1
|
Hyderi Z, Kannappan A, Ravi AV. The Multifaceted Applications of Seaweed and Its Derived Compounds in Biomedicine and Nutraceuticals: A Promising Resource for Future. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:491-505. [PMID: 39655722 DOI: 10.1002/pca.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 04/12/2025]
Abstract
The increasing demand for global food resources and over-dependence on terrestrial agroecosystems pose a significant challenge to the sustainable production of food commodities. Macroalgae are an essential source of food production in the marine environment, and their cultivation is a promising approach to alleviate the impending global food insecurity due to key factors, such as independence from terrestrial agriculture, rapid growth rate, unique biochemical composition, and carbon capture potential. Moreover, in many countries, seaweed has been used as food for decades because of its health and nutritional benefits. Seaweed contains bioactive components that are beneficial against various pathological conditions, including cancer, type 2 diabetes, and neurological disorders. Furthermore, the natural products derived from macroalgae have also been found to have immunostimulatory and antimicrobial properties. Macroalgae are also a significant source of rare sugars such as L-fucose, L-rhamnose, and glucuronic acid. Besides sugars, other bioactive components have been widely reported for their potential in cosmeceuticals. We have outlined the nutrient composition and functional properties of different species of macroalgae, with an emphasis on their potential as value-added products to the functional food market. Beyond being nutritional powerhouses, the variety of biological activities in human health and biomedicine makes them excellent candidates for developing novel drugs. Therefore, this review summarizes the pharmaceutical applications of macroalgae and suggests potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Arunachalam Kannappan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Costa M, Soares C, Silva A, Barroso MF, Simões P, Ferreira M, Gameiro P, Grosso C, Delerue-Matos C. Optimization of Nanoencapsulation of Codium tomentosum Extract and Its Potential Application in Yogurt Fortification. Mar Drugs 2025; 23:147. [PMID: 40278268 PMCID: PMC12028962 DOI: 10.3390/md23040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Marine macroalgae are excellent sources of bioactive compounds recognized by their pharmaceutical and biomedical potential. A subcritical water extraction (SWE) was applied to the macroalga Codium tomentosum, and the extract was used to prepare phytosomes. A Box-Behnken design was applied to optimize the entrapment efficiency. These phytosomes were further modified with DSPE-PEG (2000)-maleimide and apolipoprotein E and characterized by dynamic light scattering, UV spectrophotometry, octanol/water partition coefficient, differential scanning calorimetry, and Fourier transform infrared spectroscopy. As proof of concept, prototypes of functional food tailored to the elderly were produced. Yogurts were fortified with seaweed extract or phytosomes, and physicochemical properties and proximal composition (pH, acidity, syneresis, moisture, peroxides, proteins, total lipids, sugar content, ash, and mineral composition) were analyzed. The antioxidant and the inhibition capacity of two brain enzymes, cholinesterases (AChE and BuChE), involved in the pathogenesis of Alzheimer's disease, were also evaluated in the final prototypes. Despite their unappealing sensory characteristics, the results are promising for integrating marine extracts with potential neuroprotective effects into functional foods.
Collapse
Affiliation(s)
- Micaela Costa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
- Department of Analytical Chemistry and Food Science, Nutrition and Food Group (NuFoG), Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Pedro Simões
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (M.F.); (P.G.)
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (M.F.); (P.G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| |
Collapse
|
3
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
4
|
Guemidi C, Ait Saada D, Ait Chabane O, Elmastas M, Erenler R, Yilmaz MA, Tarhan A, Akkal S, Khelifi H. Enhancement of yogurt functionality by adding Mentha piprita phenolic extract and evaluation of its quality during cold storage. Food Sci Nutr 2024; 12:3007-3020. [PMID: 38628225 PMCID: PMC11016424 DOI: 10.1002/fsn3.3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 04/19/2024] Open
Abstract
New functional food products with health benefits are currently in high demand among health-conscious consumers. The present research aims to improve the functional properties of yogurt by adding peppermint hydroethanolic extract (PHE) at different doses. The impact of PHE (0%, 2%, 4%, and 6%) on yogurt was studied for acidity, pH, organoleptic quality, antioxidant activity, lipid peroxidation, and fatty acid profile. The results revealed that PHE is rich in phenolic compounds, of which rosmarinic acid was the main one (339.88 mg/g lyophilized extract) and has considerable antioxidant potential, which remarkably (p < .01) increased antioxidant capacity in yogurt by over 39.51%, even at a low dose of 2%, giving the product better protection against lipid peroxidation and preserving its physicochemical and sensory quality. At 4%, PHE increased significantly (p < .01) the content of omega-3 fatty acids, notably alpha-linolenic acid, in fortified yogurt compared with the control, and reduced (p < .01) the ratio of omega-6/omega-3, which dropped from 5.21 to 4.11. It looks feasible to prepare a yogurt with health-giving properties by adding Mentha piperita hydroethanolic extract at a concentration of up to 4% as an alternative to synthetic antioxidants, which would also extend its shelf life.
