1
|
Sun Y, Jia Y, Wang K, Wang S, Cui B, Mao C, Guo X, Feng Y, Fu H, Chen X, Wang Y, Zhang Z, Wang Y. The exploration of pasteurization processes and mechanisms of inactivation of Bacillus cereus ATCC 14579 using radio frequency energy. Int J Food Microbiol 2025; 426:110919. [PMID: 39321599 DOI: 10.1016/j.ijfoodmicro.2024.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Radio frequency (RF) heating has been utilized to investigate sterilization techniques, but the mechanism of sterilization via RF heating, particularly on Bacillus cereus (B. cereus), has not been thoroughly examined. In this paper, sterilization processes and potential bactericidal mechanisms of B. cereus using RF were investigated. The best heating and sterilization efficiency was achieved at (Electrode gap 130 mm, conductivity of bacterial suspension 0.1 S/m, volume of bacterial suspension 40 mL). Heating a suspension of B. cereus to 90 °C in 80 s using RF reduced the number of viable bacteria by 4.87 logarithms. At the cellular level, there was a significant leakage of nucleic acids and proteins from the bacterial cells. Additionally, the integrity of the cell membrane was severely damaged, with a decrease in ATP concentration of 2.08 mM, Na, K-ATPase activity to 10.7 (U/109 cells), and Ca, Mg-ATPase activity to 11.6 (U/109 cells). At the molecular level, transcriptomics analysis showed that RF heating of B. cereus to 65 °C produced 650 more differentially expressed genes (DEGs) compared with RF heating to 45 °C. The GO annotation analysis indicated that the majority of differentially expressed genes (DEGs) were predominantly associated with cellular components. KEGG metabolic analysis showed enrichment in microbial metabolism in diverse environments, etc. This study investigated the potential bactericidal mechanism of B. cereus using RF, and provided some theoretical basis for the research of the sterilization of B. cereus.
Collapse
Affiliation(s)
- Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ke Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Baozhong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoying Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuxin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhenna Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Chen K, Zhang J, Li Z, Wang D, Chen W, Zhu H, Wen X. Enhancing waste sludge solubilization through radio frequency treatment perforating bacterial cells. ENVIRONMENTAL RESEARCH 2024; 263:120012. [PMID: 39299447 DOI: 10.1016/j.envres.2024.120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Sludge solubilization is known as a rate-limiting step of anaerobic digestion. Although radio frequency (RF) has been applied for sludge pretreatment due to its similar thermal effect as microwave, the potential non-thermal effects of RF treatment remain controversial. In this study, we demonstrate that RF pretreatment enhances the solubilization and lysis of sludge by 8.02%-19.69% through both thermal and non-thermal mechanisms with less energy input. Scanning electron microscope images provide direct evidence that RF-induced microcurrents penetrated bacterial cells, leading to the release of intracellular substances through formed pores. Additionally, the non-thermal effect of RF treatment which could weaken the cell protection and accelerate the lysis rate involves the disruption of binding forces between extracellular polymeric substances and microbial cells. On average, the utilization of RF at a frequency of 27.12 MHz demonstrates its efficacy as a sludge pretreatment technique, as evidenced by a 13.39% reduction in energy consumption and a 16.9% improvement in treatment performance compared to conductive heating (CH). The findings of this study elucidate the possible mechanism of RF treatment of sludge and could establish a theoretical basis for the practical application of RF treatment in sludge management.
Collapse
Affiliation(s)
- Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Dongquan Wang
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Wangyang Chen
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhang Y, Ma Z, Chen J, Yang Z, Ren Y, Tian J, Zhang Y, Guo M, Guo J, Song Y, Feng Y, Liu G. Electromagnetic wave-based technology for ready-to-eat foods preservation: a review of applications, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39275803 DOI: 10.1080/10408398.2024.2399294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhiming Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiaxin Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhongshuai Yang
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yue Ren
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jing Tian
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Tang Y, Jing P, Jiao S. Application of radio frequency energy in processing of fruit and vegetable products. Compr Rev Food Sci Food Saf 2024; 23:e13425. [PMID: 39136978 DOI: 10.1111/1541-4337.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.
Collapse
Affiliation(s)
- Yingjie Tang
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunshan Jiao
- Department of Food Science and Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Espitia J, Verheyen D, Kozak DS, Van Impe JFM. Influence of microbial cell morphology and composition on radio frequency heating of simple media at different frequencies. Sci Rep 2023; 13:10839. [PMID: 37407624 DOI: 10.1038/s41598-023-35705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
The effect of Listeria monocytogenes, Salmonella Typhimurium, and Saccharomyces cerevisiae on RF heating was studied in sterilized Milli-Q water and saline solution during treatments at 27.0 ± 0.6 MHz and 3.0 ± 0.02 MHz for 30 min. The presence of microorganisms caused a significant increase in temperature (maximum to 54.9 °C), with no significant decrease in cell numbers being observed for any conditions. For both media and frequencies, heating rates followed the order S. Typhimurium ≤ L. monocytogenes ≤ S. cerevisiae, except for heating at 3.0 ± 0.02 MHz in saline solution, where heating rates for S. cerevisiae and S. Typhimurium were equal. Generally, heating rates for microorganisms were significantly higher at 27.0 ± 0.6 MHz than at 3.0 ± 0.02 MHz, except for the S. cerevisiae case. Observed phenomena were probably caused by differences in the cell lipid and peptidoglycan content, with interaction effects with salt being present. This study was the first to investigate the influence of the presence of microorganisms on heating behavior of simple media. On the long term, more research on this topic could lead to finding specific RF frequencies more suitable for the heating of specific media and products for various applications.
Collapse
Affiliation(s)
- Julian Espitia
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Davy Verheyen
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Dmytro S Kozak
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
- Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, 34/1 Acad. Vernadskogo Boul., Kiev, 03142, Ukraine
| | - Jan F M Van Impe
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium.
| |
Collapse
|
6
|
Bermudez-Aguirre D, Niemira B. Modeling quality changes and Salmonella Typhimurium growth in storage for eggs pasteurized by radio frequency treatments. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Bermudez-Aguirre D, Niemira B. Microbial inactivation models of Salmonella Typhimurium in radio frequency treated eggs. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Veerana M, Yu NN, Bae SJ, Kim I, Kim ES, Ketya W, Lee HY, Kim NY, Park G. Enhancement of Fungal Enzyme Production by Radio-Frequency Electromagnetic Fields. J Fungi (Basel) 2022; 8:1187. [PMID: 36354954 PMCID: PMC9695996 DOI: 10.3390/jof8111187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Enzyme production by microorganisms on an industrial scale has demonstrated technical bottlenecks, such as low efficiency in enzyme expression and extracellular secretion. In this study, as a potential tool for overcoming these technical limits, radio-frequency electromagnetic field (RF-EMF) exposure was examined for its possibility to enhance production of an enzyme, α-amylase, in a filamentous fungus, Aspergillus oryzae. The RF-EMF perfectly resonated at 2 GHz with directivity radiation pattern and peak gain of 0.5 dB (0.01 Watt). Total protein concentration and activity of α-amylase measured in media were about 1.5-3-fold higher in the RF-EMF exposed (10 min) sample than control (no RF-EMF) during incubation (the highest increase after 16 h). The level of α-amylase mRNA in cells was approximately 2-8-fold increased 16 and 24 h after RF-EMF exposure for 10 min. An increase in vesicle accumulation within fungal hyphae and the transcription of some genes involved in protein cellular trafficking was observed in RF-EMF-exposed samples. Membrane potential was not changed, but the intracellular Ca2+ level was elevated after RF-EMF exposure. Our results suggest that RF-EMF can increase the extracellular level of fungal total proteins and α-amylase activity and the intracellular level of Ca2+.
Collapse
Affiliation(s)
- Mayura Veerana
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Si-Jin Bae
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Ikhwan Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Eun-Seong Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Hak-Yong Lee
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
| | - Nam-Young Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
9
|
Zhou D, Yang G, Tian Y, Kang J, Wang S. Different effects of radio frequency and heat block treatments on multi-scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Sterilizing Ready-to-Eat Poached Spicy Pork Slices Using a New Device: Combined Radio Frequency Energy and Superheated Water. Foods 2022; 11:foods11182841. [PMID: 36140967 PMCID: PMC9497799 DOI: 10.3390/foods11182841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a new device was used to inactivate G. stearothermophilus spores in ready-to-eat (RTE) poached spicy pork slices (PSPS) applying radio frequency (RF) energy (27.12 MHz, 6 kW) and superheated water (SW) simultaneously. The cold spot in the PSPS sample was determined. The effects of electrode gap and SW temperature on heating rate, spore inactivation, physiochemical properties (water loss, texture, and oxidation), sensory properties, and SEM of samples were investigated. The cold spot lies in the geometric center of the soup. The heating rate increased with increasing electrode gap and hit a peak under 190 mm. Radio frequency combined superheated water (RFSW) sterilization greatly decreased the come-up time (CUT) compared with SW sterilization, and a 5 log reduction in G. stearothermophilus spores was achieved. RFSW sterilization under 170 mm electrode gap reduced the water loss, thermal damage of texture, oxidation, and tissues and cells of the sample, and kept a better sensory evaluation. RFSW sterilization has great potential in solid or semisolid food processing engineering.
Collapse
|
11
|
Zhang Z, Wang J, Hu Y, Wang L. Microwaves, a potential treatment for bacteria: A review. Front Microbiol 2022; 13:888266. [PMID: 35958124 PMCID: PMC9358438 DOI: 10.3389/fmicb.2022.888266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023] Open
Abstract
Bacteria have brought great harm to the public, especially after the emergence of multidrug-resistant bacteria. This has rendered traditional antibiotic therapy ineffective. In recent years, hyperthermia has offered new treatments to remove bacteria. Microwaves (MW) are a component of the electromagnetic spectrum and can rapidly heat materials. Taking advantage of this characteristic of MW, related studies have shown that both thermal and non-thermal effects of MW can inactivate various bacteria. Even though the understanding of MW in the field of bacteria is not sufficient for widespread use at present, MW has performed well in dealing with microorganisms and controlling infection. This review will focus on the application of MW in bacteria and discuss the advantages, prospects and challenges of using MW in the bacterial field.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Long Wang,
| |
Collapse
|