1
|
Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, Kumar R. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus 2025; 17:e80478. [PMID: 40225478 PMCID: PMC11990693 DOI: 10.7759/cureus.80478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Onkar Kadam
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Swayamprava Dalai
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Bhawna Chauhan
- School of Biotech Engineering and Food Technology, Chandigarh University, Chandigarh, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kolkata, IND
| | - Namita Raytekar
- Medical Technology, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital Administration, Symbiosis University Hospital & Research Centre, Pune, IND
| |
Collapse
|
2
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
3
|
Rui X, Fu K, Wang H, Pan T, Wang W. Formation Mechanisms of Protein Coronas on Food-Related Nanoparticles: Their Impact on Digestive System and Bioactive Compound Delivery. Foods 2025; 14:512. [PMID: 39942105 PMCID: PMC11817056 DOI: 10.3390/foods14030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The rapid development of nanotechnology provides new approaches to manufacturing food-related nanoparticles in various food industries, including food formulation, functional foods, food packaging, and food quality control. Once ingested, nanoparticles will immediately adsorb proteins in the biological fluids, forming a corona around them. Protein coronas alter the properties of nanoparticles, including their toxicity, cellular uptake, and targeting characteristics, by altering the aggregation state. In addition, the conformation and function of proteins and enzymes are also influenced by the formation of protein coronas, affecting the digestion of food products. Since the inevitable application of nanoparticles in food industries and their subsequent digestion, a comprehensive understanding of protein coronas is essential. This systematic review introduces nanoparticles in food and explains the formation of protein coronas, with interactions between proteins and nanoparticles. Furthermore, the potential origin of nanoparticles in food that migrate from packaging materials and their fates in the gastrointestinal tract has been reviewed. Finally, this review explores the possible effects of protein coronas on bioactive compounds, including probiotics and prebiotics. Understanding the formation mechanisms of protein coronas is crucial, as it enables the design of tailored delivery systems to optimize the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Shoukat L, Javed S, Afzaal M, Akhter N, Shah YA. Starch-based encapsulation to enhance probiotic viability in simulated digestion conditions. Int J Biol Macromol 2024; 283:137606. [PMID: 39542318 DOI: 10.1016/j.ijbiomac.2024.137606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This research aims to meet the demand for efficient delivery systems in the food, nutraceutical, and pharmaceutical industries. The study involved the synthesis of starch-based nanoparticles for potential application in the encapsulation of Lactobacillus rhamnosus. Various techniques such as zeta sizer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the encapsulated probiotics in microbeads. The results showed 85.00 % encapsulation efficiency of beads. Microscopic analysis revealed that the probiotics accumulated within the wall material and formed small, smooth polygonal granules on the capsule surface. XRD analysis confirmed the presence of amorphous humps and some crystallinity of nanoparticles in the capsules. Moreover, encapsulation significantly improved probiotic viability under simulated gastrointestinal conditions. This study highlights the potential of starch-based nanoparticles to enhance the stability and viability of probiotics, demonstrating their potential applications across various industrial sectors. Further research should focus on investigating the long-term stability and functional efficacy of encapsulated probiotics in microbeads for real-world applications.
Collapse
Affiliation(s)
- Laraib Shoukat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan.
