1
|
Stuermer EK, Nathrath C, Lober H, Wigger M, Janke TM, Augustin M, Dittmer M, Sielemann S, Liegenfeld SC. Impact of malodour on health-related quality of life of patients with chronic wounds due to volatile organic compounds. Wound Repair Regen 2025; 33:e70033. [PMID: 40296451 PMCID: PMC12038225 DOI: 10.1111/wrr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Chronic wounds significantly impact health-related quality of life (HRQoL). Unpleasant wound odour, caused by bacterial colonisation and necrotic processes, is a distressing symptom. Its exact composition is not well understood, but it could be the basis for a personalised odour avoidance strategy. Therefore, this feasibility study explored 92 wounds from 66 patients with the focus on wound odour, bacterial burden and their impact on health related-quality of life (HRQoL). Volatile organic compounds (VOCs) responsible for wound odours were detected at the molecular level, using gas chromatography-mass spectrometry and -ion mobility spectrometry and correlated to the HRQoL. In patients analysed (average age 69 ± 13 years, wound persistence 24.31 ± 70.8 months) 135 pathogens were identified by swabbing including 19% Staphylococcus aureus, 15% Pseudomonas aeruginosa and 35% Enterobacteria. The specific questionnaire 'Wound-QoL-14' showed a non-significant difference in HRQoL in patients with wound odour (2.1 ± 1.0 vs. 1.8 ± 1.0). The latter also had the highest number of VOC detections. The most frequently detected, relevant VOCs from prokaryotic sources were dimethyl-disulphide and diacetyl-(2,3-butanedione). Furthermore, potential biomarkers for specific pathogens were identified, including dimethyl-trisulphide for P. aeruginosa and indole for Escherichia coli. The most prevalent substance groups were ketones and alcohols. In conclusion, the malodour of chronic wounds is caused by a mixture of the intrinsic odour of bacterial products and necrosis. This exploratory study, which combines the analysis of decoded VOCs and the olfactory assessment of odour, could be a novel, targeted approach for identifying potential 'anti-wound odour therapies' that will significantly benefit the HRQoL of patients with malodourous tumour wounds, in particular.
Collapse
Affiliation(s)
- E. K. Stuermer
- Department of Vascular Medicine, Translational Wound ResearchUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - C. Nathrath
- Department of Vascular Medicine, Translational Wound ResearchUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - H. Lober
- Hamm‐Lippstadt University of Applied SciencesHammGermany
| | - M. Wigger
- Hamm‐Lippstadt University of Applied SciencesHammGermany
| | - T. M. Janke
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - M. Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - M. Dittmer
- Department of Vascular Medicine, Translational Wound ResearchUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - S. Sielemann
- Hamm‐Lippstadt University of Applied SciencesHammGermany
| | - S. C. Liegenfeld
- Department of Vascular Medicine, Translational Wound ResearchUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
2
|
Hatefi A, Siavoshi F, Khalili-Samani S. Yeast's vacuole a privileged niche that protects intracellular bacteria against antibiotics. Arch Microbiol 2025; 207:82. [PMID: 40063265 DOI: 10.1007/s00203-025-04281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Detection of Helicobacter pylori, Staphylococcus, Nocardia and Cyanobacteria inside the yeast Candida tropicalis raised the question whether treating yeast with antibiotics mix (ABM) eliminates intracellular bacteria. Live/Dead staining showed occurrence of viable bacteria inside the vacuole of C. tropicalis. Amplification of bacterial 16S rRNA genes from yeast DNA with the size of 521, 750, 606 and 450 bp were similar to those from control H. pylori, Staphylococcus, Nocardia and Cyanobacteria, respectively. To eliminate intracellular bacteria yeast cultures in yeast-glucose (YG) broth were treated with 32-1024 μg/mL of ABM (amoxicillin, ciprofloxacin, rifampin and metronidazole) for up to 24 h. Viability of treated yeast cells and their intracellular bacteria was assessed by colony count, Live/Dead staining and detection of bacterial 16S rRNA genes. Colony count of C. tropicalis exposed to 32-256 μg/mL of ABM (4.39-9.63) or 512-1024 μg/mL (9.67-9.77) were similar to their respected controls (p > 0.05). Amplification of similar bacterial genes from treated yeasts and controls confirmed persistent occurrence of intracellular bacteria. Micrographs of yeasts treated with 32-256 μg/mL of ABM showed intact yeasts and intracellular bacteria, however those treated with 512 and 1024 μg/mL showed occurrence of < 10% and > 10% yellow damaged yeasts, respectively that accumulated yellow rifampin. Fluorescence microscopy showed that both intact and damaged yeasts carried live bacteria inside their vacuole. Culture of treated yeasts on YG agar produced colonies with totally intact yeasts and intracellular bacteria. Yeast extruded antibiotics and reduced their effective concentration for killing intracellular bacteria. Establishment of bacteria inside the fungal vacuole cannot be disrupted with antibiotics.
