1
|
Zhan H, Xin W, Deng Y, Lin T, Shen Q, Hayat K, Ma Y, Diao Y. The flavor properties of Amadori rearrangement products and their potentials in flavor replication of plant-based meat analogs: a review. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 40420727 DOI: 10.1080/10408398.2025.2507696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Plant-based meat analogs (PBMAs) are promising substitutes for balancing the global supply and demand of meat products. The urgent necessity of a meat-like flavor becomes prominent owing to the aroma and taste defects of plant-based meat analogs, which restricts the desire for consumption. As significant Maillard reaction intermediates, Amadori rearrangement products (ARPs) are key flavor precursors that contribute to the required flavor compounds and taste properties; flavor replication in PBMAs is expected. The present review aims to discuss the flavor properties of ARPs and their potential and impact on PBMAs flavor replication. The potential impact of ARPs on the flavor profile of PBMAs lies in the interaction between ARPs and fatty acids or peptides. Strategies aimed at improving the flavor formation of ARPs were proposed for further flavor replication of PBMAs, targeting the flavor flaws of PBMAs caused by the ingredients and processing parameters. Additionally, flavor compounds derived from lipid oxidation are indispensable in meat flavor; the construction of animal fat via vegetable oil, the interaction between ARPs and fatty acids, and further regulation strategies are regarded as significant research trends for PBMAs flavor enhancement.
Collapse
Affiliation(s)
- Huan Zhan
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Wenjing Xin
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Yang Deng
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Tao Lin
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Qingshan Shen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Khizar Hayat
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, AL, USA
| | - Yanli Ma
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, PR China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| |
Collapse
|
2
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
3
|
Wang B, Chen W, Jia R, Guo Z. Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure. Int J Biol Macromol 2025; 293:139422. [PMID: 39746420 DOI: 10.1016/j.ijbiomac.2024.139422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.80 % to 72.26 %, and HHP increased amylose content further. LS crystals changed from C-type to B-type, and the ordered structure of LS was destroyed by enzymatic hydrolysis, and amylose single helix and partial double helix structure were formed. At low concentration, lotus seed amylose single helix tends to form amylose double helix structure with itself. At high concentrations, they tend to aggregate, forming a network structure with large surface area and loose order. HHP destroys the double helix structure of amylose, resulting in the decrease of starch crystallinity. These findings provide new insights into improving the processing properties and application range of lotus seed starch.
Collapse
Affiliation(s)
- Bailong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
4
|
Li N, Tan Z, Ma R, Song Y, Liu R, Zhao J, Qin N, Li Y, Liu X, Zhou D, Li D. Using multi-modal spectroscopy technology and microscopic analysis to explore the regulation of ultra-high pressure heat-assisted treatment on the texture of ready-to-eat shrimp during storage. Food Chem 2025; 464:141604. [PMID: 39396468 DOI: 10.1016/j.foodchem.2024.141604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
This study employed multi-modal spectroscopy technology and microscopic analysis to investigate the effects of various treatments on the texture of ready-to-eat (RTE) shrimps during storage. The results indicated that ultra-high pressure heat-assisted treatment (UHP-HAT) significantly improved the texture properties of RTE shrimps while simultaneously reducing the carbonyl and trichloroacetic acid-soluble properties associated with protein oxidative degradation. Furthermore, UHP-HAT resulted in a denser and more ordered protein structure, which contributed to an increased content of bound and immobile water. A partial least squares regression model for texture prediction was developed using data obtained from hyperspectral imaging, demonstrating a strong correlation between spectral information and texture parameters. Additionally, infrared imaging was utilized to elucidate the distribution of functional groups (OH, CO, CH) and carbonyl compounds within the proteins. Overall, the findings suggested that UHP-HAT could effectively delay the deterioration of texture by mitigating protein degradation.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruida Ma