Collapse
Affiliation(s)
- Chafika Guemidi
- Food Technology and Nutrition LaboratoryAbdelhamid Ibn Badis UniversityMostaganemAlgeria
| | - Djamal Ait Saada
- Food Technology and Nutrition LaboratoryAbdelhamid Ibn Badis UniversityMostaganemAlgeria
| | - Ouiza Ait Chabane
- Food Technology and Nutrition LaboratoryAbdelhamid Ibn Badis UniversityMostaganemAlgeria
| | - Mahfuz Elmastas
- Department of Biochemistry, Faculty of PharmacyUniversity of Health SciencesIstanbulTurkey
| | | | | | - Abbas Tarhan
- Department of Pharmaceutical Chemistry, Faculty of PharmacyDicle UniversityDiyarbakirTurkey
| | - Salah Akkal
- Department of Chemistry, Faculty of Exact SciencesUniversity of Constantine 1ConstantineAlgeria
| | - Haroune Khelifi
- Food Technology and Nutrition LaboratoryAbdelhamid Ibn Badis UniversityMostaganemAlgeria
| |
Collapse
|
5
|
Pandey G, Chatterjee NS, Panda SK, Mohan CO, Kishore P, Kumar A, Uchoi D, Balasundari S, Anandan R, Mathew S, Ravishankar CN. Scope and challenges of seaweed utilization in food and nutraceutical industry in India: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:230-241. [PMID: 38196708 PMCID: PMC10772044 DOI: 10.1007/s13197-023-05676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Seaweeds are an excellent source of unique antioxidant phytochemicals, dietary fibres, essential amino acids, vitamins, polyunsaturated fatty acids and minerals. The presence of such structurally diverse and high value bioactive compounds has led to popularization of seaweed as functional food ingredient in global health supplement market. India, with a long coastline of 8100 km and exclusive economic zone of 2.17 million km2, is rich in diverse seaweed resources belonging to almost 700 species. However, food and nutraceutical application of Indian seaweed is highly constrained. Apart from Kappaphycus alvarezii, there is no systematic commercial cultivation of seaweed in India. The regulatory framework for use of seaweed as food is still developing and consumer acceptance is still low. However, there is a timely and renewed interest from different government agencies and research organisations to develop a thriving food and nutraceutical industry using India's vast seaweed resources. The review briefly describes the nutritional and functional food potential of the seaweed and goes on to discuss the scope of seaweed utilization in food and nutraceutical industry in India. Further, the review has identified the regulatory challenges and quality control requirements for use of seaweeds in food and nutraceuticals.
Collapse
Affiliation(s)
- Gayatri Pandey
- Department of Fish Processing Technology, Fisheries College and Research Institute, Thoothukudi, India
| | - Niladri Sekhar Chatterjee
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Satyen Kumar Panda
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - C. O. Mohan
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Pankaj Kishore
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Anuj Kumar
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Devananda Uchoi
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - S. Balasundari
- Dr. M.G.R Fisheries College & Research Institute, Thalainayeru, Nagapattinam India
| | - Rangasamy Anandan
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | | |
Collapse
|
6
|
Postolache AN, Veleșcu ID, Stoica F, Crivei IC, Arsenoaia VN, Usturoi MG, Constantinescu Pop CG, Lipșa FD, Frunză G, Simeanu D, Rațu RN. A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient. Foods 2023; 12:4365. [PMID: 38231856 DOI: 10.3390/foods12234365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The world-wide-dispersed Rhododendron is a tiny, evergreen plant with vivid red or pale pink blossoms that is a member of the Ericaceae family and is well-known for its stunning flowers. To improve yogurt's nutritional profile and sensory qualities, this study investigates an innovative application of Rhododendron flower powder (RFP). The potential health benefits of Rhododendron flowers, which are a rich source of bioactive compounds such as polyphenols and antioxidants, have attracted attention. Consequently, the physicochemical, phytochemical, and sensory qualities of fortifying yogurt with RFP at various concentrations were studied. The results showed that the texture and color of the yogurt were highly influenced by the addition of RFP. The addition of this functional ingredient also resulted in a significant increase in the yogurt's polyphenol content and antioxidant capacity. These findings demonstrate the suitability of RFP in yogurt formulations as a functional food ingredient, being a good source of phenolics.
Collapse
Affiliation(s)
| | - Ionuț Dumitru Veleșcu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences, 6 Mihail Sadoveanu Alley, 700449 Iasi, Romania
| | - Vlad Nicolae Arsenoaia
- Department of Pedotechnics, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Marius Giorgi Usturoi
- Department of Animal Resources and Technology, Faculty of Food and Animal Sciences, "Ion Ionescu de la Brad" University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Cristina Gabriela Constantinescu Pop
- Department of Food Technologies, Safety of Food Production and the Environment, Faculty of Food Engneering, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Gabriela Frunză
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Daniel Simeanu
- Department of Control, Expertise and Services, Faculty of Food and Animal Sciences, "Ion Ionescu de la Brad" University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Roxana Nicoleta Rațu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
7
|
Araghi FE, Nodushan RM, Jafarpour A, Moslehishad M. Optimizing the effect of plant protease on different properties of analog cheese containing functional corn leachate. Food Sci Nutr 2023; 11:2719-2732. [PMID: 37324907 PMCID: PMC10261800 DOI: 10.1002/fsn3.3191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023] Open
Abstract
Cheese is produced in different flavors, textures, and forms by coagulating the milk protein casein. This study investigated the possibility of producing analog cheese by using corn steep liquor with Withania coagulans extract (WCE) and adding Eryngium planum extract (EPE) and Origanum majorana extract (OME) as functional ingredients. Different physicochemical, microbial, texture, and sensory properties of the samples were evaluated. The results obtained for moisture factor, fat, ash, water content, L*, b*, firmness, overall form, Lactobacillus and overall acceptance of the effect of all three process variables, pH, and acidity show that only the effect of WCE and OME is significant. Also, the protein of the samples was significant only on WCE and EPE (p < .001). The results showed that an increase in the levels of independent variables resulted in an increase in the amount of moisture, ash, protein, Lactobacillus, and b* and a decrease in fat, syneresis, texture properties, coliform, and lightness. Evaluation of the overall acceptance showed that consumer acceptance increased with the increase in WCE, but it initially increased and then decreased with the increase in EPE and OME levels. Finally, the samples containing 1.5% WCE, 1% EPE, and 0.5% OME were chosen as the optimized ones.
Collapse
Affiliation(s)
| | - Rezvan Mousavi Nodushan
- Department of Food Science and Technology, North Tehran BranchIslamic Azad UniversityTehranIran
| | - Afshin Jafarpour
- Department of Food Science and Technology, Garmsar BranchIslamic Azad UniversitySemnanIran
| | - Maryam Moslehishad
- Department of Food Science and Technology, Safadasht BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
8
|
Diaz-Bustamante ML, Keppler JK, Reyes LH, Alvarez Solano OA. Trends and prospects in dairy protein replacement in yogurt and cheese. Heliyon 2023; 9:e16974. [PMID: 37346362 PMCID: PMC10279912 DOI: 10.1016/j.heliyon.2023.e16974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.