Collapse
Affiliation(s)
- Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Liu HY, Li S, Ogamune KJ, Ahmed AA, Kim IH, Zhang Y, Cai D. Fungi in the Gut Microbiota: Interactions, Homeostasis, and Host Physiology. Microorganisms 2025; 13:70. [PMID: 39858841 PMCID: PMC11767893 DOI: 10.3390/microorganisms13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical component of the gut microbiota. Emerging evidence suggests that fungi act as early colonizers of the intestine, exerting a lasting influence on gut development. Meanwhile, the composition of the mycobiota is influenced by multiple factors, with diet, nutrition, drug use (e.g., antimicrobials), and physical condition standing as primary drivers. During its establishment, the mycobiota forms both antagonistic and synergistic relationships with bacterial communities within the host. For instance, intestinal fungi can inhibit bacterial colonization by producing alcohol, while certain bacterial pathogens exploit fungal iron carriers to enhance their growth. However, the regulatory mechanisms governing these complex interactions remain poorly understood. In this review, we first introduce the methodologies for studying the microbiota, then address the significance of the mycobiota in the mammalian intestine, especially during weaning when all 'primary drivers' change, and, finally, discuss interactions between fungi and bacteria under various influencing factors. Our review aims to shed light on the complex inter-kingdom dynamics between fungi and bacteria in gut homeostasis and provide insights into how they can be better understood and managed to improve host health and disease outcomes.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kennedy Jerry Ogamune
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Science, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone P.O. Box 100, Botswana;
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, 119 Dandero, Donnamgu Cheonan, Cheonan-si 31116, Republic of Korea;
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China;
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Carnamucio F, Foti C, Micale N, Van Pelt N, Matheeussen A, Caljon G, Giuffrè O. Metronidazole Interaction with Cu 2+ and Zn 2+: Speciation Study in Aqueous Solution and Biological Activity Evaluation. ACS OMEGA 2024; 9:29000-29008. [PMID: 38973913 PMCID: PMC11223215 DOI: 10.1021/acsomega.4c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Metronidazole (2-methyl-5-nitro-1H-imidazole-1-ethanol, MNZ) is a well-known and widely used drug for its excellent activity against various anaerobic bacteria and protozoa. The purpose of this study is to elucidate the ability of MNZ to form metal complexes with Cu2+ and Zn2+ and to demonstrate that complexation increases its bioactivity profile against different pathogenic microorganisms. The interaction of MNZ with Cu2+ and Zn2+ was investigated in NaCl aqueous solution under different conditions of temperature (15, 25, and 37 °C) and ionic strength (0.15, 0.5, and 1 mol L-1) by potentiometric and spectrophotometric titrations. The obtained speciation models include two species for the Cu2+-containing system, namely, CuL and CuL2, and three species for the Zn2+-containing system, namely, ZnLH, ZnL, and ZnLOH. The formation constants of the species were calculated and their dependence on temperature and ionic strength evaluated. Comparison of the sequestering ability of MNZ under physiological conditions revealed a capacity toward Cu2+ higher than that toward Zn2+. A simulation under the same conditions also showed a significant percentage of the Cu2+-MNZ species. The biological assessments highlighted that the complexation of MNZ with Cu2+ has a relevant impact on the potency of the drug against two Trypanosoma spp. (i.e., T. b. brucei and T. b. rhodesiense) and one gram-(-) bacterial species (i.e., Escherichia coli). It is noteworthy that the increased potency upon complexation with Cu2+ did not result in cytotoxicity against MRC-5 human fetal lung fibroblasts and primary peritoneal mouse macrophages.