| | - Naheed Akhter
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Vijayaram S, Sinha R, Faggio C, Ringø E, Chou CC. Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges. AIMS Microbiol 2024; 10:986-1023. [PMID: 39628726 PMCID: PMC11609427 DOI: 10.3934/microbiol.2024043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Probiotics, known for their health benefits as living microorganisms, hold significant importance across various fields, including agriculture, aquaculture, nutraceuticals, and pharmaceuticals. Optimal delivery and storage of probiotic cells are essential to maximize their effectiveness. Biopolymers, derived from living sources, plants, animals, and microbes, offer a natural solution to enhance probiotic capabilities and they possess distinctive qualities such as stability, flexibility, biocompatibility, sustainability, biodegradability, and antibacterial properties, making them ideal for probiotic applications. These characteristics create optimal environments for the swift and precisely targeted delivery of probiotic cells that surpass the effectiveness of unencapsulated probiotic cells. Various encapsulation techniques using diverse biopolymers are employed for this purpose. These techniques are not limited to spray drying, emulsion, extrusion, spray freeze drying, layer by layer, ionic gelation, complex coacervation, vibration technology, electrospinning, phase separation, sol-gel encapsulation, spray cooling, fluidized, air suspension coating, compression coating, co-crystallization coating, cyclodextrin inclusion, rotating disk, and solvent evaporation methods. This review addresses the latest advancements in probiotic encapsulation materials and techniques, bridging gaps in our understanding of biopolymer-based encapsulation systems. Specifically, we address the limitations of current encapsulation methods in maintaining probiotic viability under extreme environmental conditions and the need for more targeted and efficient delivery mechanisms. Focusing on the interactions between biopolymers and probiotics reveals how customized encapsulation approaches can enhance probiotic stability, survival, and functionality. Through detailed comparative analysis of the effectiveness of various encapsulation methods, we identify key strategies for optimizing probiotic deployment in challenging conditions such as high-temperature processing, acidic environments, and gastrointestinal transit. The findings presented in this review highlight the superior performance of novel encapsulation methods using biopolymer blends and advanced technologies like electrospinning and layer-by-layer assembly, which provide enhanced protection and controlled release of probiotics by offering insights into the development of more robust encapsulation systems that ensure the sustained viability and bioavailability of probiotics, thus advancing their application across multiple industries. In conclusion, this paper provides the foundation for future research to refine encapsulation techniques to overcome the challenges of probiotic delivery in clinical and commercial settings.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S. Agata-Messina, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries, and Economics, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| |
Collapse
|
6
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
7
|
Ma J, Tan Z, Wu M, Tian Z, Xu C, Zhang J, Ma Y, Feng Z, Yu W, Li B, Yao Y, Jiang Z, Hou J. Co-encapsulation of probiotic Lactiplantibacillus plantarum and polyphenol within novel polyvinyl alcohol/fucoidan electrospun nanofibers with improved viability and antioxidation. Int J Biol Macromol 2024; 282:136907. [PMID: 39476917 DOI: 10.1016/j.ijbiomac.2024.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Polyvinyl alcohol (PVA)/fucoidan (FUC) blend nanofibers were systematically fabricated to co-encapsulate probiotic Lactiplantibacillus plantarum 69-2 (LP69-2) and four kinds of polyphenols by electrospinning for the first time. Scanning electron microscopy showed that some areas of PVA/FUC nanofibers encapsulated with LP69-2 were locally broadened. Attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction suggested that LP69-2 and polyphenol were successfully encapsulated in PVA/FUC electrospun nanofibers. Thermogravimetric analysis revealed that the addition of LP69-2 and polyphenol enhanced the thermal stability of nanofibers. Moreover, the incorporation of FUC and polyphenol significantly increased the ABTS+ and DPPH radical scavenging ability of PVA nanofibers (P < 0.05). Notably, PVA/FUC/LP69-2/DMY nanofibers displayed the highest DPPH radical scavenging ability. After 21 d, these nanofibers loaded with polyphenols could maintain viability of LP69-2 over 7 lg CFU/g at 4 °C and the viability of LP69-2 in PVA/FUC/DMY nanofibers was the highest. Overall, the co-encapsulation of probiotic and polyphenol within PVA/FUC electrospun nanofibers increased the viability of probiotics and enhanced antioxidant activity of nanofibers. This study provided unique insights for protecting probiotics and developing novel functional foods with higher probiotics.
Collapse
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengguo Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, PR China.
| |
Collapse
|
8
|
Alizadeh AM, Mohseni M, Gerami K, Gharavi-Nakhjavani M, Aminzare M, Rastegar H, Assadpour E, Hashempour-Baltork F, Jafari SM. Electrospun Fibers Loaded with Probiotics: Fundamentals, Characterization, and Applications. Probiotics Antimicrob Proteins 2024; 16:1099-1116. [PMID: 37882998 DOI: 10.1007/s12602-023-10174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Increasing demand for safe, efficient, and eco-friendly solutions for pharmaceutical and food industries has led researchers to explore new approaches to bacterial storage. Several advantages make electrospinning (ES) a promising technique for food systems, including simple manufacturing equipment, a relatively low spinning cost, a wide variety of spinnable materials, and a mild process that is easily controlled, which allows continuous fabrication of ultrafine polymeric fibers at submicron or nanoscales without high temperatures or high pressures. This review briefly describes recent advances in the development of electrospun fibers for loading probiotics (PRB) by focusing on ES technology, its efficiency for loading PRB into fibers (viability, digestive stability, growth rate, release, thermal stability, and interactions of fibers with PRB), and the application of PRB-loaded fibers as active packaging (spoilage/microbial control, antioxidant effect, shelf life). Based on the literature reviewed, the incorporation of PRB into electrospun fibers is both feasible and functional. However, several studies have been limited to proof-of-principle experiments and the use of model biological products. It is necessary to conduct further research to establish the industrial applicability of PRB-loaded fibers, particularly in the fields of food and medicine.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Mohseni
