods. For these reasons, the industry is investigating alternative nonthermal physical technologies, namely innovative packaging systems, ionizing and ultraviolet radiation, pulsed light, high-power ultrasound, cold plasma, high hydrostatic pressure, and dense phase carbon dioxide, as well as possible combinations between them or with other preservation factors (hurdles). This review discusses the potential of these novel or emerging technologies for decontamination and shelf-life extension of fresh and minimally processed fruits and vegetables. Advantages, limitations, and challenges related to its use in this sector are also highlighted.
Collapse
Affiliation(s)
- José Pinela
- a Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Bragança , Portugal
| | - Isabel C F R Ferreira
- a Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Bragança , Portugal
| |
Collapse
|
42
|
Bhavya ML, Umesh Hebbar H. Pulsed light processing of foods for microbial safety. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Aguiló-Aguayo I, Gangopadhyay N, Lyng J, Brunton N, Rai D. Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Fabrication of electronic nose system and exploration on its applications in mango fruit (M. indica cv. Datainong) quality rapid determination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9579-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
The influence of pulsed light exposure mode on quality and bioactive compounds of fresh-cut mangoes. Journal of Food Science and Technology 2017; 54:2332-2340. [PMID: 28740290 DOI: 10.1007/s13197-017-2673-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
This study investigated the effect of pulsed light (PL) on the respiratory rate, quality (firmness, color and soluble solid content), bioactive compounds (ascorbate and carotenoid) and total antioxidant activity of fresh-cut "Tommy Atkins" mangoes. Fresh-cut mangoes were subjected to PL treatments: control (0P), 1 pulse (1P; 0.7 J cm-2), 4 successive pulses (4P; 2.80 J cm-2) and 1 pulse per day for 4 days (1P4D; 2.80 J cm-2) before storage for 7 days at 6 °C. The 1P and the 4P treatments reduced fresh mass loss during storage, while 4P-treated samples also showed a slower decline of yellow color, as shown by parameter b and overall better visual appearance. After 7 days of storage, total ascorbate content was 40% higher in the 1P4D treatment than in control, whereas total carotenoid content (0.894 mg g-1 FM) and total antioxidant activity (144 μmol trolox 100 g-1 FM) were the highest in the 4P-treated samples. Results suggest that PL mode of application is more important than the fluence or final dose received by fresh-cut mangoes; moreover, 4P is an effective method to preserve, or even improve quality of fresh-cut mangoes.
Collapse
|
46
|
Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Longo E, Morozova K, Scampicchio M. Effect of light irradiation on the antioxidant stability of oleuropein. Food Chem 2017; 237:91-97. [PMID: 28764085 DOI: 10.1016/j.foodchem.2017.05.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/18/2022]
Abstract
The stability of oleuropein, a natural antioxidant from Olea europaea, has been often studied in connection with thermal or enzymatic treatments, but very little is known about the effects of UV light. This work aimed at studying the UV-C effects on oleuropein standard solutions once dissolved in ethanol or water. During irradiation, aliquots were taken and analyzed by a flow injection system equipped with a multi-channel coulometric detector and a high-resolution mass spectrometer. The effects of irradiation were also studied by UV spectroscopy. The results show that oleuropein is relatively stable in water or ethanol, but that under UV-C light undergoes a series of fast decomposition reactions leading to hydroxytyrosol and elenolic acid. Overall, this study provides evidences that the degradation of oleuropein by UV-C light follows a mechanism dependent on the solvent used. Moreover, the solvent affects the resulting redox properties of the solution.
Collapse
Affiliation(s)
- Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy.
| |
Collapse
|
48
|
de Sousa AED, Fonseca KS, da Silva Gomes WK, Monteiro da Silva AP, de Oliveira Silva E, Puschmann R. Control of browning of minimally processed mangoes subjected to ultraviolet radiation pulses. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:253-259. [PMID: 28242923 DOI: 10.1007/s13197-016-2457-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/01/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
The pulsed ultraviolet radiation (UVP) has been used as an alternative strategy for the control of microorganisms in food. However, its application causes the browning of minimally processed fruits and vegetables. In order to control the browning of the 'Tommy Atkins' minimally processed mango and treated with UVP (5.7 J cm-2) it was used 1-methylcyclopropene (1-MCP) (0.5 μL L-1), an ethylene action blocker in separate stages, comprising five treatments: control, UVP (U), 1-MCP + UVP (M + U), UVP + 1-MCP (U + M) e 1-MCP + UVP + 1-MCP (M + U + M). At the 1st, 7th and 14th days of storage at 12 °C, we evaluated the color (L* and b*), electrolyte leakage, polyphenol oxidase, total extractable polyphenols, vitamin C and total antioxidant activity. The 1-MCP, when applied before UVP, prevented the loss of vitamin C and when applied in a double dose, retained the yellow color (b*) of the cubes. However, the 1-MCP reduced lightness (L*) of independent mango cubes whatever applied before and/or after the UVP. Thus, the application of 1-MCP did not control, but intensified the browning of minimally processed mangoes irradiated with UVP.