Collapse
Affiliation(s)
- Martha L. Diaz-Bustamante
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Julia K. Keppler
- AFSG: Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, Netherlands
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Oscar Alberto Alvarez Solano
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Aleman RS, Cedillos R, Page R, Olson D, Aryana K. Physico-chemical, microbiological, and sensory characteristics of yogurt as affected by various ingredients. J Dairy Sci 2023; 106:3868-3883. [PMID: 37080788 DOI: 10.3168/jds.2022-22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
l-Glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate have been reported to help treat leaky gut. The purpose of this research was to explore the impact of these functional ingredients on the physico-chemical, microbiological, and sensory properties of yogurt. The milk from same source was equally divided into 9 pails and the 8 ingredients were randomly assigned to the 8 pails. The control had no ingredient. Milk was fermented to yogurt. The pH, titratable acidity, syneresis, viscosity, color (L*, a*, b*, C*, and h*), Streptococcus thermophilus counts, and Lactobacillus delbrueckii spp. bulgaricus counts of yogurts were determined on d 1, 7, 14, 21, 28, 35, and 42, whereas coliform counts, yeast and mold counts, and rheological characteristics were determined on d 1 and 42. The sensory study was performed on d 3 and particle size of the functional ingredients (powder form) was also determined. When compared with control, the incorporation of slippery elm bark into yogurts led to less syneresis. l-Glutamine increased pH and n' values (relaxation exponent derived from G') and lowered titratable acidity values. N-Acetyl-d-glucosamine incorporation resulted in higher n' and lower titratable acidity values, whereas maitake mushroom led to lower n' values. Incorporating quercetin increased the growth of L. bulgaricus. Adding maitake mushrooms increased the growth of S. thermophilus but lowered apparent viscosity values, whereas quercetin decreased its S. thermophilus counts. Quercetin decreased L* and a* values but increased b* values, and maitake mushroom increased a* values. Thixotropic behavior increased with the addition of licorice root and quercetin. Adding slippery elm bark, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate into yogurt did not affect the sensory properties, whereas yogurts with quercetin had the lowest sensory scores. Overall, most of these ingredients did not cause major changes to yogurt properties.
Collapse
Affiliation(s)
- Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Douglas Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803.
| |
Collapse
|
10
|
Tagliapietra BL, Clerici MTPS. Brown algae and their multiple applications as functional ingredient in food production. Food Res Int 2023; 167:112655. [PMID: 37087243 DOI: 10.1016/j.foodres.2023.112655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
Brown algae are considered one of the resources that can contribute to transforming our global food system by promoting healthier diets and reducing environmental impact. In this sense, this review article aims to provide up-to-date information on the nutritional and functional improvement of brown algae when they are applied to different food matrices. Brown algae present sulfated polysaccharides (alginates, fucoidans, and laminarins), proteins, minerals, vitamins, dietary fibers, fatty acids, pigments, and bioactive compounds that can positively contribute to the development of highly nutritious food products, as well as used reformulate products already existing, to remove, reduce, increase, add and/or replace different components and obtain products that confer health-promoting properties. This review demonstrates that there is a tendency to use seaweed for the production of functional foods and that the number of commercially produced products from seaweed is increasing, that is, seaweed is a sector whose global market is expanding.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The food industry has increasingly added nutrients and other ingredients to products to enhance their health benefits. Fucoxanthin is recognized for its benefits in mitigating obesity, diabetes, hypertension, and inflammation. Therefore, addition of fucoxanthin into goat milk yogurt, its stability, and the physicochemical properties of yogurt during processing and storage was investigated. Yogurts with and without fucoxanthin were manufactured by mixing goat whole milk (82.85%, w/w), powdered goat milk (10.68%, w/w), and sugar (6.47%, w/w). Fucoxanthin (0.052 mg/g of yogurt mix) was added to the treatment. The mix was heated at 80 °C for 30 min, cooled, inoculated with a culture, and incubated at 43 °C for 5 h. Fucoxanthin in the yogurt mix and yogurt was quantified by an HPLC method. The recoveries of fucoxanthin from the mix before and after heating were 98.25% and 98.83%, respectively. However, less fucoxanthin (90.13%) was recovered from the freshly prepared yogurt than from the mix. Heating the yogurt mix did not affect the concentration of fucoxanthin but adding the inoculum to the mix reduced its concentration during fermentation. During the storage period, the concentration of fucoxanthin in yogurt remained the same. Fucoxanthin did not adversely affect the chemical composition and physicochemical properties of yogurt, but it influenced the color, decreasing lightness (81.47 ± 0.09), and increasing redness (7.67 ± 0.09) and yellowness (38.24 ± 0.09). Thus, goat milk yogurt can be an effective food matrix to deliver fucoxanthin to human diet.
Collapse
|
12
|
Zhang H, Bian X, Luo S, Liu C, Hu X. Effect of sodium alginate on the yogurt stability was dependent on the thickening effect and interaction between casein micelles and sodium alginate. Int J Biol Macromol 2023; 235:123887. [PMID: 36870663 DOI: 10.1016/j.ijbiomac.2023.123887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The effect of sodium alginate (SA) on the yogurt stability and the related mechanisms were investigated. It was found that low-concentration SA (≤0.2 %) increased the yogurt stability, while high-concentration SA (≥0.3 %) decreased the yogurt stability. Sodium alginate increased the viscosity and viscoelasticity of yogurt and this effect was positively correlated with its concentration, suggesting that SA worked as the thickening agent in yogurt. However, addition of ≥0.3 % SA damaged the yogurt gel. These results suggested that interaction between milk protein and SA might play an important role in the yogurt stability besides the thickening effect. Addition of ≤0.2 % SA did not change the particle size of casein micelles. However, addition of ≥0.3 % SA induced aggregation of casein micelles and increased the size. And the aggregated casein micelles precipitated after 3 h storage. Isothermal titration calorimetry analysis showed that casein micelles and SA were thermodynamically incompatible. These results suggested that the interaction between casein micelles and SA induced aggregation and precipitation of casein micelles, which was critical in the destabilization of yogurt. In conclusion, the effect of SA on the yogurt stability was dependent on the thickening effect and the interaction between casein micelles and SA.