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Gerami
- Student Research Committee, Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Gharavi-Nakhjavani
- Department of Food Science and Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
9
|
Zhang Z, Huang Y, Wang R, Dong R, Li T, Gu Q, Li P. Utilizing chitosan and pullulan for the encapsulation of Lactiplantibacillus plantarum ZJ316 to enhance its vitality in the gastrointestinal tract. Int J Biol Macromol 2024; 260:129624. [PMID: 38262550 DOI: 10.1016/j.ijbiomac.2024.129624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Lactiplantibacillus plantarum ZJ316 has demonstrated effective alleviation of gastritis and colitis, making it crucial to improve its viability within the gastrointestinal tract. In this study, Chitosan (CS) and pullulan (PUL) encapsulated nanofibers of ZJ316 were prepared using electrospinning, considering both the synergistic effects of prebiotics and probiotics and their protective effects. We found that increasing the CS ratio resulted in elevated conductivity of the polymer solution, while decreasing viscosity and pH. Scanning electron microscopy showed that at a CS: PUL ratio of 1:135, polymer filaments were difficult to form, and nanofiber diameter decreased with higher CS content. X-ray diffraction analysis confirmed the miscibility of CS and PUL, while ATR-FTIR demonstrated the presence of hydrogen bonding interactions between the two materials. Thermal analysis indicated that an increased CS concentration improved the thermal stability of the nanofibers. Based on these findings, the optimal CS:PUL ratio for electrospinning was determined to be 1:60. Encapsulation of ZJ316 in the nanofibers significantly enhanced its survival rate in simulated gastrointestinal fluid compared to free bacteria, with survival rates of 87.24 % (gastric) and 79.71 % (intestinal), respectively. This study provides valuable insights for the development of probiotic functional foods.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yingjie Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruonan Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruomeng Dong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tiantian Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.; Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, China
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.; Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, China..
| |
Collapse
|
10
|
Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023; 11:2896. [PMID: 38138040 PMCID: PMC10745938 DOI: 10.3390/microorganisms11122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers are increasingly showing a preference for foods whose nutritional and therapeutic value has been enhanced. Probiotics are live microorganisms, and their existence is associated with a number of positive effects in humans, as there are many and well-documented studies related to gut microbiota balance, the regulation of the immune system, and the maintenance of the intestinal mucosal barrier. Hence, probiotics are widely preferred by consumers, causing an increase in the corresponding food sector. As a consequence of this preference, food industries and those involved in food production are strongly interested in the occurrence of probiotics in food, as they have proven beneficial effects on human health when they exist in appropriate quantities. Encapsulation technology is a promising technique that aims to preserve probiotics by integrating them with other materials in order to ensure and improve their effectiveness. Encapsulated probiotics also show increased stability and survival in various stages related to their processing, storage, and gastrointestinal transit. This review focuses on the applications of encapsulation technology in probiotics in sustainable food production, including controlled release mechanisms and encapsulation techniques.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
11
|
Nawaz A, Irshad S, Walayat N, Khan MR, Iqbal MW, Luo X. Fabrication and Characterization of Apple-Pectin-PVA-Based Nanofibers for Improved Viability of Probiotics. Foods 2023; 12:3194. [PMID: 37685127 PMCID: PMC10486385 DOI: 10.3390/foods12173194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
In the current study, apple-pectin-based novel nanofibers were fabricated by electrospinning. Polyvinyl alcohol (PVA) and apple pectin (PEC) solution were mixed to obtain an optimized ratio for the preparation of electrospun nanofibers. The obtained nanofibers were characterized for their physiochemical, mechanical and thermal properties. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Furthermore, an assay of the in vitro viability of free and encapsulated probiotics was carried out under simulated gastrointestinal conditions. The results of TGA revealed that the PVA/PEC nanofibers had good thermal stability. The probiotics encapsulated by electrospinning showed a high survival rate as compared to free cells under simulated gastrointestinal conditions. Furthermore, encapsulated probiotics and free cells showed a 3 log (cfu/mL) and 10 log (cfu/mL) reduction, respectively, from 30 to 120 min of simulated digestion. These findings indicate that the PVA/PEC-based nanofibers have good barrier properties and could potentially be used for the improved viability of probiotics under simulated gastrointestinal conditions and in the development of functional foods.