Collapse
Affiliation(s)
| | - Kelem Silva Fonseca
- Department of Plant Biology, Federal University of Viçosa, Peter Henry Rolfs Avenues, s/n, Viçosa, Minas Gerais 36570900 Brazil
| | - Wilny Karen da Silva Gomes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Mister Hull Avenue 2297, Fortaleza, Ceara 60451970 Brazil
| | - Ana Priscila Monteiro da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Mister Hull Avenue 2297, Fortaleza, Ceara 60451970 Brazil
| | | | - Rolf Puschmann
- Department of Plant Biology, Federal University of Viçosa, Peter Henry Rolfs Avenues, s/n, Viçosa, Minas Gerais 36570900 Brazil
| |
Collapse
|
49
|
Kramer B, Wunderlich J, Muranyi P. Recent findings in pulsed light disinfection. J Appl Microbiol 2017; 122:830-856. [PMID: 28032924 DOI: 10.1111/jam.13389] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023]
Abstract
Nonthermal disinfection technologies are gaining increasing interest in the field of minimally processed food in order to improve the microbial safety or to extend the shelf life. Especially fresh-cut produce or meat and fish products are vulnerable to microbial spoilage, but, due to their sensitivity, they require gentle preservation measures. The application of intense light pulses of a broad spectral range comprising ultraviolet, visible and near infrared irradiation is currently investigated as a potentially suitable technology to reduce microbial loads on different food surfaces or in beverages. Considerable research has been performed within the last two decades, in which the impact of various process parameters or microbial responses as well as the suitability of pulsed light (PL) for food applications has been examined. This review summarizes the outcome of the latest studies dealing with the treatment of various foods including the impact of PL on food properties as well as recent findings about the microbicidal action and relevant process parameters.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Technical University of Munich, Chair of Food Packaging Technology, Freising-Weihenstephan, Germany
| | - J Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - P Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
50
|
Kim MJ, Tang CH, Bang WS, Yuk HG. Antibacterial effect of 405±5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int J Food Microbiol 2016; 244:82-89. [PMID: 28073081 DOI: 10.1016/j.ijfoodmicro.2016.12.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
To investigate a potential of 405±5nm light emitting diode (LED) as a novel technology for food preservation, the antibacterial effect of 405±5nm LED on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. on the surface of fresh-cut mango and its influence on fruit quality were evaluated at different storage temperatures. LED-illumination inactivated 1.0-1.6 logCFU/cm2 of populations at 4 and 10°C for 36-48h (total dose, 2.6-3.5kJ/cm2) regardless of bacterial species, while those on non-illuminated mange remained unchanged or slightly increased during storage. At 20°C for 24h (total dose, 1.7kJ/cm2), non-illuminated E. coli O157:H7 and Salmonella gradually grew, whereas LED-illumination reduced 1.2 log of Salmonella and inhibited the growth of E. coli O157:H7. Unlike these, non-illuminated L. monocytogenes cells rapidly increased to 7.3 log, while illuminated cells reached 4.6 log, revealing that LED-illumination delayed their growth. There were no significant (P>0.05) differences in color, antioxidant capacity, ascorbic acid, β-carotene, and flavonoid between non-illuminated and illuminated cut mangoes, regardless of storage temperature. These results suggest that 405±5nm LEDs in combination with chilling temperatures could be applied to preserve fresh-cut fruits without deterioration of physicochemical quality of fruits at food establishments, minimizing the risk of foodborne disease.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Chee Hwa Tang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Woo Suk Bang
- Department of Food and Nutrition, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712749, South Korea
| | - Hyun-Gyun Yuk
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore.
| |
Collapse
|