Collapse
Affiliation(s)
- Federica Carnamucio
- Department
of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences,
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Claudia Foti
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Nicola Micale
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Natascha Van Pelt
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre
of Excellence, University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - An Matheeussen
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre
of Excellence, University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre
of Excellence, University of Antwerp, S7, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Ottavia Giuffrè
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| |
Collapse
|
5
|
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024; 13:118. [PMID: 38392856 PMCID: PMC10891949 DOI: 10.3390/pathogens13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is the most important cause of healthcare-associated diarrhea in the United States. The high incidence and recurrence rates of C. difficile infection (CDI), associated with high morbidity and mortality, pose a public health challenge. Although antibiotics targeting C. difficile bacteria are the first treatment choice, antibiotics also disrupt the indigenous gut flora and, therefore, create an environment that is favorable for recurrent CDI. The challenge of treating CDI is further exacerbated by the rise of antibiotic-resistant strains of C. difficile, placing it among the top five most urgent antibiotic resistance threats in the USA. The evolution of antibiotic resistance in C. difficile involves the acquisition of new resistance mechanisms, which can be shared among various bacterial species and different C. difficile strains within clinical and community settings. This review provides a summary of commonly used diagnostic tests and antibiotic treatment strategies for CDI. In addition, it discusses antibiotic treatment and its resistance mechanisms. This review aims to enhance our current understanding and pinpoint knowledge gaps in antimicrobial resistance mechanisms in C. difficile, with an emphasis on CDI therapies.
Collapse
Affiliation(s)
- John E. Markantonis
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| |
Collapse
|
6
|
Frusciante MR, Signori MF, Parmeggiani B, Grings M, Pramio J, Cecatto C, de Andrade Silveira J, Aubin MR, Santos LA, Paz AH, Wajner M, Leipnitz G. Disruption of Bioenergetics in the Intestine of Wistar Rats Caused by Hydrogen Sulfide and Thiosulfate: A Potential Mechanism of Chronic Hemorrhagic Diarrhea in Ethylmalonic Encephalopathy. Cell Biochem Biophys 2023; 81:683-695. [PMID: 37589888 DOI: 10.1007/s12013-023-01161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats. We observed that sulfide reduced NADH- and FADH2-linked mitochondrial respiration in the intestine, which was avoided by reduced glutathione (GSH) but not by melatonin. Thiosulfate did not change respiration. Moreover, both metabolites markedly reduced the activity of total, cytosolic and mitochondrial isoforms of creatine kinase (CK) in rat intestine. Noteworthy, the addition of GSH but not melatonin, apocynin, and Trolox (hydrosoluble vitamin E) prevented the change in the activities of total CK and its isoforms caused by sulfide and thiosulfate, suggesting a direct protein modification on CK structure by these metabolites. Sulfide further increased thiol content in the intestine, suggesting a modulation in the redox state of these groups. Finally, sulfide and thiosulfate decreased the viability of Caco-2 intestinal cells. Our data suggest that bioenergetic impairment caused by sulfide and thiosulfate is a mechanism involved in the gastrointestinal abnormalities found in EE.
Collapse
Affiliation(s)
- Marina Rocha Frusciante
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Marian Flores Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Julia Pramio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana Rauback Aubin
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Larissa Aguiar Santos
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, RS, 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
7
|
Sebastian S, Yadav E, Bhardwaj P, Maruthi M, Kumar D, Gupta MK. Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release. J Mater Chem B 2023; 11:9975-9986. [PMID: 37823277 DOI: 10.1039/d3tb01527k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Infections caused by bacteria are the primary cause of illness and death globally, and antibiotics are the most commonly used medications to treat them. However, there are certain inherent problems in administering these drugs without any changes to their effectiveness. In order to sustain the targeted dosage over time, the use of a biocompatible local drug delivery system using low molecular mass gelators is preferred as a potential approach to reduce its side effects. Low molecular weight organic gelators (LMWOGs) have drawn a lot of attention due to their numerous and varied applications in multiple fields. But nowadays its quite a challenging task to synthesize new types of LMWOGs that can fill the significant gap towards potential applications. In this work, we have explored a multicomponent pathway for the synthesis of a small repertoire of peptoids from simple building blocks by a one-pot Ugi reaction. A variety of novel effective low molecular weight organic gelators have been synthesized, leading to the formation of stable self-assembled aggregates in various solvents such as DMSO, aqueous DMSO, and methanol. Consequently, these aggregates give rise to the creation of organogels and organo/hydrogels. The gels have a minimum gelation concentration (MGC) of 1-2% w/v with high thermal stability. Furthermore, successful encapsulation and release of metronidazole (MZ) were achieved within the gel matrix under physiological pH conditions at 37 °C, ensuring the preservation of its structural and functional properties. The results demonstrated that the release rate of MZ from the organo/hydrogels is contingent on pH, exhibiting a gradual and regulated release in mild alkaline environments. Moreover, the devised system displayed noteworthy antimicrobial efficacy against E. coli, underscoring the potential of these novel low molecular weight organic gels (LMWOGs) as effective drug delivery systems in the pharmaceutical industry. The gel formulations exhibit biocompatibility and negligible cytotoxicity, as evidenced by cell viability studies conducted using the MTT assay.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173 229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
8
|
Yadav E, Sebastian S, Gupta MK. Aminopyridinyl Tricosanamide Based Pseudoplastic and Thermoreversible Oleogels for pH‐Dependant
in vitro
Release of Metronidazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202203014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Sharol Sebastian
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| | - Manoj K. Gupta
- Department of Chemistry School of Basic Sciences Central University of Haryana Mahendergarh-123 031 Haryana India
| |
Collapse
|
9
|
Sensitive sensing platform based on NiO and NiO-Ni nanoparticles for electrochemical determination of Metronidazole. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Li L, Qiu Z, Qi Y, Zhao D, Ali I, Sun C, Xu L, Zheng Z, Ma C. AuNPs/NiFe-LDHs-assisted laser desorption/ionization mass spectrometry for efficient analysis of metronidazole and its metabolites in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126893. [PMID: 34479085 DOI: 10.1016/j.jhazmat.2021.126893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (AuNPs) have been widely used as laser desorption/ionization mass spectrometry (LDI-MS) nanomaterials for the analysis of low-molecular-weight samples. Nickel/iron-layered double hydroxides (NiFe-LDHs) nanosheets can support the anchoring of AuNPs and enhance the ability of desorption/ionization. Their hybrid nanocomposites are expected to produce synergistic effects to improve the performance of LDI-MS. In this work, a novel AuNPs/NiFe-LDHs nanomaterial was synthesized by self-assembly method and characterized based on TEM, SEM, XPS, UV-vis and FTIR-ATR. AuNPs/NiFe-LDHs assisted LDI-TOF MS exhibited higher peak intensity and lower background noise compared with conventional organic matrices. Furthermore, excellent salt and protein tolerance, good repeatability and quantification were observed when MNZ and its metabolites were detected in the range of 1-50 ng·μL-1 (R2 > 0.98), with LODs and LOQs of 0.5 ng·μL-1 and 1 ng·μL-1, respectively. This nanocomposite could also be used for the analysis of some other small molecules, such as antibiotics, sugars, amino acids and pesticides, demonstrating the potential to detect a variety of environmental chemicals. Taken together, the developed method combined the advantages of two nanomaterials and can provide rapid and accurate analysis of MNZ and its metabolites in water samples, as well as some other small molecules.
Collapse
Affiliation(s)
- Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, PR China
| | - Dantong Zhao
- Heze Institute for Food and Drug Control, Heze 274000, Shandong, PR China
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit-Baltistan, Gilgit 15100, Pakistan
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, PR China.
| |
Collapse
|
11
|
Patel PR, Pandey K, Killi N, Gundloori RVN. Manipulating hydrophobicity of polyester nanofiber mats with egg albumin to enhance cell interactions. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratikshkumar R. Patel
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Komal Pandey
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Naresh Killi
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Rathna Venkata Naga Gundloori
- Polymer Science and Engineering CSIR‐National Chemical Laboratory Pune Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
12
|
Gopi PK, Kesavan G, Chen SM, Ravikumar CH. Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. NEW J CHEM 2021. [DOI: 10.1039/d0nj05501h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this research, the metal–organic-based synthesis of cadmium sulfide quantum dots (CdS QDs) was performed.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ganesh Kesavan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Chandan Hunsur Ravikumar
- Pilot Plant Development and Training Institute
- King Mongkut's University of Technology Thonburi
- Bangkok 10150
- Thailand
- Centre for Nano and Material Sciences
| |
Collapse
|
13
|
Sousa MGC, Xavier PD, Cantuária APDC, Porcino RA, Almeida JA, Franco OL, Rezende TMB. Host defense peptide IDR-1002 associated with ciprofloxacin as a new antimicrobial and immunomodulatory strategy for dental pulp revascularization therapy. Microb Pathog 2020; 152:104634. [PMID: 33242643 DOI: 10.1016/j.micpath.2020.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
Regenerative therapies such as dental pulpal revascularization appear as an option for traumatized immature permanent teeth. However, the triple antibiotic paste - TAP (metronidazole, minocycline, and ciprofloxacin), used for these therapies, can generate cytotoxicity and dentin discoloration. In contrast, host defense peptides (HDPs) are promising antimicrobial and immunomodulatory biomolecules for dentistry. This study aimed to evaluate in vitro the antimicrobial activity (against Staphylococcus aureus and Enterococcus faecalis) and the immunomodulatory potential (by the evaluation of IL-1α, IL-6, IL-12, IL-10, TNF-α and NO, in RAW 264.7 macrophages and IL-6, TGF-β and NO, in L929 fibroblast) of synthetic peptides (DJK-6, IDR-1018, and IDR-1002), compared to TAP in an in vitro infection model containing heat-killed antigens from E. faecalis and S. aureus. Furthermore, the synergistic potential of ciprofloxacin and IDR-1002 was evaluated by checkerboard. Ciprofloxacin was the best antimicrobial of TAP, besides acting in synergism with IDR-1002. TAP was pro-inflammatory (p < 0.05), while the association of ciprofloxacin and IDR-1002 presented an anti-inflammatory profile mainly in the presence of both heat-killed antigens (p < 0.05). Based on these results, ciprofloxacin associated with IDR-1002 may demonstrate an efficient antimicrobial and immunomodulatory action in this in vitro model. Further in vivo studies may determine the real potential of this combination.
Collapse
Affiliation(s)
- Maurício Gonçalves C Sousa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Patrícia D Xavier
- Curso de Farmácia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana Paula de C Cantuária
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Rayssa A Porcino
- Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Jeeser A Almeida
- Programa de Pós-Graduação Em Saúde e Desenvolvimento na Região Centro Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil; S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Taia Maria B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
14
|
Zhang L, Zhang Y, Zhao G, Yang H, Wang X, Yu R, Liu H, Li S. Preparation of Poly(MTZ) n -(DMAEMA) m Micelles and Study on Their Antibacterial Property. ACS OMEGA 2020; 5:23053-23061. [PMID: 32954155 PMCID: PMC7495777 DOI: 10.1021/acsomega.0c02774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Bacterial infections are the most common type of clinical infection. The abuse of clinical antibiotics has led to the frequent appearance of drug-resistant strains and even some super bacteria. In this study, we synthesized Poly(MTZ) n -(DMAEMA) m polymer micelles with cations on the surface. The synthesis of this novel polymer comes in two steps. First, Poly(MTZ) n was synthesized with metronidazole (MTZ) referred as the macromolecular chain transfer agent and v-501 as the initiator for initiating the polymerization of 4-cyanopentanoic acid dithiobenzoate. Then, novel polymer micelles were synthesized with Poly(MTZ) n referred as the macromolecular chain transfer agent and v-501 as the initiator for initiating the polymerization of the monomer 2-(dimethylamino) ethyl methacrylate, which could adsorb to the negatively charged bacterial surface via electrostatic interaction and enhance bactericidal activity. Scanning electron microscopy showed that the micelles could be accurately targeted to the surface of bacteria, and the zone of inhibition assay confirmed that the micelles could enhance the sensitivity of bacteria to drugs. Hence, Poly(MTZ) n -(DMAEMA) m polymer micelles will have potential use for the clinical treatment of anaerobic infections in the future.
Collapse
Affiliation(s)
- Long Zhang
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Yongkang Zhang
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Gang Zhao
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Han Yang
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Xiaoqian Wang
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Rutong Yu
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Hongmei Liu
- Insititute of Nervous
System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Medical
Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
15
|
Wróblewska M, Szymańska E, Szekalska M, Winnicka K. Different Types of Gel Carriers as Metronidazole Delivery Systems to the Oral Mucosa. Polymers (Basel) 2020; 12:polym12030680. [PMID: 32204334 PMCID: PMC7182799 DOI: 10.3390/polym12030680] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Periodontal diseases are some of the most widespread oral afflictions, and they are labeled as chronic infections caused by the accumulation of bacteria in dental plaque that produces localized inflammation of the periodontium. The use of local drug delivery systems to treat periodontal diseases has received greater attention, because the active substance is targeted directly to the affected area, which minimizes its systemic side effects. Therefore, the purpose of the investigation was to develop and characterize different types of gel formulations-bigel, hydrogel and oleogel-as local delivery systems containing metronidazole (MET), which can be applied to the oral mucosa. The influence of the formulation type on the mechanical, rheological and mucoadhesive properties were examined. Moreover, in vitro release of metronidazole, its ex vivo permeation through buccal porcine mucosa and antimicrobial activity measured by the plate diffusion method were estimated. It was found that the gel formulations obtained were non-Newtonian systems, showing a shear-thinning behavior and thixotropic properties with good textural features such as firmness, compressibility and adhesiveness. Moreover, the preparations designed possessed beneficial mucoadhesive properties. The formulated hydrogels and bigels containing micronized MET were considered as better formulations in terms of drug release and antimicrobial activity compared to commercially available metronidazole ointment. An ex vivo permeation study with the use of porcine buccal mucosa demonstrated that the bigel formulation was characterized by higher initial permeability rate providing a fast therapeutic effect with simultaneous moderate retention in mucosal tissue to decrease the risk of local cytotoxicity.
Collapse
|
16
|
Application of Antibiotics/Antimicrobial Agents on Dental Caries. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5658212. [PMID: 32076608 PMCID: PMC7013294 DOI: 10.1155/2020/5658212] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
Dental caries is the most common oral disease. The bacteriological aetiology of dental caries promotes the use of antibiotics or antimicrobial agents to prevent this type of oral infectious disease. Antibiotics have been developed for more than 80 years since Fleming discovered penicillin in 1928, and systemic antibiotics have been used to treat dental caries for a long time. However, new types of antimicrobial agents have been developed to fight against dental caries. The purpose of this review is to focus on the application of systemic antibiotics and other antimicrobial agents with respect to their clinical use to date, including the history of their development, and their side effects, uses, structure types, and molecular mechanisms to promote a better understanding of the importance of microbial interactions in dental plaque and combinational treatments.
Collapse
|
17
|
Nogueira F, Sharghi S, Kuchler K, Lion T. Pathogenetic Impact of Bacterial-Fungal Interactions. Microorganisms 2019; 7:microorganisms7100459. [PMID: 31623187 PMCID: PMC6843596 DOI: 10.3390/microorganisms7100459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial–fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial–fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.
Collapse
Affiliation(s)
- Filomena Nogueira
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Shirin Sharghi
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Karl Kuchler
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Thomas Lion
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
18
|
Yang J, Cheng S, Li P, Huang H, Cen K. Sensitivity to Oxygen in Microbial Electrochemical Systems Biofilms. iScience 2019; 13:163-172. [PMID: 30844696 PMCID: PMC6402288 DOI: 10.1016/j.isci.2019.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
The formation and bioelectric performance of anode biofilms in microbial electrochemical systems (MESs) are sensitive to oxygen. Investigating the temporal-spatial structure of anode biofilms will help elucidate the interfaces between oxygen and bacteria, thereby facilitating the applications of MESs in wastewater treatment and energy recovery. Here, use of optical coherence tomography, frozen sections, and a microsensor revealed that the aerobic biofilms exhibited a multilayered sandwich structure with a sparse gap between the aerobe- and amphimicrobe-enriched outer layer and the dense exoelectrogen-enriched inner layer, whereas the anaerobic biofilm consisted of only a single dense layer. Our results showed that the inner layer of aerobic anode biofilms performed electricity generation, whereas the outer layer only consumed oxygen. In this case, electron donor diffusion through the outer layer became the limiting factor in electricity generation by the bioanode. Consequently, as the anode biofilms matured, current generation decreased.
Collapse
Affiliation(s)
- Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation and the Collaborative Innovation Center for Brain Science, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Kefa Cen
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
19
|
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother 2019; 73:265-279. [PMID: 29077920 DOI: 10.1093/jac/dkx351] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metronidazole, a nitroimidazole, remains a front-line choice for treatment of infections related to inflammatory disorders of the gastrointestinal tract including colitis linked to Clostridium difficile. