1
|
Ramfol R, van Vuuren S. The interactive effects of medicinal dyes with conventional antimicrobials against skin pathogens. J Appl Microbiol 2024; 135:lxae147. [PMID: 38955371 DOI: 10.1093/jambio/lxae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
AIMS This study aimed to explore potential synergistic effects of medicinal dyes with antimicrobials against pathogens responsible for skin infections. METHODS AND RESULTS Antimicrobial testing was conducted using minimum inhibitory concentrations and minimum bactericidal/fungicidal concentration assays. The fractional inhibitory index (ΣFIC) of combinations was calculated, and isobolograms were constructed on selected combinations. Toxicity studies were conducted using the brine-shrimp lethality assay. Combination (1:1 ratio) studies noted that 26% of dye-antibiotic combinations were synergistic against the Gram-positive strains, 15% against the Gram-negative strains, and 14% against the yeasts. The Mercurochrome: Betadine® combination noted synergy at ratios against all the Staphylococcus aureus strains with ΣFIC values ranging from 0.05 to 0.48. The combination of Gentian violet with Gentamycin noted a 15-fold decrease in toxicity, and a selectivity index of 977.50 against the Escherichia coli (DSM 22314) strain. Time-kill studies were conducted on the combinations with the highest safe selectivity index (SI) value and lowest safe SI value i.e. Gentian violet with Gentamycin and Malachite green with Neomycin. Both combinations demonstrated better antimicrobial activity in comparison to the independent values and the controls. CONCLUSION This study highlights the potential for medicinal dye combinations as a treatment for skin infections.
Collapse
Affiliation(s)
- Rhea Ramfol
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
3
|
Application of chemometric method and computational analysis in the spectroscopic study of Azure A dimerization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Dos Anjos C, Sabino CP, Sellera FP, Esposito F, Pogliani FC, Lincopan N. Hypervirulent and hypermucoviscous strains of Klebsiella pneumoniae challenged by antimicrobial strategies using visible light. Int J Antimicrob Agents 2020; 56:106025. [PMID: 32450196 DOI: 10.1016/j.ijantimicag.2020.106025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Infections caused by hypervirulent and/or hypermucoviscous Klebsiella pneumoniae (K. pneumoniae) strains are frequently reported worldwide. Since convergence of hypervirulence and drug-resistance emerged as a serious clinical problem, novel therapeutic strategies are worthy of investigation. In this regard, antimicrobial photodynamic therapy and blue light have proven to be effective against a broad-spectrum of clinically relevant pathogens but have never been tested for hypervirulent/hypermucoviscous strains. Thus, this study investigated the influence of hypermucoviscosity and hypervirulence over the photoinactivation efficacy of blue light alone or antimicrobial photodynamic therapy mediated by methylene blue and red light. METHODS Five clinical isolates of K. pneumoniae were screened for hypermucoviscosity by string test and for hypervirulence by a Galleria mellonella model of systemic infection. Strains were then challenged by both photoinactivation methods performed in vitro. All tests also included a non-hypervirulent/hypermucoviscous control strain for comparison. RESULTS All K. pneumoniae strains were effectively inactivated by both light-based antimicrobial strategies. Hypervirulent/hypermucoviscous strains exposed to photodynamic therapy presented rapid and consistent inactivation kinetics, while blue light led to slower and more variable inactivation kinetics. CONCLUSION Hypermucoviscosity and hypervirulence does not confer tolerance in K. pneumoniae against photoinactivation. Antimicrobial photodynamic therapy represents an interesting alternative to treat localised infections because it is a fast procedure with high effectiveness. On the other hand, antimicrobial blue light could be used to decontaminate hospital environments since no photosensitiser administration is required and harmful effects of ultraviolet light are avoided. Therefore, visible light-based strategies present great potential for the development of safe and effective antimicrobial technologies against such aggressive pathogens.