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yafang Song
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Rong Liu
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Jiaxin Zhao
- Liaoning General Fair Testing Co., Ltd., Shenyang 110000, China
| | - Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yahong Li
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Pogorzelska-Nowicka E, Hanula M, Pogorzelski G. Extraction of polyphenols and essential oils from herbs with green extraction methods - An insightful review. Food Chem 2024; 460:140456. [PMID: 39084104 DOI: 10.1016/j.foodchem.2024.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Grzegorz Pogorzelski
- The Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
6
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
7
|
Li N, Wang Y, Tan Z, Xu Y, Liu X, Liu Y, Zhou D, Li D. Effect of ultra-high pressure heat-assisted technology combined with L-cysteine on the color of ready-to-eat shrimp during storage. Food Chem 2024; 460:140634. [PMID: 39079355 DOI: 10.1016/j.foodchem.2024.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
This study used ultra-high pressure processing (HPP) heat-assisted technology combined with L-cysteine (L-cys) to process ready-to-eat (RTE) shrimp. Subsequently, the effects of physical field and chemical modifications on the color of RTE shrimp were studied. The results showed that the RTE shrimp treated with HPP-Heat-L-cys showed better performance in terms of brightness value (65.25) and astaxanthin (AST) content (0.71 μg/g) during storage, maintaining the original color of RTE shrimp effectively. In addition, it was observed that the application of HPP-Heat-L-cys significantly delayed phenol oxidation, lipid oxidation, and Maillard reaction compared with traditional HPP or heat treatments. Specifically, the total phenolic content of RTE shrimp treated with HPP-Heat-L-cys was higher than that of other samples, but the TBARS and browning index were lower. Furthermore, HPP-Heat-L-cys could delay the production of dark products (such as 2-methylanthraquinone, p-benzoquinone, lipofuscin and melanin), ultimately safeguarding the color stability of RTE shrimp during storage.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yefan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yunpeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Bahmanpour H, Asefi N, Alizadeh A, Pirsa S. Assessment of the impact of cold plasma technology on physicochemical properties of corn starch flour and the associated modified corn starch incorporated into milk dessert. Heliyon 2024; 10:e37399. [PMID: 39290274 PMCID: PMC11407043 DOI: 10.1016/j.heliyon.2024.e37399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
The utilization of cold plasma can be used as an alternative method to modify the properties of starch. This research aimed to examine the use of cold plasma technology to alter the structure of corn starch and investigate how its functionality could be improved using a food model (milk dessert). Modified corn starch by plasma technology under different gas contents (dielectric-barrier discharge (DBD)) (95 % argon+5 % hydrogen (DBD1) and 90 % argon+10 % oxygen (DBD2)) was compared to the control sample of corn starch. The physicochemical characteristics of modified corn starch, DSC, XRD, SEM and FTIR tests were evaluated. The findings demonstrated that corn starch had significantly higher solubility, transparency, ash, oil absorption capacity (OAC), and resistant starch (RS) when exposed to cold plasma under the test circumstances compared to the control sample. SEM analysis confirmed that plasma affected the surface of starch granules, making the surface changes more pronounced when oxygen was added to the treatment. It was concluded that the sample should be treated with plasma containing 90 % argon and 10 % oxygen (as the best sample). The best sample (modified corn starch) was used to prepare a milk dessert as a food model, and considerable differences were found between the modified starch treated sample and control samples in terms of moisture, brix, syneresis, and organoleptic properties (p < 0.05).