Collapse
Affiliation(s)
- Hongkai Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaofang Bian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
13
|
Jooyandeh H, Momenzadeh S, Alizadeh Behbahani B, Barzegar H. Effect of Malva neglecta and lactulose on survival of Lactobacillus fermentum and textural properties of synbiotic stirred yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1136-1143. [PMID: 36908339 PMCID: PMC9998791 DOI: 10.1007/s13197-023-05667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Yogurt is a popular dairy product and its consumption has been progressively growing over the past few decades by raising consumers' health-consciousness. As yogurt is growing in popularity, manufacturers are continuously seeking for bioactive components such as probiotics and prebiotics, to produce functional yogurt with more beneficial health effects. Therefore, this study aimed to evaluate the effect of Malva neglecta (MN, 0, 5, 10 and 15%) and lactulose (0, 1 and 2%) as prebiotic substances on survival of Lactobacillus fermentum in a half-fat synbiotic stirred yogurt. The results revealed that with increasing MN and lactulose concentrations, the count of Lb. fermentum significantly increased (p < 0.05). At the end of 21-day cold storage, the count of probiotics in yogurt sample having 2% lactulose and 10-15% MN significantly was higher than control (8.37-8.4 vs. 7.73 Log cfu/g). With increasing the amount of MN and lactulose, firmness and chewiness of yogurt samples decreased while adhesiveness increased (p < 0.05). Scanning electron microscopy assessment shown that addition of MN and lactulose resulted in a higher moisture retention in the void spaces. The results revealed that by incorporating lactulose and MN in yogurt formulation, an appropriate synbiotic yogurt could be produced as a novel functional product.
Collapse
Affiliation(s)
- Hossein Jooyandeh
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Sara Momenzadeh
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Hassan Barzegar
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
14
|
Kumar A, Hanjabam MD, Kishore P, Uchoi D, Panda SK, Mohan CO, Chatterjee NS, Zynudheen AA, Ravishankar CN. Exploitation of Seaweed Functionality for the Development of Food Products. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae-Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023; 13:386. [PMID: 36830755 PMCID: PMC9953460 DOI: 10.3390/biom13020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Seaweed is in the spotlight as a promising source of nutrition for humans as the search for sustainable food production systems continues. Seaweed has a well-documented rich nutritional profile containing compounds such as polyphenols, carotenoids and polysaccharides as well as proteins, fatty acids and minerals. Seaweed processing for the extraction of functional ingredients such as alginate, agar, and carrageenan is well-established. Novel pretreatments such as ultrasound assisted extraction or high-pressure processing can be incorporated to more efficiently extract these targeted ingredients. The scope of products that can be created using seaweed are wide ranging: from bread and noodles to yoghurt and milk and even as an ingredient to enhance the nutritional profile and stability of meat products. There are opportunities for food producers in this area to develop novel food products using seaweed. This review paper discusses the unique properties of seaweed as a food, the processes involved in seaweed aquaculture, and the products that can be developed from this marine biomass. Challenges facing the industry such as consumer hesitation around seaweed products, the safety of seaweed, and processing hurdles will also be discussed.
Collapse
Affiliation(s)
- Laura E. Healy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, D02 V583 Dublin, Ireland
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - James Curtin
- Faculty of Engineering & Built Environment, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | | |
Collapse
|
16
|
Nazari A, Zarringhalami S, Asghari B. Influence of germinated black cumin (Nigella sativa L.) seeds extract on the physicochemical, antioxidant, antidiabetic and sensory properties of yogurt. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022; 11:foods11172691. [PMID: 36076876 PMCID: PMC9455928 DOI: 10.3390/foods11172691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic fermented milks and yoghurts are acidified and fermented by viable bacteria, usually L. bulgaricus and S. thermophilus, resulting in a thicker product with a longer shelf life. They are a nutrition-dense food, providing a good source of calcium, phosphorus, potassium, vitamin A, vitamin B2, and vitamin B12. Additionally, they deliver high biological value proteins and essential fatty acids. There is accumulating evidence suggesting that yoghurt and fermented milk consumption is related to a number of health advantages, including the prevention of osteoporosis, diabetes, and cardiovascular diseases, as well as the promotion of gut health and immune system modulation. This review aims at presenting and critically reviewing the beneficial effects from the consumption of probiotic fermented milks in human health, whilst revealing potential applications in the food industry.
Collapse
|
18
|
Ribeiro AR, Madeira T, Botelho G, Martins D, Ferreira RM, Silva AMS, Cardoso SM, Costa R. Brown Algae Fucus vesiculosus in Pasta: Effects on Textural Quality, Cooking Properties, and Sensorial Traits. Foods 2022; 11:foods11111561. [PMID: 35681311 PMCID: PMC9180126 DOI: 10.3390/foods11111561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Fucus vesiculosus is a brown seaweed rich in iodine, fucoxanthin, and phlorotannins, all known to be bioactive compounds associated with health-promoting events. The enrichment of a staple food such as pasta with seaweed flour, could convey health benefits without changing eating habits. In this work, F. vesiculosus flour (FVF) was incorporated into durum wheat pasta at 1, 5.5, and 10% gradient levels. The pasta enriched with FVF needed additional water during dough formation and required more cooking time, resulting in higher weight gain but also increased cooking loss (observed with 5.5 and 10%). The fracturability of raw pasta decreased for all the FVF pasta, though the cooked firmness and hardness were only affected with the inclusion of 10% FVF. The substitution of wheat semolina with FVF at a 10% level caused an increase in the pasta’s fiber content, which resulted in a more discontinuous protein–matrix structure, as observed at the microscopic level. Untrained consumers were very positive about the overall sensory traits of the pasta with low supplementation levels (1 and 5.5%). About 72% of panelists selected the 1% FVF pasta as their favorite sample. The utilization of FVF in pasta should be targeted at low inclusion levels to cope with the expected texture quality and prevent the impairment of the sensory traits.