Collapse
Affiliation(s)
- Carolina Dos Anjos
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Caetano P Sabino
- BioLambda, Scientific and Commercial LTD, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio C Pogliani
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Evidence of hypericin photoinactivation of E. faecalis: From planktonic culture to mammalian cells selectivity up to biofilm disruption. Photodiagnosis Photodyn Ther 2020; 31:101759. [PMID: 32380254 DOI: 10.1016/j.pdpdt.2020.101759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) is an alternative for microbiological inactivation. The aPDT is a method that uses a photosensitizer (PS) excited by visible light at the appropriate wavelength and the molecular oxygen present in the tissues resulting in the production of reactive oxygen species, which causes oxidative damage to biological molecules. This study aimed to perform an in vitro experimental sequence for photoinactivation of E. faecalis using Hypericin (HY) from planktonic culture to selectivity assays using mammalian cells up to biofilm. The results show that E. faecalis rapidly absorb HY. The levels of inactivation of E. faecalis reached up to 99% in planktonic culture. Transmission and Scanning Electron Microscopy demonstrate the remarkable morphological alterations resulting from photooxidation being the loss of membrane integrity assessed by fluorescence microscopy combined with a LIVE/DEAD™ kit. HY did not present cytotoxicity to the fibroblasts cell at the used conditions proving to be a selective molecule. Finally, 60% of photoinactivation was observed in the biofilm of E. faecalis when subject to HY-aPDT. These outcomes show the advantages of sequential in vitro experiments besides showing that HY is a potential PS for clinical trials due to its selectivity and photodynamic effect. This study also draws attention to the benefits of using methodologies that can evidence the antimicrobial effect beyond the typical constellation of cell death.
Collapse
|
6
|
Pereira LM, Mota CM, Baroni L, Bronzon da Costa CM, Brochi JCV, Wainwright M, Mineo TWP, Braga GÚL, Yatsuda AP. Inhibitory action of phenothiazinium dyes against Neospora caninum. Sci Rep 2020; 10:7483. [PMID: 32366934 PMCID: PMC7198568 DOI: 10.1038/s41598-020-64454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexan parasite related to important losses in livestock, causing abortions and decreased fertility in affected cows. Several chemotherapeutic strategies have been developed for disease control; however, no commercial treatment is available. Among the candidate drugs against neosporosis, phenothiazinium dyes, offer a low cost-efficient approach to parasite control. We report the anti-parasitic effects of the phenothiaziums Methylene Blue (MB), New Methylene Blue (NMB), 1,9–Dimethyl Methylene Blue (DMMB) and Toluidine Blue O (TBO) on N. caninum, using in vitro and in vivo models. The dyes inhibited parasite proliferation at nanomolar concentrations (0.019–1.83 μM) and a synergistic effect was achieved when Methylene Blue was combined with New Methylene Blue (Combination Index = 0.84). Moreover, the phenothiazinium dyes improved parasite clearance when combined with Pyrimethamine (Pyr). Combination of Methylene Blue + 1,9–Dimethyl Methylene Blue demonstrated superior efficacy compared to Pyrimethamine based counterparts in an in vivo model of infection. We also observed that Methylene Blue, New Methylene Blue and 1,9–Dimethyl Methylene Blue increased by 5000% the reactive oxygen species (ROS) levels in N. caninum tachyzoites. Phenothiazinium dyes represent an accessible group of candidates with the potential to compound future formulations for neosporosis control.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Martins Mota
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Tiago Wilson Patriarca Mineo
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil. .,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
A Rare Case of KID Syndrome: The Use of Hydrosurgery and Strategies for Antiseptic Wound Care. Adv Skin Wound Care 2019; 32:1-6. [PMID: 31567454 DOI: 10.1097/01.asw.0000580480.86585.3a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 14-year-old girl with a history of keratitis-ichthyosis-deafness (KID) syndrome, a rare autosomal dominant condition, was referred to the Department of Plastic Surgery at Brussels University Hospital in June 2016 for progressively worsening inguinoperineal ulceration exacerbated by overapplication of combination drug treclinax (tretinoin and erythromycin). On assessment, a large area of purulent papillomatous hyperkeratosis with follicular plugging, likely superimposed bacterial colonization, and deep ulceration were noted requiring thorough debridement.A first procedure was performed in June 2016 with hydrosurgical debridement (Versajet IITM; Smith & Nephew, Forth Worth, Texas). During the procedure, significant blood loss was noted, and topical adrenaline, blood transfusion, and a short ICU stay were required for monitoring during which the patient remained hemodynamically stable. The wound was primarily dressed with an antimicrobial barrier silver dressing; meropenem, ceftazidime, and fluconazole were started to treat for Gram-negative, Gram-positive, and anaerobic bacilli, as well as Pseudomonas aeruginosa and fungal infections in situ. A further three debridements were required 6, 12, and 26 days after the initial procedure. The patient was discharged 36 days after admission without any antibiotics and with an outpatient wound care plan.Not only was this case rare, but it also reflected the importance of a careful approach when tackling KID syndrome's cutaneous manifestations. Multiple debridements, thorough wound care, and appropriate antibiotic therapy may be required to achieve local healing and a satisfactory result. Hydrosurgical debridement offered a precise and well-controlled method for treating a large ulcerating hyperkeratotic urogenital lesion in this pediatric patient.