Collapse
Affiliation(s)
- Hannaneh Bahmanpour
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aynaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Zarei M, Ghahfarokhi MG, Sabaeian M, Sepahi M, Alirezaie S, Mohebi M. Effect of plasma-activated water on planktonic and biofilm cells of Vibrio parahaemolyticus strains isolated from cutting board surfaces in retail seafood markets. J Appl Microbiol 2024; 135:lxae182. [PMID: 39020257 DOI: 10.1093/jambio/lxae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
AIMS This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains. METHODS AND RESULTS A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells. CONCLUSIONS PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Maryam Ghaderi Ghahfarokhi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohammad Sabaeian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
- Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mahtab Sepahi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Soraya Alirezaie
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Mohadeseh Mohebi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
10
|
Park JS, Han JM, Park SW, Kim JW, Choi MS, Lee SM, Haq M, Zhang W, Chun BS. Subcritical Water Extraction of Undaria pinnatifida: Comparative Study of the Chemical Properties and Biological Activities across Different Parts. Mar Drugs 2024; 22:344. [PMID: 39195460 DOI: 10.3390/md22080344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The subcritical water extraction of Undaria pinnatifida (blade, sporophyll, and root) was evaluated to determine its chemical properties and biological activities. The extraction was conducted at 180 °C and 3 MPa. Root extracts exhibited the highest phenolic content (43.32 ± 0.19 mg phloroglucinol/g) and flavonoid content (31.54 ± 1.63 mg quercetin/g). Sporophyll extracts had the highest total sugar, reducing sugar, and protein content, with 97.35 ± 4.23 mg glucose/g, 56.44 ± 3.10 mg glucose/g, and 84.93 ± 2.82 mg bovine serum albumin (BSA)/g, respectively. The sporophyll contained the highest fucose (41.99%) and mannose (10.37%), whereas the blade had the highest galactose (48.57%) and glucose (17.27%) content. Sporophyll had the highest sulfate content (7.76%). Key compounds included sorbitol, glycerol, L-fucose, and palmitic acid. Root extracts contained the highest antioxidant activity, with IC50 values of 1.51 mg/mL (DPPH), 3.31 mg/mL (ABTS+), and 2.23 mg/mL (FRAP). The root extract exhibited significant α-glucosidase inhibitory activity with an IC50 of 5.07 mg/mL, indicating strong antidiabetic potential. The blade extract showed notable antihypertensive activity with an IC50 of 0.62 mg/mL. Hence, subcritical water extraction to obtain bioactive compounds from U. pinnatifida, supporting their use in functional foods, cosmetics, and pharmaceuticals is highlighted. This study uniquely demonstrates the variation in bioactive compound composition and bioactivities across different parts of U. pinnatifida, providing deeper insights. Significant correlations between chemical properties and biological activities emphasize the use of U. pinnatifida extracts for chronic conditions.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Min-Seo Choi
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sang-Min Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Monjurul Haq
- Institute of Food Science, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Sultana A, Aghajanzadeh S, Thibault B, Ratti C, Khalloufi S. Exploring conventional and emerging dehydration technologies for slurry/liquid food matrices and their impact on porosity of powders: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13347. [PMID: 38650473 DOI: 10.1111/1541-4337.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The contribution of dehydration to the growing market of food powders from slurry/liquid matrices is inevitable. To overcome the challenges posed by conventional drying technologies, several innovative approaches have emerged. However, industrial implementation is limited due to insufficient information on the best-suited drying technologies for targeted products. Therefore, this review aimed to compare various conventional and emerging dehydration technologies (such as active freeze, supercritical, agitated thin-film, and vortex chamber drying) based on their fundamental principles, potential applications, and limitations. Additionally, this article reviewed the effects of drying technologies on porosity, which greatly influence the solubility, rehydration, and stability of powder. The comparison between different drying technologies enables informed decision-making in selecting the appropriate one. It was found that active freeze drying is effective in producing free-flowing powders, unlike conventional freeze drying. Vortex chamber drying could be considered a viable alternative to spray drying, requiring a compact chamber than the large tower needed for spray drying. Freeze-dried, spray freeze-dried, and foam mat-dried powders exhibit higher porosity than spray-dried ones, whereas supercritical drying produces nano-porous interconnected powders. Notably, several factors like glass transition temperature, drying technologies, particle aggregation, agglomeration, and sintering impact powder porosity. However, some binders, such as maltodextrin, sucrose, and lactose, could be applied in controlled agglomeration to enhance powder porosity. Further investigation on the effect of emerging technologies on powder properties and their commercial feasibility is required to discover their potential in liquid drying. Moreover, utilizing clean-label drying ingredients like dietary fibers, derived from agricultural waste, presents promising opportunities.
Collapse
Affiliation(s)
- Afroza Sultana
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
- Department of Food Processing and Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sara Aghajanzadeh
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Bruno Thibault
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Cristina Ratti
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
12
|
Siddiqui SA, Singh S, Bahmid NA, Sasidharan A. Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage - A systematic review and meta-analysis. Heliyon 2024; 10:e29066. [PMID: 38655319 PMCID: PMC11035943 DOI: 10.1016/j.heliyon.2024.e29066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Seafood, being highly perishable, faces rapid deterioration in freshness, posing spoilage risks and potential health concerns without proper preservation. To combat this, various innovative preservation and packaging technologies have emerged. This review delves into these cutting-edge interventions designed to minimize spoilage and effectively prolong the shelf life of fresh seafood products. Techniques like High-Pressure Processing (HPP), Modified Atmosphere Packaging (MAP), bio-preservation, and active and vacuum packaging have demonstrated the capability to extend the shelf life of seafood products by up to 50%. However, the efficacy of these technologies relies on factors such as the specific type of seafood product and the storage temperature. Hence, careful consideration of these factors is essential in choosing an appropriate preservation and packaging technology.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany
| | - Shubhra Singh
- Department of Tropical Agriculture and International cooperation, National Pingtung University of Science and Technology, 91201, Taiwan
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad P.O 682506, Kerala, India
| |
Collapse
|
13
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
14
|
Chemat A, Song M, Li Y, Fabiano-Tixier AS. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation. Molecules 2023; 28:8138. [PMID: 38138626 PMCID: PMC10745320 DOI: 10.3390/molecules28248138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.
Collapse
Affiliation(s)
- Aziadé Chemat
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | - Mengna Song
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| |
Collapse
|
15
|
Basiri N, Zarei M, Kargar M, Kafilzadeh F. Effect of plasma-activated water on the biofilm-forming ability of Salmonella enterica serovar Enteritidis and expression of the related genes. Int J Food Microbiol 2023; 406:110419. [PMID: 37776833 DOI: 10.1016/j.ijfoodmicro.2023.110419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
In recent years, microbial decontamination with plasma-activated water (PAW) has attracted a lot of research attention in the field of food industry. Despite several studies showing that PAW effectively inactivates planktonic bacteria, few studies have been conducted on biofilms. The present study was, therefore, designed to evaluate the effect of PAW on the biofilm formation characteristics of Salmonella Enteritidis. Comparing the expression patterns of biofilm-related genes in PAW-treated and non-treated planktonic and biofilm cells provided insight into how PAW regulates this process. The results showed that a 30-minute exposure to PAW at room temperature significantly reduced S. enteritidis planktonic cells. This exposure resulted in a decreased expression of the genes involved in the early stages of biofilm formation (csgD, agfA, fimA, lpfE, and rpoS), and an increased expression of the csrA gene in S. enteritidis planktonic cells. These results indicated the inhibitory effect of PAW on the biofilm formation process in S. enteritidis. Results of the initial attachment assay confirmed these findings, where, after 6 h, the number of PAW-treated cells attached to the stainless steel surfaces were significantly lower than non-treated ones. Furthermore, biofilm development assay revealed that the number of PAW-treated biofilm cells were significantly lower than non-treated ones after 24 h incubation at 37 °C. These findings were confirmed by measurements of the major components of biofilm i.e., extracellular DNA (eDNA), protein and carbohydrate. The amount of these components in 24-hour biofilms produced by PAW-treated S. enteritidis cells was significantly lower than that of non-treated cells. PAW's treatment on preformed 24-hour biofilms for 30 min led to a decrease in the expression of genes involved in quorum sensing and cellulose synthesis (csgD, bapA, adrA, luxS and sdiA) and an increase in the expression of the csrA gene. This treatment also reduced the number and metabolic activity of biofilm cells compared to non-treated biofilm cells. In total, the present study demonstrated that PAW has an inhibitory effect on the process of biofilm formation in S. enteritidis and hence, the food industry should pay special attention to PAW as a promising treatment to eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Narjes Basiri
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Farshid Kafilzadeh
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
16
|
Fischer E, Cayot P, Cachon R, Cayot N. Effects of ionizing radiation on organic volatile compounds from PEA protein isolate. Heliyon 2023; 9:e22658. [PMID: 38125550 PMCID: PMC10730598 DOI: 10.1016/j.heliyon.2023.e22658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Food irradiation is a preservation technique and in respect with regulations, is applied to a limited number of products. Nevertheless, this technique could be interesting for products sensitive to heat treatment, and to limit alteration caused to their organoleptic characteristics. This study concerns the potential of ionization for vegetable proteins, to limit the damage on the sensory properties that can be caused by thermal treatments. The impact of β-ionizing was measured on the volatile compounds of five pea protein isolates. These isolates were subjected to ionizing radiation of 10 MeV electron beam and the volatile compounds were compared by SPME-GC-MS before and after the treatment. β-Ionization led to a major increase in the total amount of volatiles and to appearance of new compounds. We observed a strong increase in aldehydes, that were reported to be involved in pea off-flavor, and the appearance of dimethyl-disulfide, linked to sulfurous off-notes. Many of the compounds impacted by the treatment were linked to protein and lipid oxidations. Mechanisms explaining the impact of β-ionizing on lipids and protein oxidations were proposed.
Collapse
Affiliation(s)
- Estelle Fischer
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Philippe Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Rémy Cachon
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Nathalie Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
17
|
Silva Amorim D, Silva Amorim I, Campos Chisté R, André Narciso Fernandes F, Regina Barros Mariutti L, Teixeira Godoy H, Rosane Barboza Mendonça C. Non-thermal technologies for the conservation of açai pulp and derived products: A comprehensive review. Food Res Int 2023; 174:113575. [PMID: 37986445 DOI: 10.1016/j.foodres.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Açai (Euterpe oleracea) is one of the main sustainable extractive crops in the Amazon region, widely consumed by the local population and a significant export product. This review presents the current knowledge regarding nonthermal technologies employed in açai processing. This review aims to discuss and compare the main results attained by the application of HPP, ultrasound, ozone, UV light, cold plasma, and pulsed electric field on microbial inactivation, enzymatic inhibition, and the content of anthocyanin and other bioactive compounds after açai pulp processing. The discussion compares these technologies with pasteurization, the current main technology applied to açai sanitization. This review shows that there are still many gaps to be filled concerning açai processing in thermal and non-thermal technologies. Data analysis allowed the conclusion that pasteurization and HPP are, up to now, the only technologies that enable a 5-log CFU reduction of yeasts, molds, and some bacteria in açai. However, no study has reported the inactivation of Trypanosoma cruzi, which is the major gap found in current knowledge. Other technologies, such as pulsed electric field, cold plasma, and ultrasound, require further development and process intensification studies to be as successful as HPP and pasteurization.
Collapse
Affiliation(s)
- Danyelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| | - Isabelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil
| | - Lilian Regina Barros Mariutti
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Carla Rosane Barboza Mendonça
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Thomas E, Panjagari NR, Singh AK, Sabikhi L, Deshwal GK. Alternative food processing techniques and their effects on physico- chemical and functional properties of pulse starch: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2705-2724. [PMID: 37711574 PMCID: PMC10497490 DOI: 10.1007/s13197-022-05557-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 09/16/2023]
Abstract
Thermal processing remains the key processing technology for food products. However, there are some limitations for thermal processing such as loss of sensory and nutritional quality. Furthermore, nowadays consumers are looking forward for fresh like products which are free from chemical preservatives, yet having longer shelf life. Thus, alternative processing techniques are gaining popularity among food processors to replace conventional thermal processing keeping nutritional quality, sensory attributes and food safety in mind. The alternative processing techniques such as ultrasound, gamma irradiation, high pressure processing and microwave treatment causes several modifications (structural changes, effects on swelling and solubility index, gelatinization behaviour, pasting or rheological properties, retrogradation and cooking time) in physicochemical and functional properties of pulse starches which offers several advantages from commercial point of view. This review aims to summarize the effect of different alternative processing techniques on the structure, solubility, gelatinization, retrogradation and pasting properties of various pulse starches. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05557-3.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Narender Raju Panjagari
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Ashish Kumar Singh
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Latha Sabikhi
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Gaurav Kr Deshwal
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
19
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
20
|
Gokul Nath K, Pandiselvam R, Sunil C. High-pressure processing: Effect on textural properties of food- A review. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023; 28:5431. [PMID: 37513301 PMCID: PMC10383711 DOI: 10.3390/molecules28145431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
22
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
23
|
Kumar Y, Marangon M, Mayr Marangon C. The Application of Non-Thermal Technologies for Wine Processing, Preservation, and Quality Enhancement. BEVERAGES 2023. [DOI: 10.3390/beverages9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Recently, non-thermal wine processing technologies have been proposed as alternatives to conventional winemaking processes, mostly with the aims to improve wine quality, safety, and shelf-life. Winemakers typically rely on sulfites (SO2) to prevent wine oxidation and microbial spoilage, as these processes can negatively affect wine quality and aging potential. However, SO2 can trigger allergic reactions, asthma, and headaches in sensitive consumers, so limitations on their use are needed. In red winemaking, prolonged maceration on skins is required to extract enough phenolic compounds from the wine, which is time-consuming. Consequently, the wine industry is looking for new ways to lower SO2 levels, shorten maceration times, and extend shelf life while retaining wine quality. This review aggregates the information about the novel processing techniques proposed for winemaking, such as high-pressure processing, pulsed electric field, ultrasound, microwave, and irradiation. In general, non-thermal processing techniques have been shown to lead to improvements in wine color characteristics (phenolic and anthocyanin content), wine stability, and wine sensory properties while reducing the need for SO2 additions, shortening the maceration time, and lowering the microbial load, thereby improving the overall quality, safety, and shelf life of the wines.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile, 14, 31015 Conegliano, Italy
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
24
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
25
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
SALEE N, NARUENARTWONGSAKUL S, CHAIYANA W, YAWOOTTI A, HUNSAKUL K, TINPOVONG B, UTAMA-ANG N. Comparison of pulse electric field, microwave and ultrasonic pretreatment prior to black rice extraction on antioxidant and sirtuin1 enzyme stimulating activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
27
|
Yang W, Wang P, Zhang W, Xu M, Yan L, Yan Z, Du W, Ouyang L, Liu B, Wu Z, Zhang Z, Zhao S, Li X, Wang L. Review on preservation techniques of edible lily bulbs in China. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Wenzhe Yang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Peng Wang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Wen Zhang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Mengda Xu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lihong Yan
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Ziyi Yan
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Wanhua Du
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lu Ouyang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Bin Liu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Zijian Wu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Zhe Zhang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Songsong Zhao
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Xingbo Li
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lei Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, P.R. China
| |
Collapse
|
28
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
30
|
Non-thermal treatments for the control of endogenous formaldehyde from Auricularia auricula and their effects on its nutritional characteristics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Thangavelu KP, Tiwari BK, Kerry JP, Álvarez C. Effect of high-pressure processing in improving the quality of phosphate-reduced Irish breakfast sausages formulated with ultrasound-treated phosphate alternatives. Meat Sci 2022; 194:108981. [PMID: 36156346 DOI: 10.1016/j.meatsci.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
This work examined the effects of High-pressure processing (HPP) treatment on pork meat subsequently used to generate three phosphate-reduced sausage formulations (1-3) containing ultrasound (US) treated apple pomace (AP) and coffee silverskin (CSS) ingredients as phosphate replacers and compared against control (traditional) sausage formulations. Results showed that HPP and formulations produced significant interactive (P < 0.05) positive changes in the water holding capacity (WHC), cook loss, emulsion stability values. Texture, colour, TBARS, and emulsion stability values for sausage formulations showed no significant interactive impacts. Overall comparison of treatment sausage formulations against control formulations with non-HPP treated meat showed that HPP improved overall sausage quality attributes, where sausage formulation 2 employing HPP-treated meat and US-treated AP and CSS was regarded as the optimal sausage formulation. In conclusion, there is potential to manufacture sausages with reduced-phosphate concentration using combined novel processing technologies and clean label ingredients such as AP and CSS.
Collapse
Affiliation(s)
- Karthikeyan Palanisamy Thangavelu
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Carlos Álvarez
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
32
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
33
|
Nonthermal Food Processing: A Step Towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem X 2022; 16:100516. [DOI: 10.1016/j.fochx.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
34
|
Anjaly MG, Prince MV, Warrier AS, Lal AMN, Mahanti NK, Pandiselvam R, Thirumdas R, Sreeja R, Rusu AV, Trif M, Kothakota A. Design consideration and modelling studies of ultrasound and ultraviolet combined approach for shelf-life enhancement of pine apple juice. ULTRASONICS SONOCHEMISTRY 2022; 90:106166. [PMID: 36215891 PMCID: PMC9554827 DOI: 10.1016/j.ultsonch.2022.106166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 05/28/2023]
Abstract
Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.
Collapse
Affiliation(s)
- M G Anjaly
- Department of Agricultural Processing and Food Engineering, Kelappaji College of Agricultural Engineering & Technology, Tavanur 679 573, India
| | - M V Prince
- Department of Agricultural Processing and Food Engineering, Kelappaji College of Agricultural Engineering & Technology, Tavanur 679 573, India
| | - Aswin S Warrier
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - A M Nandhu Lal
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Naveen Kumar Mahanti
- Post Harvest Technology Research Station, Dr. Y.S.R Horticultural University, Venkataramannagudem, West Godavari 534101, Andhra Pradesh, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India
| | - Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - R Sreeja
- Department of Agricultural Processing and Food Engineering, Kelappaji College of Agricultural Engineering & Technology, Tavanur 679 573, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania.
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| |
Collapse
|
35
|
Bisson G, Comuzzi C, Giordani E, Poletti D, Boaro M, Marino M. An exopolysaccharide from Leuconostoc mesenteroides showing interesting bioactivities versus foodborne microbial targets. Carbohydr Polym 2022; 301:120363. [DOI: 10.1016/j.carbpol.2022.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
36
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
37
|
dos Santos Rocha C, Magnani M, de Paiva Anciens Ramos GL, Bezerril FF, Freitas MQ, Cruz AG, Pimentel TC. Emerging technologies in food processing: impacts on sensory characteristics and consumer perception. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Punia Bangar S, Suri S, Nayi P, Phimolsiripol Y. Cold plasma for microbial safety: Principle, mechanism, and factors responsible. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson 29634 U.S.A
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana 131028 India
| | - Pratik Nayi
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology 1 Shuefu Road Neipu Pingtung 91201 Taiwan
| | | |
Collapse
|
39
|
Afzal A, Saeed F, Afzaal M, Maan AA, Ikram A, Hussain M, Usman I, Shah YA, Anjum W. The chemistry of flavor formation in meat and meat products in response to different thermal and non‐thermal processing techniques: an overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atka Afzal
- Department of Food Science Government College University Faisalabad
| | - Farhan Saeed
- Department of Food Science Government College University Faisalabad
| | - Muhamamd Afzaal
- Department of Food Science Government College University Faisalabad
| | - Abid Aslam Maan
- National Institute of Food Science & Technology University of Agriculture Faisalabad
| | - Ali Ikram
- Department of Food Science Government College University Faisalabad
| | - Muzzamal Hussain
- Department of Food Science Government College University Faisalabad
| | - Ifrah Usman
- Department of Food Science Government College University Faisalabad
| | - Yasir Abass Shah
- Department of Food Science Government College University Faisalabad
| | - Waqas Anjum
- Department of Food Science Government College University Faisalabad
| |
Collapse
|
40
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
41
|
Guimarães JT, Almeida PP, Brito ML, Cruz BO, Costa NS, Almeida Ito RV, Mota JC, Bertolo MR, Morais ST, Neto RP, Tavares MIB, Souto F, Bogusz Junior S, Pimentel TC, Stockler-Pinto MB, Freitas MQ, Cruz AG. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chem 2022; 380:132193. [DOI: 10.1016/j.foodchem.2022.132193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
42
|
Bocker R, Silva EK. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100098] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
Mollakhalili‐Meybodi N, Nejati R, Sayadi M, Nematollahi A. Novel nonthermal food processing practices: Their influences on nutritional and technological characteristics of cereal proteins. Food Sci Nutr 2022; 10:1725-1744. [PMID: 35702299 PMCID: PMC9179168 DOI: 10.1002/fsn3.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cereals, as the main crops cultivated and consumed in the world, are a rich source of carbohydrates, proteins, dietary fiber, and minerals. Despite the nutritional importance, their technological applicability in food matrices is also considerably important to be determined. Cereal processing is done to achieve goals as increasing the shelf-life, obtaining the desired technological function, and enhancing the nutritional value. Nonthermal processing is preferred regarding its potential to provide beneficial impacts with minimum adverse effect. Technological functionality and nutritional performance are considered as the most basic challenges through cereal processing, with proteins as the main factor to take part in such roles. Technological and nutritional functionalities of proteins have been found to be changed through nonthermal processing, which is generally attributed to conformational and structural changes. Therefore, this study is aimed to investigate the impact of nonthermal processing on nutritional and technological characteristics of cereal proteins.
Collapse
Affiliation(s)
- Neda Mollakhalili‐Meybodi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| | - Roghayeh Nejati
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| | - Mehran Sayadi
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| | - Amene Nematollahi
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| |
Collapse
|
44
|
Serpa-Fajardo JG, Hernández-Ramos EJ, Fernández-Lambert G, Sandoval-Herazo LC, Andrade-Pizarro RD. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review - Part I. F1000Res 2022; 11:562. [PMID: 36606117 PMCID: PMC9772581 DOI: 10.12688/f1000research.110429.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background: The cassava starch industry is recognized as a source of negative externalities caused by the agroindustrial waste 'cassava bagasse'. Even though options for bioconversion of cassava bagasse have been introduced, it is also true that hundreds of tons of this waste are produced annually with the consequent negative environmental impact. This agroindustrial context highlights the need for further research in technological proposals aimed at lowering the water contained in cassava bagasse. Methods: We report a scoping review of studies from 2010-2021 that mention the uses of cassava bagasse, as well as the technological options that have become effective for drying fruits and vegetables. The method used for selecting articles was based on the Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) method. Articles selected were taken from the databases of ScienceDirect, Google Scholar, Scopus and Springer. Results : This review highlights fruit and vegetable osmotic dehydration and drying studies assisted by the combination of emerging technologies of osmotic pressure, ultrasound, and electrical pulses. Studies that take advantage of cassava bagasse have focused on biotechnological products, animal and human food industry, and development of biofilms and biomaterials. Conclusions: In this review, we found 60 studies out of 124 that show the advantages of the residual components of cassava bagasse for the development of new products. These studies do not mention any potential use of bagasse fiber for post-industrial purposes, leaving this end products' final use/disposal unaddressed. A viable solution is osmotic dehydration and drying assisted with electrical pulse and ultrasound that have been shown to improve the drying efficiency of fruits, vegetables and tubers. This greatly improves the drying efficiency of agro-industrial residues such as husks and bagasse, which in turn, directly impacts its post-industrial use.
Collapse
Affiliation(s)
- José Gabriel Serpa-Fajardo
- Tecnológico Nacional de México-Campus Misantla, Misantla, Veracruz, 93821, Mexico
- Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Sincelejo, Sucre, 700001, Colombia
| | | | | | | | - Ricardo David Andrade-Pizarro
- Facultad de Ingenierías, Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Córdoba, 230002, Colombia
| |
Collapse
|
45
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
46
|
Kale P, Mishra A, Annapure US. Development of vegan meat flavour: A review on sources and techniques. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Mapengo CR, Emmambux MN. Processing Technologies for Developing Low GI Foods‐ A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Clarity R. Mapengo
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| | - M. Naushad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| |
Collapse
|
48
|
Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02797-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
50
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|