Collapse
Affiliation(s)
- Ana Ramalho Ribeiro
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Tiago Madeira
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Goreti Botelho
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Diana Martins
- Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-S. Martinho Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ricardo M Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Costa
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
19
|
Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01399-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Ali MA, Kamal MM, Rahman MH, Siddiqui MN, Haque MA, Saha KK, Rahman MA. Functional dairy products as a source of bioactive peptides and probiotics: current trends and future prospectives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1263-1279. [PMID: 35250052 PMCID: PMC8882518 DOI: 10.1007/s13197-021-05091-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/23/2021] [Accepted: 04/04/2021] [Indexed: 12/31/2022]
Abstract
Milk is an incredibly healthy food world-wide. However, the 'lactase deficient' individuals cannot digest milk's carbohydrate lactose. A large part of the world population is depriving of highly beneficial milk proteins like casein, lactoalbumin, lactoglobulin, etc. due to lactose intolerance. Production of functional foods and bioactive peptides from milk with natural antioxidants and the addition of probiotics could be the best alternative to extend the use of milk functionalities. Among different probiotics, the lactic acid bacteria (LAB) like Lactobacillus delbrueckii sub sp. bulgaricus, Streptococcus thermophilus and some species of Bifidobacteria and their metabolites (paraprobiotics and postbiotics) have been given more preference to add in milk-derived functional foods. These species are generally considered as heat-tolerant, highly proteolytic, and peptidolytic towards milk proteins and they liberate smaller molecules of bioactive peptides during fermentation and other processes that stimulate the enzyme lactase to help people in digestion of milk carbohydrate lactose. Moreover, the incorporation of natural antioxidants in yoghurt and other dairy products prevents the rancidity of milk fat. The level of bioactive peptides produced in milk-derived functional foods can be determined by capillary zone electrophoresis, mass spectrometry, fractionation, and other modern assessment techniques. Commercial production of functional probiotic products with bioactive peptides could significantly contribute to reduce milk spoilage, enhance health benefits as well as the growth of the agro-processing industry.
Collapse
Affiliation(s)
- Md. Aslam Ali
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Mostafa Kamal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Md. Hafizur Rahman
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Azizul Haque
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Khokan Kumar Saha
- Department of Agricultural Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Atikur Rahman
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| |
Collapse
|
21
|
Santos RAD, Rodrigues RDL, Lima MBDD, Nascimento EBD, Carvalho AMBD, Gadelha CADA, Gadelha TS. Influence of aqueous yam extract and goat milk casein powder on the characteristics of goat Greek-style yogurt. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
24
|
Innovative synbiotic fat-free yogurts enriched with bioactive extracts of the red macroalgae Laurencia caspica: formulation optimization, probiotic viability, and critical quality characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Physicochemical, Sensory Properties and Lipid Oxidation of Chicken Sausages Supplemented with Three Types of Seaweed. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of the addition of three types of tropical edible seaweeds, Kappaphycus alvarezii (KA), Sargassum polycystum (SP), and Caulerpa lentilifira (CL), on sausages were studied. Nine sausage formulations with three levels of inclusion (2%, 4%, and 6%) of each seaweed were prepared, analysed, and compared with the control sample (without seaweed) in terms of their physicochemical properties, total phenolic content, and lipid oxidation. The modified sausages had low moisture and fat content (p < 0.05) but high ash and dietary fiber content (p < 0.05) compared to the control sausage. The addition of seaweed powder changed the texture of the sausages, mainly its hardness and chewiness (p < 0.05), but no significant difference in cohesiveness and springiness was found (p < 0.05). The modified sausages were shown to have high water holding capacities and cooking yields. The different types of seaweed modified the colour of the chicken sausages differently. In general, the L* (brightness) and b* (yellowness) values was low for all sausage samples containing seaweed powder (p < 0.05), while the a* (redness) value increased with the addition of the KA and SP seaweed powder but decreased for the sausage sample with added CL seaweed powder (p < 0.05). Moreover, the modified sausages have higher total phenolic contents and high antioxidant capacities, which contributed to slowing the oxidation of lipid in sausages during storage (p < 0.05). Sensory evaluation showed that the panellists found up to 4% of KA and 2% of SP to be acceptable. Overall, the seaweeds, especially KA and SP, could potentially be developed as excellent additives for the manufacture of highly technological high-quality meat products.
Collapse
|
26
|
Francezon N, Tremblay A, Mouget JL, Pasetto P, Beaulieu L. Algae as a Source of Natural Flavors in Innovative Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11753-11772. [PMID: 34597023 DOI: 10.1021/acs.jafc.1c04409] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a result of their nutritive values, algae have been used as a food resource for centuries, and there is a growing interest to use them as enrichment ingredients in food products. However, food product acceptance by consumers is strongly linked to their organoleptic properties, especially the aroma, taste, and a combination of the two, flavor. With regard to edible algae, "fresh seashore", "seafood-like", "cucumber green", and "earthy" are descriptors commonly used to define their aromas. Several families of molecules participate in the diversity and peculiarities of algal aromas: pungent sulfur compounds and marine halogenated components but also herbaceous fatty acid derivatives and fruity-floral terpenoids. In both macroalgae (seaweeds) and microalgae, these compounds are studied from a chemistry point of view (identification and quantification) and a sensorial point of view, involving sensorial evaluation by panelists. As a whole food, a food ingredient, or a feed, algae are valued for their nutritional composition and their health benefits. However, because the acceptance of food by consumers is so strongly linked to its sensorial features, studies have been performed to explore the aromas of algae, their impact on food, their evolution through processing, and their ability to produce selected aromas using biotechnology. This review aims at highlighting algal aromas from seaweed and microalgae as well as their use, their handling, and their processing in the food industry.
Collapse
Affiliation(s)
- Nellie Francezon
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) 42 Rue Georges Morel, 49070 Beaucouzé, France
| | - Ariane Tremblay
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
| | - Jean-Luc Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lucie Beaulieu
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
27
|
Physicochemical, antioxidant and sensory properties of yogurt fortified with common purslane (Portulaca oleracea) extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Rahmani F, Gandomi H, Noori N, Faraki A, Farzaneh M. Microbial, physiochemical and functional properties of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium bifidum enriched by green tea aqueous extract. Food Sci Nutr 2021; 9:5536-5545. [PMID: 34646523 PMCID: PMC8498050 DOI: 10.1002/fsn3.2512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, the effect of aqueous extract of green tea on the viability of probiotic bacteria including Lactobacillus acidophilus and Bifidobacterium bifidum and the sensory and physicochemical and functional properties of synbiotic yogurt was investigated during 4 weeks of storage. L. acidophilus and B. bifidum counts did not significantly change in yogurt containing 0.5% and 1% of the extract during storage. Also, the addition of the extract to yogurt highly increased the phenolic compounds, since the amount of phenolic compounds in yogurt containing 0.5% and 1% extract was 660 and 1,123 mg gallic acid/kg, respectively. In addition, a significant increase in the antioxidant activity of yogurt containing green tea extract was observed in comparison with the control. The amount of antioxidant activity increased during 4 weeks of storage, which reached to 4,193 and 7,337 mg BHT eq./kg in probiotic yogurt containing 0.5% and 1% extract, respectively. The acidity increased during 4 weeks of storage, while the pH decreased. Addition of the extract significantly increased the acidity of probiotic yogurt compared with the control (p < .05). In addition, in all studied groups, an increase in syneresis was observed during the study, and the syneresis was greater in yogurt containing aqueous extract of green tea, compared with the control group. Although adding the green tea extract to probiotic yogurt impaired taste, texture, and appearance compared with the plain yogurt, the overall acceptability of these samples was yet above the acceptable level. In conclusion, the results of the study showed that the addition of aqueous extract of green tea increased the antioxidant properties and the amount of phenolic compounds in yogurt, while the viability of probiotic bacteria was not changed. Therefore, the simultaneous use of green tea extract and probiotics in yogurt is recommended as an effective functional food formulation.
Collapse
Affiliation(s)
- Fatemeh Rahmani
- Department of Food HygieneFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Hassan Gandomi
- Department of Food HygieneFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Negin Noori
- Department of Food HygieneFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Azita Faraki
- Department of Food HygieneFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Melika Farzaneh
- Department of Food Science and TechnologyShahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
29
|
Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101249] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Lugo‐Zarate L, Cruz‐Cansino NDS, Ramírez‐Moreno E, Zafra‐Rojas QY, Calderón‐Ramos ZG, Delgado‐Olivares L, Arias‐Rico J, Cervantes‐Elizarrarás A. Evaluation of physicochemical, microbiological, and antioxidant properties of a drinkable yogurt added with ultrasonicated purple cactus pear (
Opuntia ficus‐indica
) juice powder. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Liliana Lugo‐Zarate
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Nelly del Socorro Cruz‐Cansino
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Esther Ramírez‐Moreno
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Quinatzin Yadira Zafra‐Rojas
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Zuli Guadalupe Calderón‐Ramos
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Luis Delgado‐Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - José Arias‐Rico
- Centro de Investigación Interdisciplinario, Área Académica de Enfermería, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| | - Alicia Cervantes‐Elizarrarás
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo San Agustín Tlaxiaca México
| |
Collapse
|
31
|
Balpetek Külcü D, Koşgin EB, Çelik ÖF, Turabi Yolacaner E. Investigation of physicochemical, microbiological, textural, and sensory properties of set‐type yogurt with
Mentha pulegium
L. (pennyroyal) powder. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duygu Balpetek Külcü
- Department of Food Engineering Faculty of Engineering Giresun University Giresun Turkey
| | - Emine Büşra Koşgin
- Department of Food Engineering Faculty of Engineering Giresun University Giresun Turkey
| | - Ömer Faruk Çelik
- Department of Food Engineering Faculty of Agriculture Ordu University Ordu Turkey
| | - Elif Turabi Yolacaner
- Department of Food Engineering Faculty of Engineering Hacettepe University Ankara Turkey
| |
Collapse
|
32
|
Cabral EM, Oliveira M, Mondala JRM, Curtin J, Tiwari BK, Garcia-Vaquero M. Antimicrobials from Seaweeds for Food Applications. Mar Drugs 2021; 19:md19040211. [PMID: 33920329 PMCID: PMC8070350 DOI: 10.3390/md19040211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Márcia Oliveira
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, 24071 León, Spain;
| | - Julie R. M. Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - Brijesh K. Tiwari
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Correspondence:
| |
Collapse
|
33
|
Almusallam IA, Mohamed Ahmed IA, Saleh A, Al-Juhaimi FY, Ghafoor K, Al Maiman S, Babiker EE. Potential of date palm spikelet extract as an anti-oxidative agent in set-type yogurt during cold storage. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1877826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ibrahim A. Almusallam
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Date and Palm Center, Ministry of Environment, Water and Agriculture, Alhufuf, Alhasa, Saudi Arabia
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Fahad Y. Al-Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Kashif Ghafoor
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Salah Al Maiman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Elfadil E. Babiker
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Mohamed Ahmed IA, Alqah HA, Saleh A, Al-Juhaimi FY, Babiker EE, Ghafoor K, Hassan AB, Osman MA, Fickak A. Physicochemical quality attributes and antioxidant properties of set-type yogurt fortified with argel (Solenostemma argel Hayne) leaf extract. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Kabir MR, Hasan MM, Islam MR, Haque AR, Hasan SMK. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Md. Raihan Kabir
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science and Technology University (HSTU) Dinajpur Bangladesh
| | - Md. Mehedi Hasan
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science and Technology University (HSTU) Dinajpur Bangladesh
| | - Md. Rakibul Islam
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science and Technology University (HSTU) Dinajpur Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science and Technology University (HSTU) Dinajpur Bangladesh
| | - S. M. Kamrul Hasan
- Department of Food Processing and Preservation Hajee Mohammad Danesh Science and Technology University (HSTU) Dinajpur Bangladesh
| |
Collapse
|
36
|
Arslaner A, Salik MA, Bakirci İ. The effects of adding Hibiscus sabdariffa L. flowers marmalade on some quality properties, mineral content and antioxidant activities of yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:223-233. [PMID: 33505067 DOI: 10.1007/s13197-020-04533-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
In this study, the effect of Hibiscus sabdariffa L. flowers marmalade (HM) addition at different ratios (0%, 15%, 20%) was determined on the certain quality properties, total phenolic contents, antioxidant activity, mineral composition and heavy metal content of stirred-type yogurts (C, HM15, and HM20). The marmalade addition increased dry matter, ash, titratable acidity and viscosity whereas decreased pH, fat and protein values. HM addition significantly increased the antioxidant properties of yogurt samples. 2,2-Diphenylpicrylhydrazyl radical-scavenging activity, Copper (II) reducing antioxidant capacity and total phenolic content were found to be in the range of 5.92-26.73 mg TE/100 g, 4.88-15.03 mg TE/100 g, and 5.57-14.69 mg GAE/100 g, respectively. There were no statistically differences between control and HM-added groups in terms of lactic acid bacteria (LAB) counts, also in all samples the total LAB count was above 6 Log cfu/g during the storage. Fe, Mn, B, and Ba mineral values of samples with HM were higher than control sample. Cd, As, Hg and Li heavy metals were not detected in any of the samples, consequently results were within reliable limits reported by JECFA (Joint FAO/WHO Expert Committee on Food Additives) and Turkish Food Codex. As a result of the sensory evaluation, the samples containing 20% HM generally received higher scores than the samples containing 15% HM. Considering all the parameters, it was concluded that HM yogurts can be used as a different type in the functional yogurt industry due to its pleasant and characteristic taste.
Collapse
Affiliation(s)
- Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering, Bayburt University, 69000 Bayburt, Turkey
| | - Mehmet Ali Salik
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| | - İhsan Bakirci
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
37
|
Ribeiro MN, Rodrigues DM, Rocha RAR, Silveira LR, Condino JPF, Júnior AC, de Souza VR, Nunes CA, Pinheiro ACM. Optimising a stevia mix by mixture design and napping: A case study with high protein plain yoghurt. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
39
|
Jovanović M, Petrović M, Miočinović J, Zlatanović S, Laličić Petronijević J, Mitić-Ćulafić D, Gorjanović S. Bioactivity and Sensory Properties of Probiotic Yogurt Fortified with Apple Pomace Flour. Foods 2020; 9:foods9060763. [PMID: 32531907 PMCID: PMC7353605 DOI: 10.3390/foods9060763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/25/2023] Open
Abstract
To meet the demand for new functional foods in line with the trend of sustainable development, a novel probiotic yogurt fortified with 1%, 3%, and 5% apple pomace flour (APF) added immediately after inoculation with Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidum was developed. Upon fermentation in the presence of APF, a number of probiotic strains remained within the required range, while the syneresis of enriched yogurts was reduced up to 1.8 times in comparison to the control. Supernatants (i.e., extracted whey) obtained from yogurts with 1%, 3%, and 5% APF respectively had 1.4-, 1.8-, and 2.3-fold higher total phenolic content (TPC) than the control, 3.3-, 4.7-, and 8.0-fold higher radical scavenging (DPPH), and 1.3-, 1.6-, and 1.7-fold higher reducing activity (FRAP). Also, probiotic yogurt supernatants (3% and 5%) inhibited colon cancer cells’ viability (HCT 116, 12% and 17%; SW-620, 13% and 19%, respectively). The highest firmness, cohesiveness, and viscosity index values, and the highest scores for color and taste, were obtained for yogurt with 3% APF, indicating that this is the optimal APF amount for the production of novel yogurt with functional properties.
Collapse
Affiliation(s)
- Marina Jovanović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia; (M.P.); (S.Z.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia;
- Correspondence: (M.J.); (S.G.); Tel.: +38-163-744-3004 (M.J.); +38-161-243-9803 (S.G.)
| | - Marija Petrović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia; (M.P.); (S.Z.)
| | - Jelena Miočinović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (J.M.); (J.L.P.)
| | - Snežana Zlatanović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia; (M.P.); (S.Z.)
| | | | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia;
| | - Stanislava Gorjanović
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia; (M.P.); (S.Z.)
- Correspondence: (M.J.); (S.G.); Tel.: +38-163-744-3004 (M.J.); +38-161-243-9803 (S.G.)
| |
Collapse
|
40
|
Munekata PES, Pateiro M, Barba FJ, Dominguéz R, Gagaoua M, Lorenzo JM. Development of new food and pharmaceutical products: Nutraceuticals and food additives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:53-96. [PMID: 32402447 DOI: 10.1016/bs.afnr.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The market of nutraceuticals and foods elaborated with natural additives are constantly growing and leading researchers and professionals of pharmaceutical and food industry to develop new products and reconsider the formulation of processed food. However, these products can only be insert into the market after extensive and well-performed scientific studies that clarify the mechanisms by which bioactive compounds can improve health status beyond nutrition or can replace conventional food additives perceived as "unhealthy" or "unfamiliar" by consumers. Therefore, scientific evidence regarding the actual health benefits and preservation/enhancement of food attributes are the crucial step in the exploration of nutraceuticals and natural food additives. In this context, several studies have been carried to identify and characterize natural bioactive compounds in aquaculture and related by-products for further production of nutraceuticals and food additives. The main purpose of this chapter is to highlight the most recent advances to explore extracts and isolated compounds from aquaculture and by-products to develop nutraceuticals and food additives.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Rubén Dominguéz
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Dublin, Ireland
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.
| |
Collapse
|
41
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
42
|
Brown Macroalgae as Valuable Food Ingredients. Antioxidants (Basel) 2019; 8:antiox8090365. [PMID: 31480675 PMCID: PMC6769643 DOI: 10.3390/antiox8090365] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Due to the balanced nutritional value and abundance of bioactive compounds, seaweeds represent great candidates to be used as health-promoting ingredients by the food industry. In this field, Phaeophyta, i.e., brown macroalgae, have been receiving great attention particularly due to their abundance in complex polysaccharides, phlorotannins, fucoxanthin and iodine. In the past decade, brown algae and their extracts have been extensively studied, aiming at the development of well-accepted products with the simultaneous enhancement of nutritional value and/or shelf-life. However, the reports aiming at their bioactivity in in vivo models are still scarce and need additional exploration. Therefore, this manuscript revises the relevant literature data regarding the development of Phaeophyta-enriched food products, namely those focused on species considered as safe for human consumption in Europe. Hopefully, this will create awareness to the need of further studies in order to determine how those benefits can translate to human beings.
Collapse
|
43
|
Hadjimbei E, Botsaris G, Goulas V, Alexandri E, Gekas V, Gerothanassis IP. Functional stability of goats' milk yoghurt supplemented with
Pistacia atlantica
resin extracts and
Saccharomyces boulardii. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12629] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elena Hadjimbei
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology P.O. Box 50329Lemesos Cyprus
| | - George Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology P.O. Box 50329Lemesos Cyprus
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology P.O. Box 50329Lemesos Cyprus
| | - Eleni Alexandri
- Nuclear Magnetic Resonance Center, Department of Chemistry, Section of Organic Chemistry and Biochemistry University of Ioannina Ioannina Greece
| | - Vassilis Gekas
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology P.O. Box 50329Lemesos Cyprus
| | - Ioannis P Gerothanassis
- Nuclear Magnetic Resonance Center, Department of Chemistry, Section of Organic Chemistry and Biochemistry University of Ioannina Ioannina Greece
| |
Collapse
|
44
|
Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Probiotic dynamics during the fermentation of milk supplemented with seaweed extracts: The effect of milk constituents. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Catarino MD, Silva AMS, Mateus N, Cardoso SM. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar Drugs 2019; 17:E162. [PMID: 30857204 PMCID: PMC6471631 DOI: 10.3390/md17030162] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Phlorotannins are phloroglucinol-based phenolic compounds, occurring particularly in brown macroalgae, that have been recognized for their promising bioactive properties. In this study, the extraction of phlorotannins from Fucus vesiculosus was evaluated with particular emphasis on the influential parameters, including the solvent concentration, solvent-solid ratio, extraction temperature and extraction time, using a single-factor design followed by a Box-Behnken design. The maximum total phlorotannin content, determined using the 2,4-dimethoxybenzaldehyde (DMBA) method, corresponded to 2.92 ± 0.05 mg of phloroglucinol equivalents/g dry seaweed (mg PGE/g DS), and was achieved for extracts carried out with acetone 67% (v/v), a solvent-solid ratio of 70 mL/g and temperature at 25 °C. This crude extract, together with a semi-purified phlorotannin fraction, were further evaluated for their anti-enzymatic capacity against α-glucosidase, α-amylase and pancreatic lipase, both showing promising inhibitory effects, particularly against α-glucosidase for which a greater inhibitory effect was observed compared to the pharmaceutical drug acarbose (IC50 = 4.5 ± 0.8 and 0.82 ± 0.3 μg/mL, respectively, against 206.6 ± 25.1 μg/mL). Additionally, the ultra-high-pressure liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis carried out on the ethyl acetate fraction revealed the presence of fucols, fucophlorethols, fuhalols and several other phlorotannin derivatives. Moreover, possible new phlorotannin compounds, including fucofurodiphlorethol, fucofurotriphlorethol and fucofuropentaphlorethol, have been tentatively identified in this extract. Overall, this study provides evidence that F. vesiculosus phlorotannin-rich extracts hold potential for the management of the activity of α-glucosidase, α-amylase and pancreatic lipase, which are well known to be linked to metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Marcelo D Catarino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
47
|
Cheese supplementation with five species of edible seaweeds: Effect on proteolysis, lipolysis and volatile compounds. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jacobsen C, Sørensen ADM, Holdt SL, Akoh CC, Hermund DB. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annu Rev Food Sci Technol 2019; 10:541-568. [PMID: 30673506 DOI: 10.1146/annurev-food-032818-121401] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Driven by a general demand for clean labels on food and cosmetic products, these industries are currently searching for efficient natural antioxidants to replace synthetic antioxidants. Seaweed contains several compounds with antioxidative properties (phlorotannins, pigments, tocopherols, and polysaccharides). It is possible to extract these compounds via different extraction techniques, which are discussed in this review. Among the abovementioned compounds, phlorotannins are probably the most important in terms of the antioxidative potential of seaweed extracts. We review how the different antioxidative compounds can be characterized. We discuss the current knowledge of the relationship between phlorotannin's structure and antioxidant properties in in vitro studies as well as in food systems. Concerning food systems, most studies on the antioxidative effect of seaweed extracts have been performed with extracts prepared from Fucus vesiculosus, despite the fact that this species is less available than other species, such as Ascophyllum nodosum, which also has high phlorotannin content.
Collapse
Affiliation(s)
- Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Ann-Dorit M Sørensen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Susan L Holdt
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Casimir C Akoh
- Food Science and Technology, University of Georgia, Athens, Georgia 30602, USA
| | - Ditte B Hermund
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
49
|
Gaglio R, Gentile C, Bonanno A, Vintaloro L, Perrone A, Mazza F, Barbaccia P, Settanni L, Di Grigoli A. Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Lucia Vintaloro
- Sezione Operativa Periferica di Assistenza Tecnica no. 65 – Corleone Ente Sviluppo Agricolo Via Libertà 203 Palermo 90143 Italy
| | - Anna Perrone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Francesca Mazza
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| |
Collapse
|
50
|
del Olmo A, Picon A, Nuñez M. Cheese supplementation with five species of edible seaweeds: Effect on microbiota, antioxidant activity, colour, texture and sensory characteristics. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|