Collapse
Affiliation(s)
- Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yangzhou 425199, China;
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 310007, China;
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yangzhou 425199, China;
| |
Collapse
|
12
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
13
|
Hashem NM, Hosny NS, El-Desoky N, Soltan YA, Elolimy AA, Sallam SMA, Abu-Tor ESM. Alginate Nanoencapsulated Synbiotic Composite of Pomegranate Peel Phytogenics and Multi-Probiotic Species as a Potential Feed Additive: Physicochemical, Antioxidant, and Antimicrobial Activities. Animals (Basel) 2023; 13:2432. [PMID: 37570241 PMCID: PMC10417444 DOI: 10.3390/ani13152432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
A synbiotic composed of alginate nanoencapsulated prebiotic (pomegranate peel phytogenics) and multi-species probiotics (Lactococcus lactis, Lactobacillus plantarum, Lactobacillus paracasei, and Saccharomyces cerevisiae) has been developed as a potential eco-friendly alternative to antibiotics. The physicochemical properties of the encapsulated synbiotic were evaluated, and its gastric and storage tolerance, as well as its antioxidant and antimicrobial activity, were tested and compared to that of the non-encapsulated synbiotic (free synbiotic). The results showed that the prebiotic pomegranate peel ethanolic extract contained seven phenolic compounds, with cinnamic being the most abundant (13.26 µL/mL). Sodium alginate-CaCl2 nanocapsules were effective in encapsulating 84.06 ± 1.5% of the prebiotic's phenolic compounds and 98.85 ± 0.57% of the probiotics. The particle size of the alginate-CaCl2 nanoencapsulated synbiotic was 544.5 nm, and the polydispersity index and zeta potential values were 0.593 and -12.3 mV, respectively. Thermogravimetric analysis showed that the alginate-CaCl2 nanoencapsulated synbiotic had high thermal stability at high temperatures, with only 2.31% of its weight being lost within the temperature range of 70-100 °C. The count of viable probiotics in the nanoencapsulated synbiotic was significantly higher than that in the free synbiotic after exposure to gastric acidity and storage for six months at room temperature. The percent inhibition values of the nanoencapsulated synbiotic and ascorbic acid (as a standard antioxidant) were comparable and significantly greater than those of the free synbiotic. The half-maximal inhibitory concentrations (IC50) of the nanoencapsulated synbiotic and ascorbic acid were significantly lower than those of the free synbiotic (3.96 ± 0.42 µg/mL and 4.08 ± 0.79 µg/mL for nanoencapsulated synbiotic and ascorbic acid, respectively, vs. 65.75 ± 2.14 µg/mL for free synbiotic). The nanoencapsulated synbiotic showed the highest significant antimicrobial activity against Escherichia coli (ATCC 8739). Both the nanoencapsulated and free synbiotics showed antimicrobial activity against Staphylococcus aureus (ATCC 6538), similar to that of gentamicin, although the nanoencapsulated synbiotic showed significantly higher inhibition activity compared to the free synbiotic. The nanoencapsulated synbiotic showed antimicrobial activity comparable to gentamicin against Pseudomonas aeruginosa (ATCC 90274), whereas the free synbiotic showed the least antimicrobial activity (p < 0.05). Both synbiotics showed significantly higher antimicrobial activity against Salmonella typhi (ATCC 6539) than gentamicin. Both synbiotics showed antifungal activity against Aspergillus niger and Aspergillus flavus, with a stronger effect observed for the nanoencapsulated synbiotic. However, the activity of both synbiotics was significantly lower than that of fluconazole (an antifungal drug).
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Nourhan S. Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Ahmed A. Elolimy
- Animal Production Department, National Research Centre, Giza 12622, Egypt;
| | - Sobhy M. A. Sallam
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - El-Sayed M. Abu-Tor
- Food Science and Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
14
|
Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Pan D. Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends. Crit Rev Food Sci Nutr 2023; 64:10148-10163. [PMID: 37318213 DOI: 10.1080/10408398.2023.2220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
16
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
17
|
Ghalehjooghi HD, Tajik H, Shahbazi Y. Development and characterization of active packaging nanofiber mats based on gelatin‑sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets. Int J Food Microbiol 2023; 384:109984. [DOI: 10.1016/j.ijfoodmicro.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
18
|
Jiang Y, Liao Y, Si C, Du J, Xia C, Wang YN, Liu G, Li Q, Zhao J. Oral administration of Bacillus cereus GW-01 alleviates the accumulation and detrimental effects of β-cypermethrin in mice. CHEMOSPHERE 2023; 312:137333. [PMID: 36410514 DOI: 10.1016/j.chemosphere.2022.137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroid insecticides negatively affect feed conversion, reproductive fitness, and food safety in exposed animals. Although probiotics have previously been widely studied for their effect on gut health, comparatively little is known regarding the efficacy of probiotic administration in specifically reducing pesticide toxicity in mice. We demonstrated that oral administration of a β-cypermethrin (β-CY)-degrading bacterial strain (Bacillus cereus GW-01) to β-CY-exposed mice reduced β-CY levels in the liver, kidney, brain, blood, lipid, and feces (18%-53%). Additionally, co-administration of strain GW-01 to β-CY-exposed mice reduced weight loss (22%-31%) and improved liver function (15%-19%) in mice. Additionally, mice receiving GW-01 had near-control levels of numerous β-CY-affected gut microbial taxa, including Muribaculaceae, Alloprevotella, Bacteroides, Dubosiella, and Alistipes. The survival and β-CY biosorption of GW-01 in simulated gastrointestinal fluid conditions were significantly higher than E. coli. These results suggested that GW-01 can reduce β-CY accumulation and alleviate the damage in mice. This study is the first to demonstrate that a probiotic strain can reduce the toxicity of β-CY in mice.
Collapse
Affiliation(s)
- Yangdan Jiang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chaojin Si
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Juan Du
- Faculty of Geography Resource Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Ya-Nan Wang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Gang Liu
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Qi Li
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China.
| |
Collapse
|
19
|
Afzaal M, Saeed F, Ateeq H, Imran A, Yasmin I, Shahid A, Javed A, Shah YA, Islam F, Ofoedu CE, Chacha JS, Awuchi CG. Survivability of probiotics under hostile conditions as affected by prebiotic-based encapsulating materials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Abdulrehman Shahid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ahsan Javed
- Department of Food Science & Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, Nigeria
| | - James S. Chacha
- Department of Food Science and Agro-processing, School of Engineering and Technology, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
20
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
21
|
Yuan Y, Yin M, Zhai Q, Chen M. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation. Crit Rev Food Sci Nutr 2022; 64:2794-2810. [PMID: 36168909 DOI: 10.1080/10408398.2022.2126818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.
Collapse
Affiliation(s)
- Yongkai Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ming Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022; 349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
Gut microbes are closely associated with most human health. When ingested orally, probiotics can effectively regulate the composition and quantity of human intestinal microorganisms, which is beneficial to human health. However, probiotics will be affected by the harsh environment of the digestive tract during the in vivo transportation process, and ensuring the viability of probiotics is a great challenge. Probiotic encapsulating technology provides an effective solution to this problem. The introduction of extreme temperatures, large probiotic microcapsule sizes and the difficulty in controlling probiotic microcapsule particle sizes mean that traditional microcapsule encapsulation methods have some limitations. From traditional microcapsule technology to the bulk encapsulation of probiotics with nanofibers and nanoparticles to the recent ability to wear nano "armor" for a single probiotic through biofilm, biological membrane and nanocoating. Emerging probiotic nanoagents provides a new conceptual and development direction for the field of probiotic encapsulation. In this review, we presented the characteristics of encapsulated probiotic carrier materials and digestive tract transport systems, we focused on the encapsulation systems of probiotic nanoagents, we analyzed the shortcomings and advantages of the current agent encapsulation systems, and we stated the developmental direction and challenges for these agents for the future.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
23
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
24
|
Cedran M, Rodrigues F, Sato H, Bicas J. Optimization of a water-in-oil emulsion containing Limosilactobacillus reuteri: Applicability of pequi oil as a continuous phase. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
25
|
Rossi YE, Vanden Braber NL, Díaz Vergara LI, Montenegro MA. Bioactive Ingredients Obtained from Agro-industrial Byproducts: Recent Advances and Innovation in Micro- and Nanoencapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15066-15075. [PMID: 34878778 DOI: 10.1021/acs.jafc.1c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The agro-industry produces numerous byproducts that are currently underused, and its waste contributes to environmental pollution. These byproducts represent an important and economical source of bioactive ingredients, which can promote the sustainable development of high-value-added functional foods. In this context, micro- and nanoencapsulation systems allow for the incorporation and stabilization of the bioactive agents in foods. This perspective will review recent advances in the use of agro-industrial byproducts as a source of bioactive agents. In addition, the latest advances in micro- and nanoencapsulation to improve the stability, solubility, and bioaccessibility of bioactive agents as functional food ingredients are exposed.
Collapse
Affiliation(s)
- Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| |
Collapse
|
26
|
Ghorbani S, Maryam A. Encapsulation of lactic acid bacteria and Bifidobacteria using starch‐sodium alginate nanofibers to enhance viability in food model. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sahel Ghorbani
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| | - Azizkhani Maryam
- Department of Food Hygiene Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol Iran
| |
Collapse
|