Collapse
|
8
|
George L, Hiltunen A, Santala V, Efimov A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp. J Inorg Biochem 2018; 183:94-100. [DOI: 10.1016/j.jinorgbio.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
9
|
Moghnie S, Tovmasyan A, Craik J, Batinic-Haberle I, Benov L. Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency. Photochem Photobiol Sci 2017; 16:1709-1716. [DOI: 10.1039/c7pp00143f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphiphilic, cationic, water soluble Zn-porphyrins with six-carbon aliphatic chains attached to four pyridyl nitrogens atmesopositions of the porphyrin ring displayed high antifungal photo-efficiency and minimal dark toxicity.
Collapse
Affiliation(s)
- Sara Moghnie
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology
- Duke University Medical Center
- Durham
- USA
| | - James Craik
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| | | | - Ludmil Benov
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| |
Collapse
|
10
|
Felip-León C, Arnau del Valle C, Pérez-Laguna V, Isabel Millán-Lou M, Miravet JF, Mikhailov M, Sokolov MN, Rezusta-López A, Galindo F. Superior performance of macroporous over gel type polystyrene as a support for the development of photo-bactericidal materials. J Mater Chem B 2017; 5:6058-6064. [DOI: 10.1039/c7tb01478c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macroporous polystyrene resins are best suited than gel-type polymers to develop supported photosensitizers for the generation of bactericidal singlet oxygen.
Collapse
Affiliation(s)
- Carles Felip-León
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| | | | - Vanesa Pérez-Laguna
- Departamento de Microbiología Hospital Universitario Miguel Servet
- Zaragoza
- Spain
| | | | - Juan F. Miravet
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| | - Maxim Mikhailov
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
| | | | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| |
Collapse
|
11
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
12
|
Awad MM, Tovmasyan A, Craik JD, Batinic-Haberle I, Benov LT. Important cellular targets for antimicrobial photodynamic therapy. Appl Microbiol Biotechnol 2016; 100:7679-88. [DOI: 10.1007/s00253-016-7632-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
|
13
|
Stanley SL, Scholle F, Zhu J, Lu Y, Zhang X, Situ X, Ghiladi RA. Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E77. [PMID: 28335205 PMCID: PMC5302559 DOI: 10.3390/nano6040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm²; 400-700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por(+) also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.
Collapse
Affiliation(s)
- Sarah L Stanley
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | - Jiadeng Zhu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Yao Lu
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA.
| | - Xingci Situ
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
14
|
Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT. Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol 2016; 10:709-24. [PMID: 26000647 DOI: 10.2217/fmb.14.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Photodynamic inactivation of microbes can efficiently eradicate antibiotic-resistant strains. Systematic structural modification was used to investigate how porphyrin-based photosensitizers (PSs) could be designed for improved antibacterial activity. MATERIALS & METHODS Zinc(II)5,10,15,20-tetrakis(N-alkylpyridinium-2(3,4)-yl)porphyrins presenting systematic modifications at the periphery of the porphyrin ring were evaluated for toxicity and antimicrobial photodynamic activity by measuring metabolic activity, cell membrane integrity and viability using antibiotic-sensitive and resistant Escherichia coli strains as model Gram-negative targets. RESULTS Maximal sensitizer uptake, and, upon illumination, decrease of viable bacteria by >6 log10 were achieved by positively charged amphiphilic PSs with longer (six to eight carbon) alkyl substituents. CONCLUSION Antibacterial photoefficiency (throughout the text photoefficiency has been used as equivalent of photocytotoxic efficacy) can be increased by orders of magnitude by increasing the lipophilicity of cationic alkylmetalloporphyrin PSs.
Collapse
Affiliation(s)
- Milini Thomas
- 1Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - James D Craik
- 1Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - Artak Tovmasyan
- 2Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- 2Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ludmil T Benov
- 1Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| |
Collapse
|
15
|
Nuñez SC, Yoshimura TM, Ribeiro MS, Junqueira HC, Maciel C, Coutinho-Neto MD, Baptista MS. Urea enhances the photodynamic efficiency of methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:31-7. [DOI: 10.1016/j.jphotobiol.2015.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
16
|
Immobilized photosensitizers for antimicrobial applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:11-30. [DOI: 10.1016/j.jphotobiol.2015.04.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/21/2023]
|
17
|
Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA. Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper. Biomacromolecules 2015; 16:2482-92. [DOI: 10.1021/acs.biomac.5b00758] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Hasan Sadeghifar
- Department
of Wood and Paper Science, Sari Branch, Islamic Azad University, P.O. Box 48161-19318, Sari, Iran
| | | | | | | | | | | | | |
Collapse
|
18
|
Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA. Antiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer. Molecules 2015; 20:10604-21. [PMID: 26060922 PMCID: PMC6272413 DOI: 10.3390/molecules200610604] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) employing the BODIPY-based photosensitizer 2,6-diiodo-1,3,5,7-tetramethyl-8-(N-methyl-4-pyridyl)-4,4'-difluoro-boradiazaindacene (DIMPy-BODIPY) was explored in an in vitro assay against six species of bacteria (eight total strains), three species of yeast, and three viruses as a complementary approach to their current drug-based or non-existent treatments. Our best results achieved a noteworthy 5-6 log unit reduction in CFU at 0.1 μM for Staphylococcus aureus (ATCC-2913), methicillin-resistant S. aureus (ATCC-44), and vancomycin-resistant Enterococcus faecium (ATCC-2320), a 4-5 log unit reduction for Acinetobacter baumannii ATCC-19606 (0.25 μM), multidrug resistant A. baumannii ATCC-1605 (0.1 μM), Pseudomonas aeruginosa ATCC-97 (0.5 μM), and Klebsiella pneumoniae ATCC-2146 (1 μM), and a 3 log unit reduction for Mycobacterium smegmatis mc2155 (ATCC-700084). A 5 log unit reduction in CFU was observed for Candida albicans ATCC-90028 (1 μM) and Cryptococcus neoformans ATCC-64538 (0.5 μM), and a 3 log unit reduction was noted for Candida glabrata ATCC-15545 (1 μM). Infectivity was reduced by 6 log units in dengue 1 (0.1 μM), by 5 log units (0.5 μM) in vesicular stomatitis virus, and by 2 log units (5 μM) in human adenovirus-5. Overall, the results demonstrate that DIMPy-BODIPY exhibits antiviral, antibacterial and antifungal photodynamic inactivation at nanomolar concentrations and short illumination times.
Collapse
Affiliation(s)
- Bradley L Carpenter
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Xingci Situ
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | - Juergen Bartelmess
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Walter W Weare
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
19
|
Ye T, Chen B, Yu B, Zhong Q, Huang G, Hu X, Zhang W. Susceptibility of Ureaplasma urealyticum to Methylene Blue-Mediated Photodynamic Antimicrobial Chemotherapy: An in vitro Study. Photochem Photobiol 2015; 91:917-22. [PMID: 25688579 DOI: 10.1111/php.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
The aim of this study was to detect the susceptibility of Ureaplasma urealyticum to methylene blue-mediated photodynamic antimicrobial chemotherapy (PACT). Three U. urealyticum strains including the standard serotype 1 and 5, and a clinically collected strain were used in this study. Strains were first incubated in 96-well culture plates in the presence of methylene blue with decreasing concentrations (from 1 to 0.015625 mg mL(-1)) for 20 or 60 min, and then submitted to irradiation with a light-emitting diode laser with a power density of 100 mW cm(-2) for 8, 17, 34 or 68 min. Regrowth of the strains was performed soon after irradiation. A significant inactivation effect was observed after PACT. Longer incubation time induced more extensive inactivation of U. urealyticum. No difference in response to PACT was observed between the two biovars of U. urealyticum. It was concluded that PACT had a significant inactivation effect on U. urealyticum, and it might be a promising alternative treatment for resistant U. urealyticum infections.
Collapse
Affiliation(s)
- Tinglu Ye
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bancheng Chen
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qili Zhong
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoxin Huang
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaoping Hu
- Dermatology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|