1
|
Zhang T, He J, Xu M, Shi W, Jiang H. Cold plasma enhances antioxidant, anticancer, and functional properties of Xinong Black Spike flour through modulation of starch and phenolic macromolecules. Int J Biol Macromol 2025; 308:142803. [PMID: 40185444 DOI: 10.1016/j.ijbiomac.2025.142803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The present study sought to examine the impact of cold plasma (CP) treatment on the functionality, structural integrity, and bioactive properties of biomolecules such as starch and phenolic compounds in Xinong Black Spike whole flour (XBS-WF). XBS-WF was exposed to CP at 40 V for various durations. X-ray Diffraction (XRD) and Rapid Viscosity Analysis (RVA) revealed that CP treatment induced aggregation and cross-linking of starch and other molecules, leading to enhanced intermolecular interactions and improved starch crystallinity. In addition, Differential Scanning Calorimetry (DSC) showed enhanced thermal stability and increased enthalpy. Furthermore, CP treatment promoted the oxidation and cleavage of phenolic macromolecules into smaller, biologically active compounds, resulting in a notable increase in antioxidant and anticancer activities. These findings suggest that CP treatment can effectively improve the functional and qualitative properties of XBS-WF, particularly by modifying starch and phenolic macromolecules. This study provides a foundation for exploring the multiscale applications of the CP process on starch and phenolic macromolecules.
Collapse
Affiliation(s)
- Teng Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ming Xu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenqing Shi
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hao Jiang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Verma KC, Giri K, Verma SK, Tamta P, Joshi N. γ-radiation induced reduction in antinutrients of buckwheat ( Fagopryum esculentum Moench) seeds and leaves. Int J Radiat Biol 2025; 101:314-326. [PMID: 39746151 DOI: 10.1080/09553002.2024.2445580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Buckwheat, a dicotyledonous crop of Polygonaceae family, is known for its nutritional value and adaptability to adverse climates. Local people reported that prolonged consumption of buckwheat seeds and leaves causes numbness and gastrointestinal problems. The present study was conducted to observe the impact of different doses of γ-radiations on phytoconstituents of buckwheat seeds and leaves, to make them nutritionally superior. MATERIALS AND METHODS Buckwheat seeds were treated with 5, 10, 15 and 20 kGy doses of γ-radiations and grown in an experimental farm. Various phytoconstituents in seeds and leaves were analyzed. RESULTS The antioxidant, phenol, flavonoid, β-carotene, iron, calcium, lysine and arginine were increased significantly (<5%) with increasing doses of γ-radiations up to 10 kGy, whereas, anti-nutrients (tannin, phytic acid and oxalate) decreased significantly (<5%). γ-radiation @ 10 kGy is the best for the enhancement of phytoconstituents in buckwheat seeds from a nutrition point of view. Phytoconstituents in buckwheat leaves and irradiated seed progeny were positively co-related with M1 seeds. CONCLUSIONS It can be concluded that the buckwheat seeds treated with a 10 kGy dose of γ-radiation are the best to produce green leaves as hara saag, and progeny seeds for preparation of flour. However, superior mutant selection and effect of by-products from γ-irradiated buckwheat seeds is the thrust area of future research.
Collapse
Affiliation(s)
- Kuldip Chandra Verma
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Kumkum Giri
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Sanjay Kumar Verma
- Department of Genetics and Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Pawanesh Tamta
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Nidhi Joshi
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| |
Collapse
|
3
|
Joshi N, Verma KC, Verma SK, Tamta P. γ-Radiations induced phytoconstituents variability in the grains of cultivated buckwheat species of Himalayan region. Int J Radiat Biol 2024:1-12. [PMID: 39561192 DOI: 10.1080/09553002.2024.2430246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Buckwheat is a major traditional crop of hilly regions, capable of growing in adverse climatic conditions. During the survey, it was reported that prolonged consumption of buckwheat leads to digestive problems and numbness. The present study was conducted to study the effect of γ-irradiations on buckwheat to make them suitable for daily consumption. MATERIALS AND METHODS Buckwheat seeds were irradiated by 100, 200, 300, 400, 500, 600, 700, and 800 Gy doses of γ-radiations, to access the phytoconstituent variability using standard methods. RESULTS Significant (p < 0.05) increase in total phenol, total flavonoid, total antioxidant activity, rutin, β-carotene, iron, calcium up to 6.23, 16.48, 18.62, 19.06, 8.08, 47.66, 32.74% in common buckwheat and 9.58, 16.66, 39.16, 9.19, 9.00, 53.99, 36.75% in tartary buckwheat was found by increasing doses of γ-radiations up to 800 Gy. Significant decrease was found in phytate, tannin, and oxalate content up to 18.92, 17.95, 15.32% in common buckwheat and 24.73, 19.72, 24.07% in tartary buckwheat. CONCLUSIONS It can be concluded that 800 Gy dose of γ-radiation, maximally increased the nutritional value by significant (p < 0.05) increase in nutrients and their bioavailability. This makes buckwheat more amenable for daily consumption to fulfill RDA, by Himalayan population depending on traditional foods without any digestive problem. Furthermore, significant increase in rutin by γ-radiations will be useful to fulfill the demand of cosmetic and pharmaceutical industries. But minimization of reduction loss for some nutrients by γ-radiations is the thrust area for future research.
Collapse
Affiliation(s)
- Nidhi Joshi
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| | - Kuldip Chandra Verma
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| | - Sanjay Kumar Verma
- Department of Genetics and Plant Breeding, College of Agriculture, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| | - Pawanesh Tamta
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| |
Collapse
|
4
|
Zhang T, He L, Zhang M, Jiang H. Physicochemical characterization and sensory enhancement of cold plasma treated black whole wheat flour. Sci Rep 2024; 14:24366. [PMID: 39420055 PMCID: PMC11487061 DOI: 10.1038/s41598-024-71978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
This study examined the effects of cold plasma (CP) treatment on the physicochemical properties and sensory quality of black whole wheat flour (BWWF). Various factors including nutrient composition, color, amino acids, aroma, particle size, microstructure, antioxidant activity, and water migration were analyzed before and after CP treatment. The findings revealed that CP treatment had a minimal impact on the baseline nutrient composition of BWWF, but significantly improved its free amino acid profile, enhancing its nutritional value. The treated BWWF had an improved surface color, appeared brighter and yellower, and gave off a pleasant mellow aroma, while removing unpleasant flavor. The total phenolic content of BWWF increased while the flavonoid and anthocyanin content decreased after the treatment. CP-treated BWWF underwent aggregation cross-linking in the microstructure, and the content of bound water decreased, but the stability increased. In conclusion, CP treatment had great potential to improve the physicochemical properties and sensory quality of BWWF.
Collapse
Affiliation(s)
- Teng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ling He
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Meng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Shen C, Chen W, Aziz T, Al-Asmari F, Alghamdi S, Bayahya SH, Cui H, Lin L. Effects of cold plasma pretreatment before different drying process on the structural and functional properties of starch in Chinese yam. Int J Biol Macromol 2024; 274:133307. [PMID: 38908637 DOI: 10.1016/j.ijbiomac.2024.133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
This article compared the effects of hot air drying (HAD), infrared drying (IRD), and cold plasma (CP) as a pretreatment on the structure, quality, and digestive characteristics of starch extracted from yam. As the most commonly used drying method, HAD was used as a control. SEM and CLSM images showed that all treatments preserve the integrity of the yam starch. CP caused some cracks and breaks in the starch granules. IRD did not destroy the crystal structure of starch molecules, but made the spiral structure tighter and increased short-range orderliness. However, CP led to the depolymerization and dispersion of starch molecular chains, resulting in a decrease in average molecular weight and relative crystallinity. These molecular conformation changes caused by different processes led to differences in solubility, swelling power, pasting parameters, digestion characteristics, and functional characteristics. This study provided an important basis for the reasonable drying preparation and utilization of yam starch.
Collapse
Affiliation(s)
- Chen Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenqing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 25100, Saudi Arabia
| | - Samah Hussain Bayahya
- Medical Nutrition Therapy Department, Alnoor Specialist Hospital, Ministry of Health, Makkah 21955, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Liu Q, Li J, Huang Y, Luo Y, Li R, He Y, He C, Peng Q, Wang M. Preparation of starch-palmitic acid complexes by three different starches: A comparative study using the method of heating treatment and autoclaving treatment. Int J Biol Macromol 2024; 262:130009. [PMID: 38336331 DOI: 10.1016/j.ijbiomac.2024.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Recent research emphasizes the growing importance of starch-lipid complexes due to their anti-digestibility ability, prompting a need to explore the impact of different starch sources and preparation methods on their properties. In this study, starch-palmitic acid (PA) complexes were prepared by three different starches including Tartary buckwheat starch (TBS), potato starch (PTS), and pea starch (PS) by heating treatment (HT) and autoclaving treatment (AT), respectively, and their physicochemical property and in vitro digestibility were systematically compared. The formation of the starch-PA complex was confirmed through various characterization techniques, including scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction. Among the complexes, the PTS-PA complex exhibited the highest complexation index over 80 %, while the PS-PA complex had the lowest rapid digestible starch content (56.49-59.42 %). Additionally, the complexes prepared by AT exhibited higher resistant starch content (41.95-32.46 %) than those prepared by HT (31.42-32.49 %), while the complexes prepared by HT held better freeze-thaw stability and hydration ability than those prepared by AT. This study highlights the important role of starch sources in the physicochemical and digestibility properties of starch-lipid complex and the potential application of AT in the preparation of novel resistant starch.
Collapse
Affiliation(s)
- Qiuyan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ji Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuefeng Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yueping Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ruijie Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanchen He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Tang Y, Xu L, Yu Z, Zhang S, Nie E, Wang H, Yang Z. Influence of 10 MeV electron beam irradiation on the lipid stability of oat and barley during storage. Food Chem X 2023; 20:100904. [PMID: 37817988 PMCID: PMC10560779 DOI: 10.1016/j.fochx.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
This study investigated the effect of electron beam irradiation (EBI) on the lipid stability of oat and barley during long-term storage. Results showed that the initial free fatty acid content in oat was higher than that in barley. This may mean that lipid hydrolysis started under the function of lipase when oat and barley were milled into flours. Both storage and EBI factors influenced lipid-degrading enzyme activity and promoted lipid oxidation in oat and barley. However, it seemed that storage had higher impacts because the DPPH scavenging activity decreased greatly, and the contents of both malondialdehyde and volatile lipid oxidation products increased in all samples. Thus, the antioxidant capacity and level of lipid oxidation after EBI treatment should be considered when producing oat and barley foods. Overall, this study shows the high potential of EBI for use as a non-thermal technique in stabilising the storage quality of oat and barley.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Enguang Nie
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Xu J, Yang G, Zhou D, Fan L, Xu Y, Guan X, Li R, Wang S. Effect of radio frequency energy on buckwheat quality: An insight into structure and physicochemical properties of protein and starch. Int J Biol Macromol 2023; 251:126428. [PMID: 37598816 DOI: 10.1016/j.ijbiomac.2023.126428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Radio frequency (RF) heating as an emerging technology is widely used to improve cereal-based food quality. To further investigate effects of RF treatment on buckwheat quality, structures and physicochemical properties of protein and starch in buckwheat were evaluated under various temperatures (80, 90, and 100 °C) and holding times (0, 5, and 10 min). Results showed that protein-starch complexes were reaggregated with the increases of RF heating temperature and time, as well as the values of R1047/1022, crystallinity, random coil, and α-helix significantly decreased, and the values of β-sheet obviously increased. Moreover, viscosities and rheological properties of buckwheat were reduced by the raised RF treatment intensity. Besides, the RF processing had a mostly positive effect on swelling power at low temperature of 30 °C, but contrary effect at high temperatures of 60 °C and 90 °C. However, changes of water solubility index, emulsifying capacity, and emulsion stability depended on the RF processing intensity. These results of the study suggested that buckwheat quality was affected by multiple RF treatment conditions, which can be tailored to develop a RF process having the potential to improve the function of buckwheat flour.
Collapse
Affiliation(s)
- Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingting Zhou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liumin Fan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
9
|
Zhang L, Meng Q, Zhao G, Ye F. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food. Food Chem X 2023; 19:100845. [PMID: 37780324 PMCID: PMC10534221 DOI: 10.1016/j.fochx.2023.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
The microstructural and techno-functional properties of buckwheat flour and its processability for making wantuan, as affected by different milling methods, were investigated. Results showed that the particle sizes (d(0.5)) of the flours made by stone-milling (SM), hammer-milling (HM), laboratory grinding with steaming pretreatment for 5 min (LG-5) and 10 min (LG-10) were 95.5, 111.5, 35.4 and 41.1 μm, respectively. Moreover, SM and HM flours had less liberated starch granules and 20.84%-24.32% higher relative crystallinity than LG-10 flour. Slurries of laboratory-grinded flours showed excellent suspension stability. LG-10 flour had lowest pasting viscosities but greatest storage modulus and loss modulus. Color differences among the wantuan made from different flours were not visibly perceived (ΔE < 5). Wantuan made from LG-5 flour exhibited highest textual quality due to its greatest resilience (0.376), good springiness (0.933) and accepted chewiness (1093.31). Concluding, steaming prior to grinding could improve the qualities of buckwheat flour for wantuan making.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Westa College, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qifan Meng
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People’s Republic of China
| |
Collapse
|
10
|
Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods 2022; 11:foods11223696. [PMID: 36429287 PMCID: PMC9689101 DOI: 10.3390/foods11223696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of partial replacement of Tartary buckwheat flour (TBF) with Tartary buckwheat bran flour (TBBF) on the quality, bioactive compounds content, and in vitro starch digestibility of Tartary buckwheat dried noodles (TBDNs). When the substitution of TBBF was increased from 0 to 35%, the cooking and textural properties decreased significantly (p < 0.05), while the content of bioactive compounds (phenolic, flavonoids and dietary fiber) increased significantly (p < 0.05). In addition, the substitution of TBBF decreased the starch digestibility of TBDNs. A 10.4% reduction in eGI values was observed in the TBDNs with 35% TBBF substitution compared to the control sample. The results of differential scanning calorimetry showed that with the increase of TBBF, TBDNs starch became more resistant to thermal processing. Meanwhile, the X-ray diffraction and Fourier transform infrared spectroscopy results revealed that the long- and short-range ordered structures of TBDN starch increased significantly (p < 0.05). Furthermore, the substitution of TBBF decreased the fluorescence intensity of α-amylase and amyloglucosidase. This study suggests that replacing TBF with TBBF could produce low glycemic index and nutrient-rich TBDNs.
Collapse
|
11
|
Cai Z, Wang J, Liu C, Chen G, Sang X, Zhang J. Effects of High Voltage Atmospheric Cold Plasma Treatment on the Number of Microorganisms and the Quality of Trachinotus ovatus during Refrigerator Storage. Foods 2022; 11:2706. [PMID: 36076891 PMCID: PMC9455416 DOI: 10.3390/foods11172706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In order to investigate the effects of high voltage atmospheric cold plasma (HVACP) treatment on the number of microorganisms in and the quality of Trachinotus ovatus during refrigerator storage, fresh fish was packaged with gases CO2:O2:N2 (80%:10%:10%) and treated by HVACP at 75 kV for 3 min; then, the samples were stored at 4 ± 1 °C for nine days. The microbial numbers, water content, color value, texture, pH value, thiobarbituric acid reactive substance (TBARS), and total volatile base nitrogen (TVB-N) values of the fish were analyzed during storage. The results showed the growth of the total viable bacteria (TVB), psychrophilic bacteria, Pseudomonas spp., H2S-producing bacteria, yeast, and lactic acid bacteria in the treated samples was limited, and they were 1.11, 1.01, 1.04, 1.13, 0.77, and 0.80 log CFU/g-1 lower than those in the control group after nine days of storage, respectively. The hardness, springiness, and chewiness of the treated fish decreased slowly as the storage time extended, and no significant changes in either pH or water content were found. The lightness (L*) value increased and the yellowness (b*) value decreased after treatment, while no changes in the redness (a*) value were found. The TBARS and TVB-N of the treated samples increased to 0.79 mg/kg and 21.99 mg/100 g, respectively, after nine days of refrigerator storage. In conclusion, HVACP can limit the growth of the main microorganisms in fish samples effectively during nine days of refrigerator storage with no significant negative impact on their quality. Therefore, HVACP is a useful nonthermal technology to extend the refrigerator shelf-life of Trachinotus ovatus.
Collapse
Affiliation(s)
- Zhicheng Cai
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chencheng Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Gu Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|