1
|
Shime N, Nakada TA, Yatabe T, Yamakawa K, Aoki Y, Inoue S, Iba T, Ogura H, Kawai Y, Kawaguchi A, Kawasaki T, Kondo Y, Sakuraya M, Taito S, Doi K, Hashimoto H, Hara Y, Fukuda T, Matsushima A, Egi M, Kushimoto S, Oami T, Kikutani K, Kotani Y, Aikawa G, Aoki M, Akatsuka M, Asai H, Abe T, Amemiya Y, Ishizawa R, Ishihara T, Ishimaru T, Itosu Y, Inoue H, Imahase H, Imura H, Iwasaki N, Ushio N, Uchida M, Uchi M, Umegaki T, Umemura Y, Endo A, Oi M, Ouchi A, Osawa I, Oshima Y, Ota K, Ohno T, Okada Y, Okano H, Ogawa Y, Kashiura M, Kasugai D, Kano KI, Kamidani R, Kawauchi A, Kawakami S, Kawakami D, Kawamura Y, Kandori K, Kishihara Y, Kimura S, Kubo K, Kuribara T, Koami H, Koba S, Sato T, Sato R, Sawada Y, Shida H, Shimada T, Shimizu M, Shimizu K, Shiraishi T, Shinkai T, Tampo A, Sugiura G, Sugimoto K, Sugimoto H, Suhara T, Sekino M, Sonota K, Taito M, Takahashi N, Takeshita J, Takeda C, Tatsuno J, Tanaka A, Tani M, Tanikawa A, Chen H, Tsuchida T, Tsutsumi Y, Tsunemitsu T, Deguchi R, Tetsuhara K, Terayama T, Togami Y, et alShime N, Nakada TA, Yatabe T, Yamakawa K, Aoki Y, Inoue S, Iba T, Ogura H, Kawai Y, Kawaguchi A, Kawasaki T, Kondo Y, Sakuraya M, Taito S, Doi K, Hashimoto H, Hara Y, Fukuda T, Matsushima A, Egi M, Kushimoto S, Oami T, Kikutani K, Kotani Y, Aikawa G, Aoki M, Akatsuka M, Asai H, Abe T, Amemiya Y, Ishizawa R, Ishihara T, Ishimaru T, Itosu Y, Inoue H, Imahase H, Imura H, Iwasaki N, Ushio N, Uchida M, Uchi M, Umegaki T, Umemura Y, Endo A, Oi M, Ouchi A, Osawa I, Oshima Y, Ota K, Ohno T, Okada Y, Okano H, Ogawa Y, Kashiura M, Kasugai D, Kano KI, Kamidani R, Kawauchi A, Kawakami S, Kawakami D, Kawamura Y, Kandori K, Kishihara Y, Kimura S, Kubo K, Kuribara T, Koami H, Koba S, Sato T, Sato R, Sawada Y, Shida H, Shimada T, Shimizu M, Shimizu K, Shiraishi T, Shinkai T, Tampo A, Sugiura G, Sugimoto K, Sugimoto H, Suhara T, Sekino M, Sonota K, Taito M, Takahashi N, Takeshita J, Takeda C, Tatsuno J, Tanaka A, Tani M, Tanikawa A, Chen H, Tsuchida T, Tsutsumi Y, Tsunemitsu T, Deguchi R, Tetsuhara K, Terayama T, Togami Y, Totoki T, Tomoda Y, Nakao S, Nagasawa H, Nakatani Y, Nakanishi N, Nishioka N, Nishikimi M, Noguchi S, Nonami S, Nomura O, Hashimoto K, Hatakeyama J, Hamai Y, Hikone M, Hisamune R, Hirose T, Fuke R, Fujii R, Fujie N, Fujinaga J, Fujinami Y, Fujiwara S, Funakoshi H, Homma K, Makino Y, Matsuura H, Matsuoka A, Matsuoka T, Matsumura Y, Mizuno A, Miyamoto S, Miyoshi Y, Murata S, Murata T, Yakushiji H, Yasuo S, Yamada K, Yamada H, Yamamoto R, Yamamoto R, Yumoto T, Yoshida Y, Yoshihiro S, Yoshimura S, Yoshimura J, Yonekura H, Wakabayashi Y, Wada T, Watanabe S, Ijiri A, Ugata K, Uda S, Onodera R, Takahashi M, Nakajima S, Honda J, Matsumoto T. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2024. J Intensive Care 2025; 13:15. [PMID: 40087807 PMCID: PMC11907869 DOI: 10.1186/s40560-025-00776-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 03/17/2025] Open
Abstract
The 2024 revised edition of the Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock (J-SSCG 2024) is published by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine. This is the fourth revision since the first edition was published in 2012. The purpose of the guidelines is to assist healthcare providers in making appropriate decisions in the treatment of sepsis and septic shock, leading to improved patient outcomes. We aimed to create guidelines that are easy to understand and use for physicians who recognize sepsis and provide initial management, specialized physicians who take over the treatment, and multidisciplinary healthcare providers, including nurses, physical therapists, clinical engineers, and pharmacists. The J-SSCG 2024 covers the following nine areas: diagnosis of sepsis and source control, antimicrobial therapy, initial resuscitation, blood purification, disseminated intravascular coagulation, adjunctive therapy, post-intensive care syndrome, patient and family care, and pediatrics. In these areas, we extracted 78 important clinical issues. The GRADE (Grading of Recommendations Assessment, Development and Evaluation) method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 42 GRADE-based recommendations, 7 good practice statements, and 22 information-to-background questions were created as responses to clinical questions. We also described 12 future research questions.
Collapse
Affiliation(s)
- Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Yatabe
- Emergency Department, Nishichita General Hospital, Tokai, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Atsushi Kawaguchi
- Division of Pediatric Critical Care, Department of Pediatrics, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, Hitachi Medical Education and Research Center University of Tsukuba Hospital, Hitachi, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Toranomon Hospital, Tokyo, Japan
| | - Asako Matsushima
- Department of Emergency and Critical Care, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Moritoki Egi
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiko Oami
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuki Kotani
- Department of Intensive Care Medicine Kameda Medical Center, Kamogawa, Japan
| | - Gen Aikawa
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Makoto Aoki
- Division of Traumatology, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Nara, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Yu Amemiya
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryo Ishizawa
- Department of Critical Care and Emergency Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Tadayoshi Ishimaru
- Department of Emergency Medicine, Chiba Kaihin Municipal Hospital, Chiba, Japan
| | - Yusuke Itosu
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroyasu Inoue
- Division of Physical Therapy, Department of Rehabilitation, Showa University School of Nursing and Rehabilitation Sciences, Yokohama, Japan
| | - Hisashi Imahase
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Naoya Iwasaki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noritaka Ushio
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masatoshi Uchida
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Michiko Uchi
- National Hospital Organization Ibarakihigashi National Hospital, Naka-Gun, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Akira Endo
- Department of Acute Critical Care Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Marina Oi
- Department of Emergency and Critical Care Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akira Ouchi
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Itsuki Osawa
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takanori Ohno
- Department of Emergency and Crical Care Medicine, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Yohei Okada
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Hiromu Okano
- Department of Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihito Ogawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Daisuke Kasugai
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Kawauchi
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Sadatoshi Kawakami
- Department of Anesthesiology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Kawakami
- Department of Intensive Care Medicine, Aso Iizuka Hospital, Iizuka, Japan
| | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Kenji Kandori
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Society Kyoto Daini Hospital , Kyoto, Japan
| | - Yuki Kishihara
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Sho Kimura
- Department of Pediatric Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Kenji Kubo
- Department of Emergency Medicine, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
- Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Tomoki Kuribara
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Hiroyuki Koami
- Department of Emergency and Critical Care Medicine, Saga University, Saga, Japan
| | - Shigeru Koba
- Department of Critical Care Medicine, Nerima Hikarigaoka Hospital, Nerima, Japan
| | - Takehito Sato
- Department of Anesthesiology, Nagoya University Hospital, Nagoya, Japan
| | - Ren Sato
- Department of Nursing, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Yusuke Sawada
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Shida
- Data Science, Medical Division, AstraZeneca K.K, Osaka, Japan
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Motohiro Shimizu
- Department of Intensive Care Medicine, Ryokusen-Kai Yonemori Hospital, Kagoshima, Japan
| | | | | | - Toru Shinkai
- The Advanced Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahiakwa Medical University, Asahikawa, Japan
| | - Gaku Sugiura
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kensuke Sugimoto
- Department of Anesthesiology and Intensive Care, Gunma University, Maebashi, Japan
| | - Hiroshi Sugimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Shinjuku, Japan
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Mahoko Taito
- Department of Nursing, Hiroshima University Hospital, Hiroshima, Japan
| | - Nozomi Takahashi
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Chikashi Takeda
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Junko Tatsuno
- Department of Nursing, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Fukui, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Atsushi Tanikawa
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hao Chen
- Department of Pulmonary, Yokohama City University Hospital, Yokohama, Japan
| | - Takumi Tsuchida
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Tsutsumi
- Department of Emergency Medicine, National Hospital Organization Mito Medical Center, Ibaragi, Japan
| | | | - Ryo Deguchi
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Kenichi Tetsuhara
- Department of Critical Care Medicine, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takero Terayama
- Department of Emergency Self-Defense, Forces Central Hospital, Tokyo, Japan
| | - Yuki Togami
- Department of Acute Medicine & Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takaaki Totoki
- Department of Anesthesiology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshinori Tomoda
- Laboratory of Clinical Pharmacokinetics, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Nagasawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital Juntendo University, Shizuoka, Japan
| | | | - Nobuto Nakanishi
- Department of Disaster and Emergency Medicine, Kobe University, Kobe, Japan
| | - Norihiro Nishioka
- Department of Emergency and Crical Care Medicine, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoko Noguchi
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Suguru Nonami
- Department of Emergency and Critical Care Medicine, Kyoto Katsura Hospital, Kyoto, Japan
| | - Osamu Nomura
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Katsuhiko Hashimoto
- Department of Emergency and Intensive Care Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yasutaka Hamai
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Mayu Hikone
- Department of Emergency Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Ryo Hisamune
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomoya Hirose
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Fuke
- Department of Internal Medicine, IMS Meirikai Sendai General Hospital, Sendai, Japan
| | - Ryo Fujii
- Emergency Department, Ageo Central General Hospital, Ageo, Japan
| | - Naoki Fujie
- Department of Pharmacy, Osaka Psychiatric Medical Center, Hirakata, Japan
| | - Jun Fujinaga
- Emergency and Critical Care Center, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yoshihisa Fujinami
- Department of Emergency Medicine, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Sho Fujiwara
- Department of Emergency Medicine, Tokyo Hikifune Hospital, Tokyo, Japan
- Department of Infectious Diseases, Tokyo Hikifune Hospital, Tokyo, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyobay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Yuto Makino
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Hiroshi Matsuura
- Osaka Prefectural Nakakawachi Emergency and Critical Care Center, Higashiosaka, Japan
| | - Ayaka Matsuoka
- Department of Emergency and Critical Care Medicine, Saga University, Saga, Japan
| | - Tadashi Matsuoka
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency and Psychiatric Medical Center, Chiba, Japan
| | - Akito Mizuno
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Sohma Miyamoto
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Chuo-Ku, Japan
| | - Yukari Miyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Satoshi Murata
- Division of Emergency Medicine, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Teppei Murata
- Department of Cardiology Miyazaki Prefectural, Nobeoka Hospital, Nobeoka, Japan
| | | | | | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Ryohei Yamamoto
- Center for Innovative Research for Communities and Clinical Excellence (CIRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuji Yoshida
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Shodai Yoshihiro
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Satoshi Yoshimura
- Department of Emergency Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Yonekura
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Yuki Wakabayashi
- Department of Nursing, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Watanabe
- Department of Physical Therapy, Faculty of Rehabilitation Gifu, University of Health Science, Gifu, Japan
| | - Atsuhiro Ijiri
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Kei Ugata
- Department of Intensive Care Medicine, Matsue Red Cross Hospital, Matsue, Japan
| | - Shuji Uda
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Ryuta Onodera
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Masaki Takahashi
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Nakajima
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junta Honda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuguhiro Matsumoto
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
2
|
Hagiya H. Detailed regimens for the prolonged β-lactam infusion therapy. J Infect Chemother 2024; 30:1324-1326. [PMID: 38977073 DOI: 10.1016/j.jiac.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
A recent systematic review and meta-analysis of randomized controlled trials (RCTs) evaluated the efficacy and safety of prolonged versus intermittent β-lactam infusion in adult sepsis patients. The findings revealed a significant decrease in all-cause mortality and marked clinical success in the prolonged infusion group. Unfortunately, however, the manuscript lacked data and discussion for the specific regimens of prolonged β-lactam infusion defined in the included 15 RCT studies, which are herein additionally provided. Excluding one RCT, all protocols adopted a continuous infusion for the prolonged treatment. Except for three RCTs, dosages and timings of bolus injection were clearly defined. The total daily antibiotic dose for the continuous therapy was equivalent to those recommended for intermittent therapy. We believe this supplementary data aids clinicians in providing prolonged β-lactam infusions, contributing to enhanced treatment outcomes for patients suffering from severe sepsis or septic shock.
Collapse
Affiliation(s)
- Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama, 700-8558, Japan.
| |
Collapse
|
3
|
Abdul-Aziz MH, Hammond NE, Brett SJ, Cotta MO, De Waele JJ, Devaux A, Di Tanna GL, Dulhunty JM, Elkady H, Eriksson L, Hasan MS, Khan AB, Lipman J, Liu X, Monti G, Myburgh J, Novy E, Omar S, Rajbhandari D, Roger C, Sjövall F, Zaghi I, Zangrillo A, Delaney A, Roberts JA. Prolonged vs Intermittent Infusions of β-Lactam Antibiotics in Adults With Sepsis or Septic Shock: A Systematic Review and Meta-Analysis. JAMA 2024; 332:638-648. [PMID: 38864162 PMCID: PMC11170459 DOI: 10.1001/jama.2024.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Importance There is uncertainty about whether prolonged infusions of β-lactam antibiotics improve clinically important outcomes in critically ill adults with sepsis or septic shock. Objective To determine whether prolonged β-lactam antibiotic infusions are associated with a reduced risk of death in critically ill adults with sepsis or septic shock compared with intermittent infusions. Data Sources The primary search was conducted with MEDLINE (via PubMed), CINAHL, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov from inception to May 2, 2024. Study Selection Randomized clinical trials comparing prolonged (continuous or extended) and intermittent infusions of β-lactam antibiotics in critically ill adults with sepsis or septic shock. Data Extraction and Synthesis Data extraction and risk of bias were assessed independently by 2 reviewers. Certainty of evidence was evaluated with the Grading of Recommendations Assessment, Development and Evaluation approach. A bayesian framework was used as the primary analysis approach and a frequentist framework as the secondary approach. Main Outcomes and Measures The primary outcome was all-cause 90-day mortality. Secondary outcomes included intensive care unit (ICU) mortality and clinical cure. Results From 18 eligible randomized clinical trials that included 9108 critically ill adults with sepsis or septic shock (median age, 54 years; IQR, 48-57; 5961 men [65%]), 17 trials (9014 participants) contributed data to the primary outcome. The pooled estimated risk ratio for all-cause 90-day mortality for prolonged infusions of β-lactam antibiotics compared with intermittent infusions was 0.86 (95% credible interval, 0.72-0.98; I2 = 21.5%; high certainty), with a 99.1% posterior probability that prolonged infusions were associated with lower 90-day mortality. Prolonged infusion of β-lactam antibiotics was associated with a reduced risk of intensive care unit mortality (risk ratio, 0.84; 95% credible interval, 0.70-0.97; high certainty) and an increase in clinical cure (risk ratio, 1.16; 95% credible interval, 1.07-1.31; moderate certainty). Conclusions and Relevance Among adults in the intensive care unit who had sepsis or septic shock, the use of prolonged β-lactam antibiotic infusions was associated with a reduced risk of 90-day mortality compared with intermittent infusions. The current evidence presents a high degree of certainty for clinicians to consider prolonged infusions as a standard of care in the management of sepsis and septic shock. Trial Registration PROSPERO Identifier: CRD42023399434.
Collapse
Affiliation(s)
- Mohd H. Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Naomi E. Hammond
- Critical Care Program, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Stephen J. Brett
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Menino O. Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan J. De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anthony Devaux
- Statistics Division, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
| | - Gian Luca Di Tanna
- Statistics Division, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Joel M. Dulhunty
- Critical Care Program, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Redcliffe Hospital, Redcliffe, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hatem Elkady
- Department of Intensive Care Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Lars Eriksson
- UQ Library, The University of Queensland, Brisbane, Queensland, Australia
| | - M. Shahnaz Hasan
- Department of Anesthesiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Ayesha Bibi Khan
- Division of Critical Care, University of Witwatersrand, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Xiaoqiu Liu
- Statistics Division, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Giacomo Monti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Myburgh
- Critical Care Program, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- Department of Intensive Care, St George Hospital, Kogarah, New South Wales, Australia
| | - Emmanuel Novy
- Service d’anesthésie-réanimation et médicine péri-opératoire Brabois adulte, CHRU de Nancy, Nancy, France
- Université de Lorraine, SIMPA, Nancy, France
| | - Shahed Omar
- Division of Critical Care, University of Witwatersrand, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Dorrilyn Rajbhandari
- Critical Care Program, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
| | - Claire Roger
- Département d’anesthésie et réanimation, douleur et médecine d’urgence, CHU Carémeau, Nîmes, France
- UR UM 103IMAGINE, Faculté de Médecine, Montpellier Université, Nîmes, France
| | - Fredrik Sjövall
- Intensive and Perioperative Care, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Irene Zaghi
- Department of Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Anthony Delaney
- Critical Care Program, The George Institute for Global Health and University of New South Wales, Sydney, New South Wales, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Karaba SM, Cosgrove SE, Lee JH, Fiawoo S, Heil EL, Quartuccio KS, Shihadeh KC, Tamma PD. Extended-Infusion β-Lactam Therapy, Mortality, and Subsequent Antibiotic Resistance Among Hospitalized Adults With Gram-Negative Bloodstream Infections. JAMA Netw Open 2024; 7:e2418234. [PMID: 38954416 PMCID: PMC11220563 DOI: 10.1001/jamanetworkopen.2024.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/21/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Current evidence is conflicting for associations of extended-infusion β-lactam (EI-BL) therapy with clinical outcomes. Objective To investigate the association of EI-BL therapy with survival, adverse events, and emergence of antibiotic resistance in adults with gram-negative bloodstream infections (GN-BSI). Design, Setting, and Participants This cohort study of consecutive adults with GN-BSI admitted to 24 United States hospitals between January 1, 2019, and December 31, 2019, receiving EI-BL were compared with adults with GN-BSI receiving the same agents as intermittent infusion β-lactam (II-BL; ≤1-hour infusions). Statistical analysis was performed from January to October 2023. Exposures EI-BL (ie, ≥3-hour infusion). Main Outcomes and Measures EI-BL and II-BL groups underwent 1:3 nearest-neighbor propensity score matching (PSM) without replacement. Multivariable regression was applied to the PSM cohort to investigate outcomes, all censored at day 90. The primary outcome was mortality; secondary outcomes included antibiotic adverse events and emergence of resistance (≥4-fold increase in the minimum inhibitory concentration of the β-lactam used to treat the index GN-BSI). Results Among the 4861 patients included, 2547 (52.4%) were male; and the median (IQR) age was 67 (55-77) years. There were 352 patients in the EI-BL 1:3 PSM group, and 1056 patients in the II-BL 1:3 PSM group. Among 1408 PSM patients, 373 (26.5%) died by day 90. The odds of mortality were lower in the EI-BL group (adjusted odds ratio [aOR], 0.71 [95% CI, 0.52-0.97]). In a stratified analysis, a survival benefit was only identified in patients with severe illness or elevated minimum inhibitory concentrations (ie, in the intermediate range for the antibiotic administered). There were increased odds of catheter complications (aOR, 3.14 [95% CI, 1.66-5.96]) and antibiotic discontinuation because of adverse events (eg, acute kidney injury, cytopenias, seizures) in the EI-BL group (aOR, 3.66 [95% CI, 1.68-7.95]). Emergence of resistance was similar in the EI-BL and II-BL groups at 2.9% vs 7.2%, respectively (P = .35). Conclusions and Relevance In this cohort study of patients with GN-BSI, EI-BL therapy was associated with reduced mortality for patients with severe illness or those infected with nonsusceptible organisms; potential advantages in other groups remain unclear and need to be balanced with potential adverse events. The subsequent emergence of resistance warrants investigation in a larger cohort.
Collapse
Affiliation(s)
- Sara M. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara E. Cosgrove
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jae Hyoung Lee
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suiyini Fiawoo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily L. Heil
- Department of Practice, Sciences, and Health-Outcomes Research, University of Maryland School of Pharmacy, Baltimore, Maryland
| | | | | | - Pranita D. Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Zhao Y, Zang B, Wang Q. Prolonged versus intermittent β-lactam infusion in sepsis: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 2024; 14:30. [PMID: 38368588 PMCID: PMC10874917 DOI: 10.1186/s13613-024-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The two latest studies on prolonged versus intermittent use of β-lactam antibiotics in patients with sepsis did not reach consistent conclusions, further contributing to the controversy surrounding the effectiveness of the prolonged β-lactam antibiotics infusion strategy. We conducted a systemic review and meta-analysis to evaluate the efficacy and safety of prolonged and intermittent β-lactam infusion in adult patients with sepsis. METHODS We systematically searched PubMed, EMBASE, and Cochrane Library databases for original randomized controlled trials comparing prolonged and intermittent β-lactam infusion in sepsis patients. A random-effects model was used to evaluate mortality, clinical success, microbiological success, and adverse events. We also conducted subgroup analyses to explore the impact of various factors on the mortality rates. Relative risk (RR) and corresponding 95% confidence intervals (CIs) were used to calculate the overall effect sizes for dichotomous outcomes. This meta-analysis was registered in PROSPERO (CRD42023463905). RESULTS We assessed 15 studies involving 2130 patients. In our comprehensive assessment, we found a significant reduction in all-cause mortality (RR, 0.83; 95% CI 0.72-0.97; P = 0.02) and a notable improvement in clinical success (RR, 1.16; 95% CI 1.03-1.31; P = 0.02) in the prolonged infusion group compared to the intermittent infusion group, whereas microbiological success did not yield statistically significant results (RR, 1.10; 95% CI 0.98-1.23; P = 0.11). No significant differences in adverse events were observed between the two groups (RR, 0.91; 95% CI 0.64-1.29; P = 0.60). Additionally, remarkable conclusions were drawn from subgroup analyses including studies with sample sizes exceeding 20 individuals per group (RR, 0.84; 95%CI 0.72-0.98; P = 0.03), research conducted post-2010 (RR, 0.84; 95%CI 0.72-0.98; P = 0.03), cases involving infections predominantly caused by Gram-negative bacteria (RR, 0.81; 95%CI 0.68-0.96; P = 0.02), as well as the administration of a loading dose (RR, 0.84; 95% CI 0.72-0.97; P = 0.02) and the use of penicillin (RR, 0.61; 95% CI 0.38-0.98; P = 0.04). CONCLUSIONS Compared to intermittent infusion, prolonged infusion of β-lactam antibiotics significantly decreases all-cause mortality among patients with sepsis and enhances clinical success without increasing adverse events.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110000, China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110000, China.
| | - Qian Wang
- Department of Emergency, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110000, China.
| |
Collapse
|
6
|
Espinoza Cobeñas CA. "Comment on 'international consensus recommendations for the use of prolonged-infusion β-lactams endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the infectious diseases Society of American (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists'". Pharmacotherapy 2024; 44:207. [PMID: 38362633 DOI: 10.1002/phar.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
|
7
|
Li X, Long Y, Wu G, Li R, Zhou M, He A, Jiang Z. Prolonged vs intermittent intravenous infusion of β-lactam antibiotics for patients with sepsis: a systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Ann Intensive Care 2023; 13:121. [PMID: 38051467 DOI: 10.1186/s13613-023-01222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The prolonged β-lactam antibiotics infusion has been an attractive strategy in severe infections, because it provides a more stable free drug concentration and a longer duration of free drug concentration above the minimum inhibitory concentration (MIC). We conducted this systematic review of randomized clinical trials (RCTs) with meta-analysis and trial sequential analysis (TSA) to compare the effects of prolonged vs intermittent intravenous infusion of β-lactam antibiotics for patients with sepsis. METHODS This study was prospectively registered on PROSPERO database (CRD42023447692). We searched EMBASE, PubMed, and Cochrane Library to identify eligible studies (up to July 6, 2023). Any study meeting the inclusion and exclusion criteria would be included. The primary outcome was all-cause mortality within 30 days. Two authors independently screened studies and extracted data. When the I2 values < 50%, we used fixed-effect mode. Otherwise, the random effects model was used. TSA was also performed to search for the possibility of false-positive (type I error) or false-negative (type II error) results. RESULTS A total of 4355 studies were identified in our search, and nine studies with 1762 patients were finally included. The pooled results showed that, compared with intermittent intravenous infusion, prolonged intravenous infusion of beta-lactam antibiotics resulted in a significant reduction in all-cause mortality within 30 days in patients with sepsis (RR 0.82; 95%CI 0.70-0.96; P = 0.01; TSA-adjusted CI 0.62-1.07). However, the certainty of the evidence was rated as low, and the TSA results suggested that more studies were needed to further confirm our conclusion. In addition, it is associated with lower hospital mortality, ICU mortality, and higher clinical cure. No significant reduction in 90-day mortality or the emergence of resistance bacteria was detected between the two groups. CONCLUSIONS Prolonged intravenous infusion of beta-lactam antibiotics in patients with sepsis was associated with short-term survival benefits and higher clinical cure. However, the TSA results suggested that more studies are needed to reach a definitive conclusion. In terms of long-term survival benefits, we could not show an improvement.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Yi Long
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Guixin Wu
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Rui Li
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Mingming Zhou
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Aiting He
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China
| | - Zhengying Jiang
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, 181 Han-Yu Road, Chongqing, 400030, China.
| |
Collapse
|
8
|
Hong LT, Downes KJ, FakhriRavari A, Abdul-Mutakabbir JC, Kuti JL, Jorgensen S, Young DC, Alshaer MH, Bassetti M, Bonomo RA, Gilchrist M, Jang SM, Lodise T, Roberts JA, Tängdén T, Zuppa A, Scheetz MH. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2023; 43:740-777. [PMID: 37615245 DOI: 10.1002/phar.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 08/25/2023]
Abstract
Intravenous β-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. β-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PIs) can be applied during the administration of intravenous β-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of PI β-lactams developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug-monitoring considerations, and the use of PI β-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of β-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).
Collapse
Affiliation(s)
- Lisa T Hong
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Kevin J Downes
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jacinda C Abdul-Mutakabbir
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
- Divisions of Clinical Pharmacy and Black Diaspora and African American Studies, University of California San Diego, La Jolla, California, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | - David C Young
- University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | | | | | - Robert A Bonomo
- Cleveland Veteran Affairs Medical Center, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Gilchrist
- Imperial College Healthcare National Health Services Trust, London, UK
| | - Soo Min Jang
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Center for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Athena Zuppa
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marc H Scheetz
- College of Pharmacy, Pharmacometric Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
9
|
Diamantis S, Chakvetadze C, de Pontfarcy A, Matta M. Optimizing Betalactam Clinical Response by Using a Continuous Infusion: A Comprehensive Review. Antibiotics (Basel) 2023; 12:1052. [PMID: 37370371 DOI: 10.3390/antibiotics12061052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Antimicrobial resistance is a major healthcare issue responsible for a large number of deaths. Many reviews identified that PKPD data are in favor of the use of continuous infusion, and we wanted to review clinical data results in order to optimize our clinical practice. METHODOLOGY We reviewed Medline for existing literature comparing continuous or extended infusion to intermittent infusion of betalactams. RESULTS In clinical studies, continuous infusion is as good as intermittent infusion. In the subset group of critically ill patients or those with an infection due to an organism with high MIC, a continuous infusion was associated with better clinical response. CONCLUSIONS Clinical data appear to confirm those of PK/PD to use a continuous infusion in severely ill patients or those infected by an organism with an elevated MIC, as it is associated with higher survival rates. In other cases, it may allow for a decrease in antibiotic daily dosage, thereby contributing to a decrease in overall costs.
Collapse
Affiliation(s)
- Sylvain Diamantis
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France
- DYNAMIC Research Unit, Université Paris-Est-Creteil, 94320 Thiais, France
| | | | - Astrid de Pontfarcy
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France
| | - Matta Matta
- Infectious Diseases Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France
| |
Collapse
|
10
|
Kıran P, Nadir Y, Gencer S. Clinical efficacy and safety of prolonged versus intermittent administration of antipseudomonal beta-lactam antibiotics in adults with severe acute infections: A meta-analysis of randomized controlled trials. J Infect Chemother 2023:S1341-321X(23)00118-6. [PMID: 37169223 DOI: 10.1016/j.jiac.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION In order to compare the clinical efficacy and safety of prolonged versus intermittent antipseudomonal beta-lactam antibiotic infusion for the treatment of severe acute infections in adult patients, a meta-analysis of randomized controlled trials (RCTs) was performed. METHODS We systematically searched MEDLINE and Cochrane Library databases until December 2022. The outcomes were all-cause mortality, clinical success, microbiological eradication and adverse events. The pooled risk ratios (RR) were estimated by the fixed or random effect methods according to heterogeneity statistics. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the certainty of evidence for each outcome. RESULTS Twenty eligible RCTs with 2081 participants were included in the meta-analysis. The risk of all-cause mortality was significantly lower in the prolonged infusion group than in the intermittent infusion group (RR 0.77, 95% confidence interval [CI] 0.63-0.95, p = 0.01, I2 = 0%; moderate certainty). Treatment with prolonged infusion showed significant benefit in clinical success (RR 1.09, 95% CI 1.02-1.17, p = 0.008, I2 = 19%; moderate certainty). There were no significant differences in microbiological eradication (RR 1.12, 95% CI 0.99-1.28, p = 0.07, I2 = 49%; low certainty), any adverse events (RR 0.96, 95% CI 0.86-1.08, p = 0.50, I2 = 27%; moderate certainty) and serious adverse events (RR 0.99, 95%CI 0.70-1.39 p = 0.95, I2 = 0%; low certainty). CONCLUSIONS Prolonged antipseudomonal beta-lactam infusion probably decreases all-cause mortality. Additionally, it probably increases clinical success in adults with severe acute infections. This infusion strategy may result in little to no difference in microbiological eradication and is probably not associated with a rise in any adverse events.The evidence suggests that prolonged infusion may not increase serious adverse events.
Collapse
Affiliation(s)
- Pınar Kıran
- Department of Infectious Diseases and Clinical Microbiology, Epidemiology Subsection, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| | - Yasemin Nadir
- Department of Infectious Diseases and Clinical Microbiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Serap Gencer
- Department of Infectious Diseases and Clinical Microbiology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
11
|
Roberts JA, Croom K, Adomakoh N. Continuous infusion of beta-lactam antibiotics: narrative review of systematic reviews, and implications for outpatient parenteral antibiotic therapy. Expert Rev Anti Infect Ther 2023; 21:375-385. [PMID: 36867528 DOI: 10.1080/14787210.2023.2184347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Continuous infusion (CI) of beta-lactam antibiotics may be of benefit in some patients, particularly those with severe infections. However, most studies have been small and conflicting results have been reported. The best available evidence on clinical outcomes of beta-lactam CI comes from systematic reviews/meta-analyses that integrate the available data. AREAS COVERED A search of PubMed from inception to the end of February 2022 for systematic reviews of clinical outcomes with beta-lactam CI for any indication identified 12 reviews, all of which focused on hospitalized patients, most of whom were critically ill. A narrative overview of these systematic reviews/meta-analyses is provided. No systematic reviews evaluating the use of beta-lactam CI for outpatient parenteral antibiotic therapy (OPAT) were identified, as few studies have focused on this area. Relevant data are summarized, and consideration is given to issues that need to be addressed when using beta-lactam CI in the setting of OPAT. EXPERT OPINION Evidence from systematic reviews supports a role for beta-lactam CI in the treatment of hospitalized patients with severe/life-threatening infections. Beta-lactam CI can play a role in patients receiving OPAT for severe chronic/difficult-to-treat infections, but additional data are needed to clarify its optimal use.
Collapse
Affiliation(s)
- Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | | | |
Collapse
|
12
|
Why We May Need Higher Doses of Beta-Lactam Antibiotics: Introducing the 'Maximum Tolerable Dose'. Antibiotics (Basel) 2022; 11:antibiotics11070889. [PMID: 35884143 PMCID: PMC9312263 DOI: 10.3390/antibiotics11070889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/25/2023] Open
Abstract
The surge in antimicrobial resistance and the limited availability of new antimicrobial drugs has fueled the interest in optimizing antibiotic dosing. An ideal dosing regimen leads to maximal bacterial cell kill, whilst minimizing the risk of toxicity or antimicrobial resistance. For beta-lactam antibiotics specifically, PK/PD-based considerations have led to the widespread adoption of prolonged infusion. The rationale behind prolonged infusion is increasing the percentage of time the beta-lactam antibiotic concentration remains above the minimal inhibitory concentration (%fT>MIC). The ultimate goal of prolonged infusion of beta-lactam antibiotics is to improve the outcome of infectious diseases. However, merely increasing target attainment (or the %fT>MIC) is unlikely to lead to improved clinical outcome for several reasons. First, the PK/PD index and target are dynamic entities. Changing the PK (as is the case if prolonged instead of intermittent infusion is used) will result in different PK/PD targets and even PK/PD indices necessary to obtain the same level of bacterial cell kill. Second, the minimal inhibitory concentration is not a good denominator to describe either the emergence of resistance or toxicity. Therefore, we believe a different approach to antibiotic dosing is necessary. In this perspective, we introduce the concept of the maximum tolerable dose (MTD). This MTD is the highest dose of an antimicrobial drug deemed safe for the patient. The goal of the MTD is to maximize bacterial cell kill and minimize the risk of antimicrobial resistance and toxicity. Unfortunately, data about what beta-lactam antibiotic levels are associated with toxicity and how beta-lactam antibiotic toxicity should be measured are limited. This perspective is, therefore, a plea to invest in research aimed at deciphering the dose−response relationship between beta-lactam antibiotic drug concentrations and toxicity. In this regard, we provide a theoretical approach of how increasing uremic toxin concentrations could be used as a quantifiable marker of beta-lactam antibiotic toxicity.
Collapse
|
13
|
Tschumper E, Dupuis K, McCrory K, Pitts W. Evaluation of Prolonged Versus Continuous Infusions of Piperacillin/Tazobactam During Shortages of Small Volume Parenteral Solutions. J Pharm Technol 2021; 37:271-277. [PMID: 34790963 DOI: 10.1177/87551225211034978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: In 2017, a national drug shortage of small volume solutions significantly affected the preparation of intravenous antibiotics. In response, a continuous infusion administration protocol for piperacillin/tazobactam (PIP/TAZ) was implemented. Objective: To compare the outcomes of continuous to prolonged infusions of PIP/TAZ in the setting of drug shortages. Methods: This study is a single-center, retrospective cohort study in a community hospital of patients 18 years and older who received intravenous PIP/TAZ through 2 different dosing strategies of intravenous antibiotics from December 2016 to January 2018. Data were collected for 2 months on patients receiving prolonged infusions of PIP/TAZ prior to November 2017 and for 2 months on patients receiving continuous infusions of PIP/TAZ after November 2017. Results: A total of 90 patients who received PIP/TAZ via either prolonged (n = 47) or continuous infusion (n = 43) were evaluated. There were no differences between the groups in mortality (3 vs 2 deaths, P = 1.00), length of therapy (6 ± 4 vs 6 ± 3 days, P = .86), or length of stay (9 ± 7 vs 8 ± 6 days, P = .47). Additionally, no differences were noted between incidences of thrombocytopenia (P = .41), Clostridioides difficile infection (P = .48), acute renal failure (P = 1.00), seizures (P = 1.0), or 30-day readmission rates (P = .27). Conclusions: Administration of continuous infusion PIP/TAZ appears to be a viable mitigation strategy during small volume fluid shortages. Future cost-effectiveness studies may provide information on the financial impact of continuous infusions during costly drug shortages.
Collapse
Affiliation(s)
- Emily Tschumper
- University of Mississippi, University, MS, USA.,North Mississippi Medical Center, Tupelo, MS, USA
| | | | - Kim McCrory
- North Mississippi Medical Center, Tupelo, MS, USA
| | - Wes Pitts
- North Mississippi Medical Center, Tupelo, MS, USA
| |
Collapse
|
14
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Show More Authors] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
15
|
Esteve-Pitarch E, Gumucio-Sanguino VD, Cobo-Sacristán S, Shaw E, Maisterra-Santos K, Sabater-Riera J, Pérez-Fernandez XL, Rigo-Bonnin R, Tubau-Quintano F, Carratalà J, Colom-Codina H, Padullés-Zamora A. Continuous Infusion of Piperacillin/Tazobactam and Meropenem in ICU Patients Without Renal Dysfunction: Are Patients at Risk of Underexposure? Eur J Drug Metab Pharmacokinet 2021; 46:527-538. [PMID: 34131869 DOI: 10.1007/s13318-021-00694-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Morbidity and mortality from serious infections are common in intensive care units (ICUs). The appropriateness of the antibiotic treatment is essential to combat sepsis. We aimed to evaluate pharmacokinetic/pharmacodynamic target attainment of meropenem and piperacillin/tazobactam administered at standard total daily dose as continuous infusion in critically ill patients without renal dysfunction and to identify risk factors of non-pharmacokinetic/pharmacodynamic target attainment. RESULTS We included 118 patients (149 concentrations), 47% had microorganism isolation. Minimum inhibitory concentration (MIC) [median (interquartile range, IQR) values in isolated pathogens were: meropenem: 0.05 (0.02-0.12) mg/l; piperacillin: 3 (1-4) mg/l]. Pharmacokinetic/pharmacodynamic target attainments (100%fCss≥1xMIC, 100%fCss≥4xMIC and 100%fCss ≥ 8xMIC, respectively) were: 100%, 96.15%, 96.15% (meropenem) and 95.56%, 91.11%, 62.22% (piperacillin) for actual MIC; 98.11%, 71.70%, 47.17% (meropenem, MIC 2 mg/l), 95.83%, 44.79%, 6.25% (piperacillin, MIC 8 mg/l), 83.33%, 6.25%, 1.04% (piperacillin, MIC 16 mg/l) for EUCAST breakpoint of Enterobacteriaceae spp. and Pseudomonas spp. Multivariable linear analysis identified creatinine clearance (CrCL) as a predictive factor of free antibiotic concentrations (fCss) of both therapies (meropenem [β = - 0.01 (95% CI - 0.02 to - 0.0; p = 0.043)] and piperacillin [β = - 0.01 (95% CI - 0.02 to 0.01, p < 0.001)]). Neurocritical status was associated with lower piperacillin fCss [β = - 0.36 (95% CI - 0.61 to - 0.11; p = 0.005)]. CONCLUSION Standard total daily dose of meropenem allowed achieving pharmacokinetic/pharmacodynamic target attainments in ICU patients without renal dysfunction. Higher doses of piperacillin/tazobactam would be needed to cover microorganisms with MIC > 8 mg/l. CrCL was the most powerful factor predictive of fCss in both therapies.
Collapse
Affiliation(s)
- Erika Esteve-Pitarch
- Department of Pharmacy, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Daniel Gumucio-Sanguino
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Cobo-Sacristán
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pharmacy, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, C/Feixa Llarga s/n., 08907, Barcelona, Spain
| | - Evelyn Shaw
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. Hospitalet de Llobregat, Barcelona, Spain.,Epidemiologia de les infeccions bacterianes, Patologia Infecciosa i Transplantament, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Kristel Maisterra-Santos
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Sabater-Riera
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Xosé L Pérez-Fernandez
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Fe Tubau-Quintano
- Department of Microbiology, Hospital Universitari de Bellvitge-IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Microbiology, CIBERES-Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. Hospitalet de Llobregat, Barcelona, Spain.,Infeccions respiratòries i en l'hoste immunocompromès, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Helena Colom-Codina
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Barcelona, University of Barcelona, Barcelona, Spain
| | - Ariadna Padullés-Zamora
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain. .,Department of Pharmacy, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, C/Feixa Llarga s/n., 08907, Barcelona, Spain.
| |
Collapse
|
16
|
Wu CC, Su YC, Wu KS, Wu TH, Yang CS. Loading dose and efficacy of continuous or extended infusion of beta-lactams compared with intermittent administration in patients with critical illnesses: A subgroup meta-analysis and meta-regression analysis. J Clin Pharm Ther 2021; 46:424-432. [PMID: 33135261 DOI: 10.1111/jcpt.13301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The role of continuous/extended beta-lactam infusions (CEIs) in improving clinical outcomes among critically ill patients remains controversial. Therefore, we aimed to compare the clinical efficacy of CEI versus intermittent administration (IA) of beta-lactams by performing a systematic review and meta-analysis. METHODS PubMed, the Cochrane Library and Embase were searched from inception until December 2018 for studies comparing clinical outcomes of CEI versus IA in critically ill patients. The meta-analysis included 18 randomized controlled trials (RCTs) and 13 non-RCTs. RESULTS AND DISCUSSION For CEI versus IA, the summary relative risk (RR) for overall mortality and clinical cure was 0.82 (95% confidence interval [CI]: 0.72-0.94) and 1.31 (95% CI: 1.15-1.49), respectively. Subgroup and meta-regression analyses of the loading dose revealed a significantly increased clinical cure rate in the loading-dose group (RR: 1.44, 95% CI: 1.22-1.69), which remained significant after adjustments for beta-lactam type, and association between clinical cure and loading dose for clinical cure (RR: 1.47, 95% CI: 1.20-1.80; p = .001). Subgroup analysis of administration type indicated that both groups had low mortality and high clinical cure rates; however, the heterogeneity analysis did not support an association across continuous infusion and extended infusion groups. Subgroup analysis of the Acute Physiology and Chronic Health Evaluation (APACHE) score was conducted; according to APACHE scores ≥ 16, overall mortality and clinical cure significantly differed between CEI and IA. WHAT IS NEW AND CONCLUSION CEIs with loading-dose treatment may significantly improve the clinical outcomes in critically ill sepsis or septic shock patients.
Collapse
Affiliation(s)
- Chih-Chien Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chia Su
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kuan-Sheng Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tung-Ho Wu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Shiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
18
|
[Pharmacokinetic modifications and pharmacokinetic/pharmacodynamic optimization of beta-lactams in ICU]. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:346-360. [PMID: 33309603 DOI: 10.1016/j.pharma.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Pharmacokinetic modifications in critically ill patients and those induced by ICU therapeutics raise a lot of issues about antibiotic dose adaptation. Beta-lactams are anti-infectious widely used in ICU. Frequent beta-lactam underdoses induce a risk of therapeutic failure potentially lethal and of emergence of bacterial resistance. Overdoses expose to a neurotoxic and nephrotoxic risk. Therefore, an understanding of pharmacokinetics modifications appears to be essential. A global pharmacokinetic/pharmacodynamic approach is required, including use of prolonged or continued beta-lactam infusions to optimise probability of pharmacokinetic/pharmacodynamic target attainment. Beta-lactam therapeutic drug monitoring should also be considered. Experts agree to target a free plasma betalactam concentration above four times the MIC of the causative bacteria for 100 % of the dosing interval. Bayesian methods could permit individualized doses adaptations.
Collapse
|
19
|
Fawaz S, Barton S, Whitney L, Nabhani-Gebara S. Differential antibiotic dosing in critical care: survey on nurses' knowledge, perceptions and experience. JAC Antimicrob Resist 2020; 2:dlaa083. [PMID: 34223038 PMCID: PMC8210199 DOI: 10.1093/jacamr/dlaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022] Open
Abstract
Background With the discovery of new antibiotics diminishing, optimizing the administration of existing antibiotics has become a necessity. Critical care nurses play a crucial role in combating antimicrobial resistance and are involved in preparing and administering antibiotics as well as monitoring their effects on patients. A dosing strategy proposed to reduce the development of ever-evolving antimicrobial resistance involves differential dosing regimens such as prolonged/continuous infusions. Objectives To assess critical care nurses’ knowledge, perceptions, comfort and experience in relation to prolonged/continuous infusion antibiotics. Methods A descriptive cross-sectional study was conducted using an investigator-developed, self-administered survey consisting of open- and closed-ended questions. Obtained data were computed using SPSS. Descriptive and inferential statistics were used to analyse the data. Results Fifty-two critical care nurses participated in the survey. Data revealed that nurses have adequate levels of knowledge and comfort relating to the use of prolonged/continuous infusion antibiotics along with the ability to communicate effectively on the topic. Results indicate there is a need for further learning, especially in terms of multiplicity of methods for preparing and administering prolonged/continuous infusions and dose calculations. Overall, results are promising as nurses support the wider implementation of prolonged/continuous infusion treatment regimens in critical care. Conclusion Although critical care nurses had a good understanding surrounding the use of prolonged/continuous infusion antibiotics, there is a need for further learning beyond information gained from nursing education courses. Findings from this study indicate that nurses are supportive of prolonged/continuous infusion antibiotics. However, further research is needed to determine the most effective mode of antibiotic administration.
Collapse
Affiliation(s)
| | - Stephen Barton
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Laura Whitney
- St George's Hospital Healthcare NHS Trust, London, UK
| | - Shereen Nabhani-Gebara
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
20
|
Kondo Y, Ota K, Imura H, Hara N, Shime N. Prolonged versus intermittent β-lactam antibiotics intravenous infusion strategy in sepsis or septic shock patients: a systematic review with meta-analysis and trial sequential analysis of randomized trials. J Intensive Care 2020; 8:77. [PMID: 33042550 PMCID: PMC7541232 DOI: 10.1186/s40560-020-00490-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Background The prolonged β-lactam infusion strategy has emerged as the standard treatment for sepsis or septic shock despite its unknown efficacy. This study aimed to assess the efficacy of prolonged versus intermittent β-lactam antibiotics infusion on outcomes in sepsis or septic shock patients by conducting a systematic review and meta-analysis. Methods A thorough search was conducted on MEDLINE, the Cochrane Central Register of Controlled Trials, and the Igaku Chuo Zasshi databases. Randomized controlled trials (RCTs) comparing mortality between prolonged and intermittent infusion in adult patients with sepsis or septic shock were included. The primary outcome was hospital mortality. The secondary outcomes were the attainment of the target plasma concentration, clinical cure, adverse events, and occurrence of antibiotic-resistant bacteria. We performed a subgroup analysis stratified according to the year of publication before or after 2015 and a trial sequential analysis (TSA). The Der Simonian–Laird random-effects models were subsequently used to report the pooled risk ratios (RR) with confidence intervals (CI). Results We identified 2869 studies from the 3 databases, and 13 studies were included in the meta-analysis. Hospital mortality did not decrease (RR 0.69 [95%CI 0.47–1.02]) in the prolonged infusion group. The attainment of the target plasma concentration and clinical cure significantly improved (RR 0.40 [95%CI 0.21–0.75] and RR 0.84 [95%CI 0.73–0.97], respectively) in the prolonged infusion group. There were, however, no significant differences in the adverse events and the occurrence of antibiotic-resistant bacteria between the groups (RR 1.01 (95%CI 0.95–1.06) and RR 0.53 [95%CI 0.10–2.83], respectively). For the subgroup analysis, a significant improvement in hospital mortality or clinical cure was reported in studies published in or after 2015 (RR 0.66 [95%CI 0.44–0.98] and RR 0.67 [95%CI 0.50–0.90], respectively). The results of the TSA indicated an insufficient number of studies for a definitive analysis. Conclusions The prolonged infusion of β-lactam antibiotics significantly improved upon attaining the target plasma concentration and clinical cure without increasing the adverse event or the occurrence of antibiotic-resistant bacteria. Prolonged infusion could not improve hospital mortality although an improvement was shown for studies published in or after 2015. Further studies are warranted as suggested by our TSA results.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021 Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Otowachinjicho 2, Kyoto-shi, Yamashina-ku, Kyoto, 607-8062 Japan
| | - Naoki Hara
- Japan Organization of Occupational Health and Safety, Yokohama Rosai Hospital, 3211 Kozukue, Kohoku, Yokohama, Kanagawa 222-0036 Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
21
|
Rafailidis PI, Falagas ME. Benefits of prolonged infusion of beta-lactam antibiotics in patients with sepsis: personal perspectives. Expert Rev Anti Infect Ther 2020; 18:957-966. [PMID: 32564641 DOI: 10.1080/14787210.2020.1776113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION In the current era of relatively scarce antibiotic production and significant levels of antimicrobial resistance, optimization of pharmacokinetics and pharmacodynamics of antibiotic therapy is mandatory. Prolonged infusion of beta-lactam antibiotics in comparison to the intermittent infusion has the theoretical advantage of better patient outcomes. Apparently, conflicting data in the literature possibly underestimate the benefits of prolonged infusion of antibiotic treatment. AREAS COVERED We provide our perspective on the subject based on our experience and by critically evaluating literature data. EXPERT OPINION COMMENTARY In our opinion, the available data are suggestive of the beneficial role of prolonged infusion of beta-lactams in regard to piperacillin/tazobactam and carbapenems after administering a loading dose. While more data from randomized controlled trials are necessary to solidify or negate the evident benefits of prolonged infusion of the aforementioned antibiotics, clinicians should strongly consider this mode of administration of relevant antibiotics, especially in patients with severe infections.
Collapse
Affiliation(s)
- Petros I Rafailidis
- School of Medicine, Democritus University of Thrace , Alexandroupolis, Greece.,Alfa Institute of Biomedical Sciences (AIBS) , Athens, Greece
| | - Matthew E Falagas
- Alfa Institute of Biomedical Sciences (AIBS) , Athens, Greece.,Department of Internal Medicine - Infectious Diseases, Henry Dunant Hospital Center , Athens, Greece.,Department of Medicine, Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
22
|
Fawaz S, Barton S, Nabhani-Gebara S. Comparing clinical outcomes of piperacillin-tazobactam administration and dosage strategies in critically ill adult patients: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:430. [PMID: 32563242 PMCID: PMC7305614 DOI: 10.1186/s12879-020-05149-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Recently, continuous administration of piperacillin-tazobactam has been proposed as a valuable alternative to traditional intermittent administration especially in critically ill patients. However, antibiotic dosing remains a challenge for clinicians as antibiotic dosing regimens are usually determined in non-critically ill hospitalized adult patients. The aim was to conduct a systematic review to identify and highlight studies comparing clinical outcomes of piperacillin tazobactam dosing regimens, continuous/prolonged infusion vs intermittent infusion in critically ill patients. Meta-analyses were performed to assess the overall effect of dosing regimen on clinical efficacy. Methods Studies were identified systematically through searches of PubMed and Science Direct, in compliance with PRISMA guidelines. Following the systematic literature review, meta-analyses were performed using Review Manager. Results Twenty-three studies were included in the analysis involving 3828 critically ill adult participants in total (continuous/prolonged infusion = 2197 and intermittent infusion = 1631) from geographically diverse regions. Continuous/prolonged resulted in significantly: higher clinical cure rates (Odds Ratio 1.56, 95% Confidence Interval 1.28–1.90, P = 0 .0001), lower mortality rates (Odds Ratio 0.68, 95% Confidence Interval 0.55–0.84, P = 0 .0003), higher microbiological success rates (Odds Ratio 1.52, 95% Confidence Interval 1.10–2.11, P = 0.01) and decreasing the length of hospital stay (Mean Difference − 1.27, 95% Confidence Interval − 2.45—0.08, P = 0.04) in critically ill patients. Conclusion Results from this study show that there is a significant level of evidence that clinical outcome in critically ill patients is improved in patients receiving piperacillin-tazobactam via continuous/prolonged infusion. However, more rigorous scientific studies in critically ill patients are warranted to reach a sufficient level of evidence and promote further implementation of C/PI as a dosing strategy.
Collapse
Affiliation(s)
- Sarah Fawaz
- Faculty of Science, Engineering and computing, Kingston University, Penrhyn Rd, London, Kingston upon Thames, KT1 2EE, UK.
| | - Stephen Barton
- Faculty of Science, Engineering and computing, Kingston University, Penrhyn Rd, London, Kingston upon Thames, KT1 2EE, UK
| | - Shereen Nabhani-Gebara
- Faculty of Science, Engineering and computing, Kingston University, Penrhyn Rd, London, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
23
|
Bartoletti M, Lewis RE, Giannella M, Tedeschi S, Viale P. The role of extended infusion β-lactams in the treatment of bloodstream infections in patients with liver cirrhosis. Expert Rev Anti Infect Ther 2018; 16:771-779. [DOI: 10.1080/14787210.2018.1523716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michele Bartoletti
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’Orsola Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Russell Edward Lewis
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’Orsola Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’Orsola Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Sara Tedeschi
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’Orsola Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’Orsola Hospital, Alma Mater University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Veiga RP, Paiva JA. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care 2018; 22:233. [PMID: 30244674 PMCID: PMC6151903 DOI: 10.1186/s13054-018-2155-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Antimicrobials are among the most important and commonly prescribed drugs in the management of critically ill patients and beta-lactams are the most common antibiotic class used. Critically ill patient's pathophysiological factors lead to altered pharmacokinetics and pharmacodynamics of beta-lactams.A comprehensive bibliographic search in PubMed database of all English language articles published from January 2000 to December 2017 was performed, allowing the selection of articles addressing the pharmacokinetics or pharmacodynamics of beta-lactam antibiotics in critically ill patients.In critically ill patients, several factors may increase volume of distribution and enhance renal clearance, inducing high intra- and inter-patient variability in beta-lactam concentration and promoting the risk of antibiotic underdosing. The duration of infusion of beta-lactams has been shown to influence the fT > minimal inhibitory concentration and an improved beta-lactam pharmacodynamics profile may be obtained by longer exposure with more frequent dosing, extended infusions, or continuous infusions.The use of extracorporeal support techniques in the critically ill may further contribute to this problem and we recommend not reducing standard antibiotic dosage since no drug accumulation was found in the available literature and to maintain continuous or prolonged infusion, especially for the treatment of infections caused by multidrug-resistant bacteria.Prediction of outcome based on concentrations in plasma results in overestimation of antimicrobial activity at the site of infection, namely in cerebrospinal fluid and the lung. Therefore, although no studies have assessed clinical outcome, we recommend using higher than standard dosing, preferably with continuous or prolonged infusions, especially when treating less susceptible bacterial strains at these sites, as the pharmacodynamics profile may improve with no apparent increase in toxicity.A therapeutic drug monitoring-guided approach could be particularly useful in critically ill patients in whom achieving target concentrations is more difficult, such as obese patients, immunocompromised patients, those infected by highly resistant bacterial strains, patients with augmented renal clearance, and those undergoing extracorporeal support techniques.
Collapse
Affiliation(s)
- Rui Pedro Veiga
- Centro Hospitalar São João, EPE – Intensive Care Department, Porto, Portugal
- Faculty of Medicine – University of Porto, Porto, Portugal
- Grupo Infeção e Sepsis, Porto, Portugal
| | - José-Artur Paiva
- Centro Hospitalar São João, EPE – Intensive Care Department, Porto, Portugal
- Faculty of Medicine – University of Porto, Porto, Portugal
- Grupo Infeção e Sepsis, Porto, Portugal
| |
Collapse
|
25
|
Prolonged Infusion Piperacillin-Tazobactam Decreases Mortality and Improves Outcomes in Severely Ill Patients. Crit Care Med 2018; 46:236-243. [DOI: 10.1097/ccm.0000000000002836] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. THE LANCET. INFECTIOUS DISEASES 2018; 18:108-120. [DOI: 10.1016/s1473-3099(17)30615-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
|
27
|
Continuous Infusion Versus Intermittent Bolus of Beta-Lactams in Critically Ill Patients with Respiratory Infections: A Systematic Review and Meta-analysis. Eur J Drug Metab Pharmacokinet 2017; 43:155-170. [DOI: 10.1007/s13318-017-0439-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob Agents Chemother 2017; 61:AAC.00654-17. [PMID: 28717035 DOI: 10.1128/aac.00654-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 11/20/2022] Open
Abstract
This retrospective cohort study included 53 patients admitted to the intensive care unit (ICU), with an average age of 69 years, without neurologic disorder before initiation of a continuous piperacillin infusion at the standard dose and who underwent piperacillin serum concentration monitoring. Among them, 23 developed a neurologic disorder for which the piperacillin causality was chronologically and semiologically suggestive. A concentration threshold of 157.2 mg/liter independently predicted neurotoxicity with 96.7% specificity and 52.2% sensitivity and may constitute a limitation when targeting less susceptible pathogens.
Collapse
|
29
|
Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, Bellomo R, Lipman J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med 2017; 194:681-91. [PMID: 26974879 DOI: 10.1164/rccm.201601-0024oc] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Optimization of β-lactam antibiotic dosing for critically ill patients is an intervention that may improve outcomes in severe sepsis. OBJECTIVES In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics. METHODS We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis. MEASUREMENTS AND MAIN RESULTS We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure. CONCLUSIONS Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.
Collapse
Affiliation(s)
- Jason A Roberts
- 1 Department of Intensive Care Medicine and.,3 Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.,2 Burns, Trauma & Critical Care Research Centre and.,4 School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Mohd-Hafiz Abdul-Aziz
- 2 Burns, Trauma & Critical Care Research Centre and.,5 School of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Joshua S Davis
- 6 Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,7 Department of Infectious Diseases, John Hunter Hospital, Newcastle, Australia
| | - Joel M Dulhunty
- 1 Department of Intensive Care Medicine and.,2 Burns, Trauma & Critical Care Research Centre and.,8 Redcliffe Hospital, Brisbane, Australia
| | - Menino O Cotta
- 1 Department of Intensive Care Medicine and.,3 Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.,2 Burns, Trauma & Critical Care Research Centre and.,4 School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - John Myburgh
- 9 Critical Care and Trauma Division, The George Institute for Global Health, Sydney, Australia.,10 St. George Clinical School, University of New South Wales, Sydney, Australia
| | - Rinaldo Bellomo
- 11 Department of Intensive Care, Austin Hospital, Melbourne, Australia; and.,12 Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Jeffrey Lipman
- 1 Department of Intensive Care Medicine and.,2 Burns, Trauma & Critical Care Research Centre and
| |
Collapse
|
30
|
Rizk NA, Kanafani ZA, Tabaja HZ, Kanj SS. Extended infusion of beta-lactam antibiotics: optimizing therapy in critically-ill patients in the era of antimicrobial resistance. Expert Rev Anti Infect Ther 2017; 15:645-652. [PMID: 28657373 DOI: 10.1080/14787210.2017.1348894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Beta-lactams are at the cornerstone of therapy in critical care settings, but their clinical efficacy is challenged by the rise in bacterial resistance. Infections with multi-drug resistant organisms are frequent in intensive care units, posing significant therapeutic challenges. The problem is compounded by a dearth in the development of new antibiotics. In addition, critically-ill patients have unique physiologic characteristics that alter the drugs pharmacokinetics and pharmacodynamics. Areas covered: The prolonged infusion of antibiotics (extended infusion [EI] and continuous infusion [CI]) has been the focus of research in the last decade. As beta-lactams have time-dependent killing characteristics that are altered in critically-ill patients, prolonged infusion is an attractive approach to maximize their drug delivery and efficacy. Several studies have compared traditional dosing to EI/CI of beta-lactams with regard to clinical efficacy. Clinical data are primarily composed of retrospective studies and some randomized controlled trials. Several reports show promising results. Expert commentary: Reviewing the currently available evidence, we conclude that EI/CI is probably beneficial in the treatment of critically-ill patients in whom an organism has been identified, particularly those with respiratory infections. Further studies are needed to evaluate the efficacy of EI/CI in the management of infections with resistant organisms.
Collapse
Affiliation(s)
- Nesrine A Rizk
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Zeina A Kanafani
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Hussam Z Tabaja
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Souha S Kanj
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| |
Collapse
|
31
|
Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, Laterre PF, Wallemacq PE, Van Bambeke F, Tulkens PM. Optimizing β-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti Infect Ther 2017; 15:677-688. [PMID: 28571493 DOI: 10.1080/14787210.2017.1338139] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The pharmacokinetic/pharmacodynamic index determining β-lactam activity is the percentage of the dosing interval (%T) during which their free serum concentration remains above a critical threshold over the minimum inhibitory concentration (MIC). Regrettably, neither the value of %T nor that of the threshold are clearly defined for critically-ill patients. Areas covered: We review and assess the targets proposed for β-lactams in critical illness by screening the literature since 1997. Depending on the study intention (clinical cure vs. suppression of resistance), targets proposed range from 20%T > 1xMIC to 100%T > 5xMIC. Assessment and comparative analysis of their respective clinical efficacy suggest that a value of 100%T > 4xMIC may be needed. Simulation studies, however, show that this target will not be reached at first dose for the majority of critically-ill patients if using the most commonly recommended doses. Expert commentary: Considering that critically-ill patients are highly vulnerable and likely to experience antibiotic underexposure, and because effective initial treatment is a key determinant of clinical outcome, we support the use of a target of 100%T > 4xMIC, which could not only maximize efficacy but also minimize emergence of resistance. Clinical and microbiological studies are needed to test for the feasibility and effectiveness of reaching such a demanding target.
Collapse
Affiliation(s)
- Isabelle K Delattre
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium.,b Department of Clinical Chemistry , Cliniques Universitaires St-Luc , Brussels , Belgium
| | - Fabio S Taccone
- c Department of Intensive Care , Hôpital Erasme , Brussels , Belgium
| | - Frédérique Jacobs
- d Department of Infectious Diseases , Hôpital Erasme , Brussels , Belgium
| | - Maya Hites
- d Department of Infectious Diseases , Hôpital Erasme , Brussels , Belgium
| | - Thierry Dugernier
- e Department of Intensive Care , Clinique St-Pierre , Ottignies , Belgium
| | - Herbert Spapen
- f Department of Intensive Care , Universitair Ziekenhuis Brussel , Brussels , Belgium
| | | | - Pierre E Wallemacq
- b Department of Clinical Chemistry , Cliniques Universitaires St-Luc , Brussels , Belgium
| | - Françoise Van Bambeke
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium
| | - Paul M Tulkens
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
32
|
Pinder N, Brenner T, Swoboda S, Weigand MA, Hoppe-Tichy T. Therapeutic drug monitoring of beta-lactam antibiotics - Influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-UV. J Pharm Biomed Anal 2017; 143:86-93. [PMID: 28578254 DOI: 10.1016/j.jpba.2017.05.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/04/2017] [Accepted: 05/21/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) is a useful tool to optimize antibiotic therapy. Increasing interest in alternative dosing strategies of beta-lactam antibiotics, e.g. continuous or prolonged infusion, require a feasible analytical method for quantification of these antimicrobial agents. However, pre-analytical issues including sample handling and stability are to be considered to provide valuable analytical results. METHODS For the simultaneous determination of piperacillin, meropenem, ceftazidime and flucloxacillin, a high performance liquid chromatography (HPLC) method including protein precipitation was established utilizing ertapenem as internal standard. Long-term stability of stock solutions and plasma samples were monitored. Furthermore, whole blood stability of the analytes in heparinized blood tubes was investigated comparing storage under ambient conditions and 2-8°C. RESULTS A calibration range of 5-200μg/ml (piperacillin, ceftazidime, flucloxacillin) and 2-200μg/ml (meropenem) was linear with r2>0.999, precision and inaccuracy were <9% and <11%, respectively. The successfully validated HPLC assay was applied to clinical samples and stability investigations. At -80°C, plasma samples were stable for 9 months (piperacillin, meropenem) or 13 months (ceftazidime, flucloxacillin). Concentrations of the four beta-lactam antibiotics in whole blood tubes were found to remain within specifications for 8h when stored at 2-8°C but not at room temperature. CONCLUSIONS The presented method is a rapid and simple option for routine TDM of piperacillin, meropenem, ceftazidime and flucloxacillin. Whereas long-term storage of beta-lactam samples at -80°C is possible for at least 9 months, whole blood tubes are recommended to be kept refrigerated until analysis.
Collapse
Affiliation(s)
- Nadine Pinder
- Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany; Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Thorsten Brenner
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Stefanie Swoboda
- Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Markus A Weigand
- Department of Anaesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Torsten Hoppe-Tichy
- Pharmacy Department, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Rachow T, Schlüter V, Bremer-Streck S, Lindig U, Scholl S, Schlattmann P, Kiehntopf M, Hochhaus A, von Lilienfeld-Toal M. Measurement of piperacillin plasma concentrations in cancer patients with suspected infection. Infection 2017; 45:629-636. [DOI: 10.1007/s15010-017-1026-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
|
34
|
Aardema H, Nannan Panday P, Wessels M, van Hateren K, Dieperink W, Kosterink JGW, Alffenaar JW, Zijlstra JG. Target attainment with continuous dosing of piperacillin/tazobactam in critical illness: a prospective observational study. Int J Antimicrob Agents 2017; 50:68-73. [PMID: 28501674 DOI: 10.1016/j.ijantimicag.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
Optimal dosing of β-lactam antibiotics in critically ill patients is a challenge given the unpredictable pharmacokinetic profile of this patient population. Several studies have shown intermittent dosing to often yield inadequate drug concentrations. Continuous dosing is an attractive alternative from a pharmacodynamic point of view. This study evaluated whether, during continuous dosing, piperacillin concentrations reached and maintained a pre-defined target in critically ill patients. Adult patients treated with piperacillin by continuous dosing in the intensive care unit of a university medical centre in The Netherlands were prospectively studied. Total and unbound piperacillin concentrations drawn at fixed time points throughout the entire treatment course were determined by liquid chromatography-tandem mass spectrometry. A pharmacokinetic combined target of a piperacillin concentration ≥80 mg/L, reached within 1 h of starting study treatment and maintained throughout the treatment course, was set. Eighteen patients were analysed. The median duration of monitored piperacillin treatment was 60 h (interquartile range, 33-96 h). Of the 18 patients, 5 (27.8%) reached the combined target; 15 (83.3%) reached and maintained a less strict target of >16 mg/L. In this patient cohort, this dosing schedule was insufficient to reach the pre-defined target. Depending on which target is to be met, a larger initial cumulative dose is desirable, combined with therapeutic drug monitoring.
Collapse
Affiliation(s)
- Heleen Aardema
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands.
| | - Prashant Nannan Panday
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mireille Wessels
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kay van Hateren
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Willem Dieperink
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Section of Pharmacotherapy and Pharmaceutical Care, Department of Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Continuous and Prolonged Intravenous β-Lactam Dosing: Implications for the Clinical Laboratory. Clin Microbiol Rev 2017; 29:759-72. [PMID: 27413094 DOI: 10.1128/cmr.00022-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-lactam antibiotics serve as a cornerstone in the management of bacterial infections because of their wide spectrum of activity and low toxicity. Since resistance rates among bacteria are continuously on the rise and the pipeline for new antibiotics does not meet this trend, an optimization of current beta-lactam treatment is needed. This review provides an overview of optimization through use of prolonged- and continuous-infusion dosing strategies compared with more traditional intermittent infusions. Included is an overview of the scientific basis for using these nontraditional prolonged- and continuous-infusion-based regimens, with a focus on major areas in which the clinical laboratory can support the clinical use of these regimens.
Collapse
|
36
|
Suchánková H, Lipš M, Urbánek K, Neely MN, Strojil J. Is continuous infusion of imipenem always the best choice? Int J Antimicrob Agents 2017; 49:348-354. [PMID: 28189734 DOI: 10.1016/j.ijantimicag.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Monte Carlo simulations allow prediction and comparison of concentration-time profiles arising from different dosing regimens in a defined population, provided a population pharmacokinetic model has been established. The aims of this study were to evaluate the population pharmacokinetics of imipenem in critically ill patients with hospital-acquired pneumonia (HAP) and to assess the probability of target attainment (PTA) and cumulative fraction of response (CFR) using EUCAST data. A two-compartment model based on a data set of 19 subjects was employed. Various dosage regimens at 0.5-h and 3-h infusion rates and as continuous infusion were evaluated against the pharmacodynamic targets of 20%fT>MIC, 40%fT>MIC and 100%fT>MIC. For the target of 40%fT>MIC, all 0.5-h infusion regimens achieved optimal exposures (CFR ≥ 90%) against Escherichia coli and Staphylococcus aureus, with nearly optimal exposure against Klebsiella pneumoniae (CFR ≥ 89.4%). The 3-h infusions and continuous infusion exceeded 97% CFR against all pathogens with the exception of Pseudomonas aeruginosa and Acinetobacter spp., where the maximum CFRs were 85.5% and 88.4%, respectively. For the 100%fT>MIC target, only continuous infusion was associated with nearly optimal exposures. Higher PTAs for the targets of 40%fT>MIC and 100%fT>MIC were achieved with 3-h infusions and continuous infusion in comparison with 0.5-h infusions; however, continuous infusion carries a risk of not reaching the MIC of less susceptible pathogens in a higher proportion of patients. In critically ill patients with HAP with risk factors for Gram-negative non-fermenting bacteria, maximum doses administered as extended infusions may be necessary.
Collapse
Affiliation(s)
- Hana Suchánková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Michal Lipš
- Department of Anaesthesiology and Intensive Care, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, U Nemocnice 2, Prague 2 128 08, Czech Republic
| | - Karel Urbánek
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Michael N Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, Division of Pediatric Infectious Diseases, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jan Strojil
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic.
| |
Collapse
|
37
|
Ropski MK, Guillaumin J, Monnig AA, Townsend K, McLoughlin MA. Use of cryopoor plasma for albumin replacement and continuous antimicrobial infusion for treatment of septic peritonitis in a dog. J Vet Emerg Crit Care (San Antonio) 2017; 27:348-356. [PMID: 28135411 DOI: 10.1111/vec.12583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 02/17/2015] [Accepted: 04/12/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To report the successful management of a dog with septic peritonitis and septic shock secondary to enterectomy dehiscence using novel techniques for identification of intestinal dehiscence and for septic shock treatment. CASE SUMMARY A 5-year-old castrated male Bernese Mountain Dog presented for lethargy 6 days following enterotomy for foreign body obstruction. Septic peritonitis was identified due to dehiscence of the enterotomy site, and resection and anastomosis were performed using a gastrointestinal anastomosis and thoracoabdominal stapling device. Postoperatively the patient experienced severe hypotension, which responded to norepinephrine constant rate infusion (CRI) after failing to improve with fluid therapy or dopamine CRI. Further treatment included antimicrobial CRI and supportive care including careful fluid therapy. Due to low effective circulating volume paired with intersititial fluid overload and large volume abdominal effusion, fluid therapy consisted of a combination of human serum albumin, canine albumin, synthetic colloids, and isotonic crystalloids. Cryopoor plasma (CPP) was used as a source of canine albumin and intravascular volume. On Day 4, food dye was given through a nasogastric tube due to suspicion of dehiscence of the anastomosis site. Dehiscence was confirmed during abdominal exploratory, and a second resection and anastomosis was performed. Abdominal partial closure with vacuum-assisted closure device was performed. Supportive care was continued with CPP CRI and imipenem CRI. Planned relaparotomy to change the vacuum-assisted closure device was performed 48 hours later, with abdominal closure 96 hours after anastomosis. The patient was discharged on Day 15. Recheck 12 months later was normal. NEW OR UNIQUE INFORMATION PROVIDED This case includes novel techniques such food dye via nasogastric tube to identify anastomosis dehiscence, use of CPP as a source of canine albumin, and antimicrobial CRI in a dog with septic peritonitis.
Collapse
Affiliation(s)
- Meaghan K Ropski
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Julien Guillaumin
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Andrea A Monnig
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Katy Townsend
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Mary A McLoughlin
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
38
|
Fan SY, Shum HP, Cheng WY, Chan YH, Leung SYM, Yan WW. Clinical Outcomes of Extended Versus Intermittent Infusion of Piperacillin/Tazobactam in Critically Ill Patients: A Prospective Clinical Trial. Pharmacotherapy 2017; 37:109-119. [PMID: 27888542 DOI: 10.1002/phar.1875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
STUDY OBJECTIVE To determine whether critically ill patients receiving extended-infusion (EI) piperacillin/tazobactam would have improved clinical outcomes compared with patients receiving intermittent infusions. DESIGN Single-center, open-label, prospective study. SETTING Twenty-two-bed intensive care unit (ICU) in a regional hospital in Hong Kong. PATIENTS A total of 367 adults who had a diagnosis of either bacterial infection or neutropenic fever and had received treatment with piperacillin/tazobactam for at least 48 hours between December 1, 2013, and August 31, 2015. INTERVENTION Patients were assigned to receive piperacillin/tazobactam as either a 4-hour EI (182 patients [EI group]) or a 30-minute intermittent infusion (185 patients [non-extended infusion (NEI) group]). MEASUREMENTS AND MAIN RESULTS All patients were followed for at least 14 days after treatment assignment. The primary outcome was the 14-day mortality rate after initiation of piperacillin/tazobactam. Secondary outcomes included in-hospital mortality rate, time to defervescence, duration of mechanical ventilatory support, length of ICU stay, and duration of hospital stay. Both groups demonstrated similar 14-day mortality (11.5% in the EI group vs 15.7% in the NEI group, p=0.29). The mean time to defervescence was significantly reduced in the EI group (4 days in the EI group vs 6 days in the NEI group, p=0.01); no significant differences between groups were noted in the other secondary outcomes. An Acute Physiology and Chronic Health Evaluation II score of 29.5 or higher was found to strongly predict 14-day mortality (p=0.03) by Classification and Regression Tree analysis. In the post hoc analyses, a 14-day mortality benefit was demonstrated in patients in the EI group in whom infectious organisms were identified (mortality rate 9.3% in the EI group vs 22.4% in the NEI group, p=0.01) and in whom respiratory tract infection was diagnosed (mortality rate 8.9% in the EI group vs 18.7% in the NEI group, p=0.02). CONCLUSION Both the EI and NEI groups demonstrated similar 14-day mortality. Post hoc subgroup analysis revealed a mortality benefit in patients in the EI group who had infectious organisms identified or were diagnosed with respiratory tract infections.
Collapse
Affiliation(s)
- Sheung-Yin Fan
- Department of Pharmacy, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Hoi-Ping Shum
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Wing-Yee Cheng
- Department of Pharmacy, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Yat-Hei Chan
- Department of Pharmacy, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Sik-Yin McShirley Leung
- Department of Pharmacy, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Wing-Wa Yan
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| |
Collapse
|
39
|
Bao H, Lv Y, Wang D, Xue J, Yan Z. Clinical outcomes of extended versus intermittent administration of piperacillin/tazobactam for the treatment of hospital-acquired pneumonia: a randomized controlled trial. Eur J Clin Microbiol Infect Dis 2016; 36:459-466. [PMID: 27796647 PMCID: PMC5309263 DOI: 10.1007/s10096-016-2819-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/16/2016] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to assess the pharmacokinetic (PK) characteristics, clinical efficiency, and pharmacoeconomic parameters of piperacillin/tazobactam administered by extended infusion (EI) or intermittent infusion (II) in the treatment of hospital-acquired pneumonia (HAP) in critically ill patients with low illness severity in China. Fifty patients completed the study, with 25 patients receiving 4/0.5 g piperacillin/tazobactam over 30 min as the II group and 25 patients receiving 4/0.5 g piperacillin/tazobactam over 3 h every 6 h as the EI group. Drug assay was performed using high-performance liquid chromatography (HPLC). The percentage of the dosing interval for which the free piperacillin concentration (%fT) exceeds the minimum inhibitory concentration (MIC) was calculated. The patients' therapy cost, clinical efficiency, and adverse effects were also recorded. %fT>MIC was about 100, 98.73, and 93.04 % in the EI arm versus 81.48, 53.29, and 42.15 % in the II arm, respectively, when the microorganism responsible for HAP had an MIC of 4, 8, and 16 mg/L. The therapy cost in the EI group was lower than that of the II group ($1351.72 ± 120.39 vs. $1782.04 ± 164.51, p = 0.001). However, the clinical success rate, clinical failure rate, and drug-related adverse events did not significantly differ between groups. EI treatment with piperacillin/tazobactam was a cost-effective approach to the management of HAP, being equally clinically effective to conventional II.
Collapse
Affiliation(s)
- H Bao
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Y Lv
- Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - D Wang
- Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - J Xue
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Z Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China. .,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
40
|
Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, Abd Rahman AN, Jamal JA, Wallis SC, Lipman J, Staatz CE, Roberts JA. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 2016; 42:1535-1545. [PMID: 26754759 DOI: 10.1007/s00134-015-4188-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aims to determine if continuous infusion (CI) is associated with better clinical and pharmacokinetic/pharmacodynamic (PK/PD) outcomes compared to intermittent bolus (IB) dosing in critically ill patients with severe sepsis. METHODS This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation. RESULTS A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p < 0.043) than IB participants. PK/PD target attainment rates were higher in the CI arm at 100 % fT >MIC than the IB arm on day 1 (97 versus 70 %, p < 0.001) and day 3 (97 versus 68 %, p < 0.001) post-randomisation. There was no difference in 14-day or 30-day survival between the treatment arms. CONCLUSIONS In critically ill patients with severe sepsis not receiving RRT, CI demonstrated higher clinical cure rates and had better PK/PD target attainment compared to IB dosing of beta-lactam antibiotics. Continuous beta-lactam infusion may be mostly advantageous for critically ill patients with high levels of illness severity and not receiving RRT. Malaysian National Medical Research Register ID: NMRR-12-1013-14017.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
- School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia.
| | - Helmi Sulaiman
- Infectious Diseases Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd-Basri Mat-Nor
- Department of Anaesthesiology and Intensive Care, School of Medicine, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Vineya Rai
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kang K Wong
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd S Hasan
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azrin N Abd Rahman
- School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Janattul A Jamal
- Department of Pharmacy, Hospital Tengku Ampuan Afzan, Kuantan, Malaysia
| | - Steven C Wallis
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Christine E Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
- Australian Centre of Pharmacometrics, Brisbane, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
- School of Pharmacy, The University of Queensland, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| |
Collapse
|
41
|
Shotwell MS, Nesbitt R, Madonia PN, Gould ER, Connor MJ, Salem C, Aduroja OA, Amde M, Groszek JJ, Wei P, Taylor ME, Tolwani AJ, Fissell WH. Pharmacokinetics and Pharmacodynamics of Extended Infusion Versus Short Infusion Piperacillin-Tazobactam in Critically Ill Patients Undergoing CRRT. Clin J Am Soc Nephrol 2016; 11:1377-1383. [PMID: 27197907 PMCID: PMC4974884 DOI: 10.2215/cjn.10260915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/21/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Infection is the most common cause of death in severe AKI, but many patients receiving continuous RRT do not reach target antibiotic concentrations in plasma. Extended infusion of β-lactams is associated with improved target attainment in critically ill patients; thus, we hypothesized that extended infusion piperacillin-tazobactam would improve piperacillin target attainment compared with short infusion in patients receiving continuous RRT. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted an institutional review board-approved observational cohort study of piperacillin-tazobactam pharmacokinetics and pharmacodynamics in critically ill patients receiving continuous venovenous hemodialysis and hemodiafiltration at three tertiary care hospitals between 2007 and 2015. Antibiotic concentrations in blood and/or dialysate samples were measured by liquid chromatography, and one- and two-compartment pharmacokinetic models were fitted to the data using nonlinear mixed effects regression. Target attainment for piperacillin was defined as achieving four times the minimum inhibitory concentration of 16 μg/ml for >50% of the dosing cycle. The probabilities of target attainment for a range of doses, frequencies, and infusion durations were estimated using a Monte Carlo simulation method. Target attainment was also examined as a function of patient weight and continuous RRT effluent rate. RESULTS Sixty-eight participants had data for analysis. Regardless of infusion duration, 6 g/d piperacillin was associated with ≤45% target attainment, whereas 12 g/d was associated with ≥95% target attainment. For 8 and 9 g/d, target attainment ranged between 68% and 85%. The probability of target attainment was lower at higher effluent rates and patient weights. For all doses, frequencies, patient weights, and continuous RRT effluent rates, extended infusion was associated with higher probability of target attainment compared with short infusion. CONCLUSIONS Extended infusions of piperacillin-tazobactam are associated with greater probability of target attainment in patients receiving continuous RRT.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Connor
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia
| | - Charbel Salem
- Department of Nephrology and Hypertension, King’s Daughters Medical Center, Ashland, Kentucky
| | | | - Milen Amde
- Department of Internal Medicine and Nephrology, Veterans Affairs Southern Nevada Healthcare System, Las Vegas, Nevada; and
| | | | | | - Maria E. Taylor
- Department of Nephrology and Hypertension, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashita J. Tolwani
- Department of Nephrology and Hypertension, University of Alabama at Birmingham, Birmingham, Alabama
| | - William H. Fissell
- Nephrology, Hypertension, and Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
42
|
Abstract
Antibiotics are invaluable in the management of neonatal infections. However, overuse or misuse of antibiotics in neonates has been associated with adverse outcomes, including increased risk for future infection, necrotizing enterocolitis, and mortality. Strategies to optimize the use of antibiotics in the neonatal intensive care unit include practicing effective infection prevention, improving the diagnostic evaluation and empiric therapy for suspected infections, timely adjustment of therapy as additional information becomes available, and treating proven infections with an effective, narrow-spectrum agent for the minimum effective duration. Antibiotic stewardship programs provide support for these strategies but require the participation and input of neonatologists as stakeholders to be most effective.
Collapse
Affiliation(s)
- Joseph B Cantey
- Division of Neonatal/Perinatal Medicine, Division of Infectious Diseases, Texas A&M Health Science Center College of Medicine, Baylor Scott & White Health, Temple, TX, USA.
| |
Collapse
|
43
|
Ramírez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9:7-18. [PMID: 26855594 PMCID: PMC4725638 DOI: 10.2147/idr.s50669] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.
Collapse
Affiliation(s)
| | - Bárbara Borgatta
- Critical Care Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CRIPS, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jordi Rello
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedad Respiratoria – CIBERES, Madrid, Spain
| |
Collapse
|
44
|
Liang SY, Kumar A. Empiric antimicrobial therapy in severe sepsis and septic shock: optimizing pathogen clearance. Curr Infect Dis Rep 2015; 17:493. [PMID: 26031965 PMCID: PMC4581522 DOI: 10.1007/s11908-015-0493-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mortality and morbidity in severe sepsis and septic shock remain high despite significant advances in critical care. Efforts to improve outcome in septic conditions have focused on targeted, quantitative resuscitation strategies utilizing intravenous fluids, vasopressors, inotropes, and blood transfusions to correct disease-associated circulatory dysfunction driven by immune-mediated systemic inflammation. This review explores an alternate paradigm of septic shock in which microbial burden is identified as the key driver of mortality and progression to irreversible shock. We propose that clinical outcomes in severe sepsis and septic shock hinge upon the optimized selection, dosing, and delivery of highly potent antimicrobial therapy.
Collapse
Affiliation(s)
- Stephen Y. Liang
- Division of Infectious Diseases, Division of Emergency Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8051, St. Louis, MO 63110, USA,
| | - Anand Kumar
- Section of Critical Care Medicine, Section of Infectious Diseases, JJ399d, Health Sciences Centre, 700 William Street, Winnipeg, Manitoba, Canada R3A-1R9,
| |
Collapse
|
45
|
Yang H, Zhang C, Zhou Q, Wang Y, Chen L. Clinical outcomes with alternative dosing strategies for piperacillin/tazobactam: a systematic review and meta-analysis. PLoS One 2015; 10:e0116769. [PMID: 25575030 PMCID: PMC4289069 DOI: 10.1371/journal.pone.0116769] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/12/2014] [Indexed: 12/03/2022] Open
Abstract
Objectives A better dosing strategy can improve clinical outcomes for patients. We sought to compare the extended or continuous infusion with conventional intermittent infusion of piperacillin/tazobactam, investigating which approach is better and worthy of recommendation for clinical use. Methods Articles were gathered from PubMed, Web of Science, ProQuest, Science Direct, Cochrane, two Chinese literature databases (CNKI, Wan Fang Data) and related ICAAC and ACCP conferences. Randomized controlled and observational studies that compared extended or continuous infusion with conventional intermittent infusion of piperacillin/tazobactam were identified from the databases above and analyzed. Two reviewers independently extracted and investigated the data. A meta-analysis was performed using Revman 5.2 software. The quality of each study was assessed. Sensitivity analysis and publication bias were evaluated. Results Five randomized controlled trials and nine observational studies were included in this study. All included studies had high quality and no publication bias was found. Compared to the conventional intermittent infusion approach, the extended or continuous infusion group had a significantly higher clinical cure rate (OR 1.88, 95% CI 1.29-2.73, P = 0.0009) and a lower mortality rate (OR 0.67, 95% CI 0.50-0.89, P = 0.005). No statistical difference was observed for bacteriologic cure (OR 1.40, 95% CI 0.82-2.37, P = 0.22) between the two dosing regimens. The sensitivity analysis showed the results were stable. Conclusions Our systematic review and meta-analysis suggested that the extended or continuous infusion strategy of piperacillin/tazobactam should be recommended for clinical use considering its higher clinical cure rate and lower mortality rate in comparison with conventional intermittent strategy. Data from this study could be extrapolated for other β-lactam antimicrobials. Therefore, this dosing strategy could be considered in clinical practice.
Collapse
Affiliation(s)
- Hui Yang
- Department of pharmacy, Peking University Third Hospital, Beijing, China
- School of pharmaceutical sciences, Peking University, Beijing, China
| | - Chao Zhang
- Department of pharmacy, Peking University Third Hospital, Beijing, China
- * E-mail:
| | - Quanyu Zhou
- Department of pharmacy, The First People’s Hospital of Lianyungang, Jiangsu, China
| | - Yike Wang
- School of pharmaceutical sciences, Peking University, Beijing, China
| | - Lujia Chen
- School of pharmaceutical sciences, Peking University, Beijing, China
| |
Collapse
|
46
|
Modified Augmented Renal Clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J Trauma Acute Care Surg 2014; 77:S163-70. [PMID: 24770557 DOI: 10.1097/ta.0000000000000191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent evidence suggests that current antimicrobial dosing may be inadequate for some critically ill patients. A major contributor in patients with unimpaired renal function may be Augmented Renal Clearance (ARC), wherein urinary creatinine clearance exceeds that predicted by serum creatinine concentration. We used pharmacokinetic data to evaluate the diagnostic accuracy of a recently proposed ARC score. METHODS Pharmacokinetic data from trauma/surgical intensive care unit patients receiving piperacillin/tazobactam were evaluated. We combined intermediate scores (4-6 points) into a single low score (≤6) group and compared pharmacokinetic parameters against the high (≥7) ARC score group. Diagnostic performance was evaluated using median clearance and volume of distribution, area under the antibiotic time-concentration curve (AUC), and achievement of free concentrations greater than a minimum inhibitory concentration (MIC) of 16 μg/mL for at least 50% of the dose interval (fT > MIC ≥ 50%). Alternative dosing strategies were explored in silico. RESULTS The ARC score was 100% sensitive and 71.4% specific for detecting increased clearance, increased volume of distribution, decreased AUC, and fT > MIC < 50% at an MIC of 16 μg/mL. The area under the receiver operating characteristic curve was 0.86 for each, reflecting a high degree of diagnostic accuracy for the ARC score. Serum creatinine less than 0.6 mg/dL had comparable specificity (71.4%) but was less sensitive (66.7%) and accurate (area under the receiver operating characteristic curve, 0.69) for detecting higher clearance rates. Monte Carlo pharmacokinetic simulations demonstrated increased time at therapeutic drug levels with extended infusion dosing at a drug cost savings of up to 66.7% over multiple intermittent dosing regimens. CONCLUSION Given its ability to predict antimicrobial clearance above population medians, which could compromise therapy, the ARC score should be considered as a means to identify patients at risk for subtherapeutic antibiotic levels. Adequately powered studies should prospectively confirm the utility of the ARC score and the role of antimicrobial therapeutic drug monitoring in such patients. LEVEL OF EVIDENCE Diagnostic tests, level III.
Collapse
|
47
|
Yusuf E, Spapen H, Piérard D. Prolonged vs intermittent infusion of piperacillin/tazobactam in critically ill patients: A narrative and systematic review. J Crit Care 2014; 29:1089-95. [DOI: 10.1016/j.jcrc.2014.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/14/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
48
|
Trends in multidrug-resistant gram-negative bacilli and the role of prolonged β-lactam infusion in the intensive care unit. Crit Care Nurs Q 2014; 36:345-55. [PMID: 24002425 DOI: 10.1097/cnq.0b013e3182a10d2f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multidrug-resistant gram-negative bacilli are emerging threats in the intensive care unit setting worldwide. Extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenem-resistant Enterobacteriaceae are increasing at an alarming rate, leaving limited therapeutic options. In addition, multidrug resistance among Pseudomonas aeruginosa and Acinetobacter baumannii has widely disseminated and become a frequent cause of nosocomial infections within many intensive care units. Therefore, resistance is increasing to all currently available antibiotics, including cephalosporins, penicillins, aztreonam, carbapenems, fluoroquinolones, and aminoglycosides. Some multidrug-resistant gram-negative bacteria remain susceptible to only a few antibiotics such as tigecycline, fosfomycin, and polymyxins. The steady trend of increasing resistance coupled with the lack of novel antibiotics targeting resistant gram-negative bacilli has forced clinicians to increasingly apply more aggressive dosing strategies, such as prolonged and continuous infusion of β-lactam antibiotics to address the challenges associated with these difficult-to-treat pathogens. Nurses who have a thorough understanding of antibiotic resistance patterns, infection control procedures, and appropriate antibiotic use and dosing regimens, particularly the method of administration, are essential in the battle to preserve the usefulness of antibiotics and prevent further antibiotic resistance.
Collapse
|
49
|
Attivi D, Gibaud S. Continuous infusion of piperacillin/tazobactam in patients with severe infections: A possible pharmacokinetic optimisation? ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:146-51. [DOI: 10.1016/j.pharma.2013.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
50
|
Teo J, Liew Y, Lee W, Kwa ALH. Prolonged infusion versus intermittent boluses of β-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents 2014; 43:403-11. [PMID: 24657044 DOI: 10.1016/j.ijantimicag.2014.01.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/16/2014] [Accepted: 01/25/2014] [Indexed: 12/22/2022]
Abstract
The clinical advantages of prolonged (extended/continuous) infusion remain controversial. Previous studies and reviews have failed to show consistent clinical benefits of extending the infusion time. This meta-analysis sought to determine whether prolonged β-lactam infusions were associated with a reduction in mortality and improvement in clinical success. A search of PubMed, EMBASE and The Cochrane Library for randomised controlled trials (RCTs) and observational studies comparing prolonged infusion with intermittent bolus administration of the same antibiotic in hospitalised adult patients was conducted. Primary outcomes evaluated were mortality and clinical success. A total of 29 studies with 2206 patients (18 RCTs and 11 observational studies) were included in the meta-analysis. Compared with intermittent boluses, use of prolonged infusion appeared to be associated with a significant reduction in mortality [pooled relative risk (RR) = 0.66, 95% confidence interval (CI) 0.53-0.83] and improvement in clinical success (RR = 1.12, 95% CI 1.03-1.21). Statistically significant benefit was supported by non-randomised studies (mortality, RR = 0.57, 95% CI 0.43-0.76; clinical success, RR = 1.34, 95% CI 1.02-1.76) but not by RCTs (mortality, RR = 0.83, 95% CI 0.57-1.21; clinical success, RR = 1.05, 95% CI 0.99-1.12). The positive results from observational studies, especially in the face of increasing antibiotic resistance, serve to justify the imperative need to conduct a large-scale, well-designed, multicentre RCT involving critically ill patients infected with high minimum inhibitory concentration pathogens to clearly substantiate this benefit.
Collapse
Affiliation(s)
- Jocelyn Teo
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Yixin Liew
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Winnie Lee
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| |
Collapse
|