1
|
Monacci E, Baris F, Bianchi A, Vezzulli F, Pettinelli S, Lambri M, Mencarelli F, Chinnici F, Sanmartin C. Influence of the drying process of Cascade hop and the dry-hopping technique on the chemical, aromatic and sensory quality of the beer. Food Chem 2024; 460:140594. [PMID: 39068805 DOI: 10.1016/j.foodchem.2024.140594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Drying techniques are important for hop storage and quality. The stage of hop addition in beer is another important issue. This study focuses the impact of two drying techniques [freeze-dryer (F) and hot-stove (H)] of Cascade hop, on the chemical, aromatic and sensory quality of beer, comparing beers produced without (BF and BH) and with dry-hopping technique (BFDH and BHDH). Dry-hopping with H significantly increased the bitterness index and reduced the titratable acidity. Isoamyl acetate (450.60 μg/L) and ethyl caprylate (313.60 μg/L) were in high content especially in BH while, ethyl-n-caproate (359.37 μg/L) had the highest content in BF. The beers made with dry-hopping technique, had a significantly higher content in terpenes especially in BFDH (1006.18 μg/L). Sensory evaluation indicated difference preferences, with freeze-dried hop beers generally favored. In conclusion, depending on the type of beer desired, hops dried in different way and a specific hopping technique can be chosen.
Collapse
Affiliation(s)
- Edoardo Monacci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Federico Baris
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna 40127, Italy.
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Fosca Vezzulli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Stefano Pettinelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Milena Lambri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Fabio Mencarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 40, Bologna 40127, Italy.
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Dhakal J, Cancio LPM, Deliephan A, Chaves BD, Tubene S. Salmonella Presence and Risk Mitigation in Pet Foods: A Growing Challenge with Implications for Human Health. Compr Rev Food Sci Food Saf 2024; 23:e70060. [PMID: 39530630 PMCID: PMC11605167 DOI: 10.1111/1541-4337.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Pet food is increasingly recognized as a significant vehicle for the transmission of foodborne pathogens to humans. The intimate association between pets and their owners, coupled with the rising trend of feeding pets raw and unprocessed foods, contributes substantially to this issue. Salmonella contamination in pet food can originate from raw materials and feed ingredients, the processing environment, and postprocessing handling and applications. The absence of standardized postprocessing pathogen mitigation steps in the production of dry kibble and treats, along with the lack of validated heat and chemical interventions in raw pet foods, renders pet food susceptible to contamination by pathogens such as Salmonella, Listeria, E. coli, etc. Pets can then serve as carriers of Salmonella, facilitating its transmission to pet owners. Since 1999, there have been over 117 recalls of pet foods due to Salmonella contamination in the United States, with 11 of these recalls linked to human outbreaks. Notably, 5 of the 11 human outbreaks involved multidrug-resistant Salmonella strains. Various antimicrobial interventions, including high-pressure processing, ozone, irradiation, chemical treatments such as organic acids and acidulants, plant-derived antimicrobials, and biological interventions such as bacteriophages, have proven effective against Salmonella in pet foods. This review aims to summarize the prevalence of Salmonella in different types of pet foods, identify common sources of contamination, outline reported outbreaks, and discuss control measures and the regulatory framework governing pet food safety.
Collapse
Affiliation(s)
- Janak Dhakal
- Department of Agriculture, Food and Resource SciencesUniversity of Maryland Eastern ShorePrincess AnneMarylandUSA
| | - Leslie Pearl M. Cancio
- Provincial Science and Technology Office, Davao del SurDepartment of Science and Technology XI (DOST XI)Digos CityPhilippines
| | | | - Byron D. Chaves
- Department of Food Science and TechnologyUniversity of Nebraska–LincolnLincolnNebraskaUSA
| | - Stephan Tubene
- Department of Agriculture, Food and Resource SciencesUniversity of Maryland Eastern ShorePrincess AnneMarylandUSA
| |
Collapse
|
3
|
Baek UB, Kim HY. Current Status of Non-Thermal Sterilization by Pet Food Raw Ingredients. Food Sci Anim Resour 2024; 44:967-987. [PMID: 39246541 PMCID: PMC11377211 DOI: 10.5851/kosfa.2024.e63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, as the concept of pet food that satisfies both nutritional needs and the five senses has evolved, so too has the demand for effective pet food non-thermal sterilization methods. Prominent non-thermal technologies include high-pressure processing, plasma, and radiation, which are favored for their ability to preserve nutrients, avoid residues, and minimize compositional changes, thereby maintaining quality and sensory properties. However, to assess their effectiveness on pet food, it is essential to optimize operational parameters such as pressure levels, plasma intensity, radiation dosage, and temperature. Further studies are needed to evaluate microbial sterilization efficacy and sensory attributes. This exploration is expected to lay the groundwork for preventing zoonotic diseases and improving the production of high-quality pet food.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
4
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
5
|
Yadav B, Roopesh MS. In-Package Atmospheric Cold Plasma Treatment and Storage Effects on Membrane Integrity, Oxidative Stress, and Esterase Activity of Listeria monocytogenes. Microorganisms 2023; 11:microorganisms11030682. [PMID: 36985254 PMCID: PMC10057520 DOI: 10.3390/microorganisms11030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Atmospheric cold plasma (ACP) treatment can reduce bacterial pathogens in foods. Additional reduction in bacterial cells during storage after ACP treatment was previously reported. The underlying mechanisms of bacterial inactivation during ACP treatment and post-treatment storage need to be understood. This study investigated the changes in the morpho-physiological status of Listeria monocytogenes on ham surfaces after post-ACP-treatment storage of 1 h, 24 h, and 7 days at 4 °C. The membrane integrity, intracellular oxidative stress, and esterase activity of L. monocytogenes were evaluated by flow cytometry. L. monocytogenes cells were under high oxidative stress conditions with slightly permeabilized membranes after 1 h of post-ACP-treatment storage according to the flow cytometry data. During the extended storage of 24 h, the percentage of cells with a slightly permeabilized membrane increased; subsequently, the percentage of cells with intact membranes decreased. The percentage of L. monocytogenes cells with intact membranes decreased to <5% with a treatment time of 10 min and after 7 days of post-treatment storage. In addition, the percentage of L. monocytogenes cells under oxidation stress decreased to <1%, whereas the percentage of cells with completely permeabilized membranes increased to more than 90% for samples treated with ACP for 10 min and 7 days of post-treatment storage. With increased ACP treatment time, for 1 h stored samples, the percentage of cells with active esterase and slightly permeabilized membranes increased. However, during the extended post-treatment storage of 7 days, the percentage of cells with active esterase and slightly permeabilized membranes decreased to below 1%. At the same time, the percentage of cells with permeabilized membrane increased to more than 92% with an increase in ACP treatment time of 10 min. In conclusion, the higher inactivation after 24 h and 7 days post-ACP-treatment storage compared to 1 h stored samples correlated with the loss of esterase activity and membrane integrity of L. monocytogenes cells.
Collapse
Affiliation(s)
- Barun Yadav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
6
|
Kyaw KS, Adegoke SC, Ajani CK, Nwabor OF, Onyeaka H. Toward in-process technology-aided automation for enhanced microbial food safety and quality assurance in milk and beverages processing. Crit Rev Food Sci Nutr 2022; 64:1715-1735. [PMID: 36066463 DOI: 10.1080/10408398.2022.2118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ensuring the safety of food products is critical to food production and processing. In food processing and production, several standard guidelines are implemented to achieve acceptable food quality and safety. This notwithstanding, due to human limitations, processed foods are often contaminated either with microorganisms, microbial byproducts, or chemical agents, resulting in the compromise of product quality with far-reaching consequences including foodborne diseases, food intoxication, and food recall. Transitioning from manual food processing to automation-aided food processing (smart food processing) which is guided by artificial intelligence will guarantee the safety and quality of food. However, this will require huge investments in terms of resources, technologies, and expertise. This study reviews the potential of artificial intelligence in food processing. In addition, it presents the technologies and methods with potential applications in implementing automated technology-aided processing. A conceptual design for an automated food processing line comprised of various operational layers and processes targeted at enhancing the microbial safety and quality assurance of liquid foods such as milk and beverages is elaborated.
Collapse
Affiliation(s)
- Khin Sandar Kyaw
- Department of International Business Management, Didyasarin International College, Hatyai University, Songkhla, Thailand
| | - Samuel Chetachukwu Adegoke
- Joint School of Nanoscience and Nanoengineering, Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ozioma Forstinus Nwabor
- Infectious Disease Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
7
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Gao Y, Francis K, Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 2022; 157:111246. [DOI: 10.1016/j.foodres.2022.111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
9
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Non-thermal plasma inactivation of Salmonella Typhimurium on different matrices and the effect of selected food components on its bactericidal efficacy. Food Res Int 2022; 151:110866. [PMID: 34980403 DOI: 10.1016/j.foodres.2021.110866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
Abstract
Non-thermal plasma (NTP) is known as an effective source of a variety of reactive species generated in the gas phase. Nowadays, NTP is gaining increasing interest from the food industry as a microbial inactivation technique. In the present study the effect of inoculation method and matrix on inactivation of Salmonella Typhimurium was examined by treating spread plated agar (2.2 log CFU/sample inactivation by NTP), spot inoculated agar (1.9 log CFU inactivation), glass beads (1.3 log CFU inactivation) and peppercorn (0.2 log CFU inactivation). Furthermore, multiple agar matrices supplemented with low and high concentrations of a certain food component (casein, starch, sunflower oil, vitamin C, sodium pyruvate or grinded peppercorns) were inoculated and treated to determine the effect of those components on NTP efficiency. Although starch, vitamin C and sodium pyruvate had no significant influence on the inactivation degree, the presence of 10% casein (2.1 log CFU/sample less inactivation compared to tryptone soy agar (TSA)), 10% pepper (2.1 log CFU less inactivation) or 1% and 10% sunflower oil (1.6 and 2.1 log CFU less inactivation, respectively) in TSA demonstrated the protective effect of these substances for NTP treatment. These experiments led to the conclusion that low inactivation on produce seemed not to arise from the inoculation method nor from the shape of the produce, but is the result of the food matrix.
Collapse
|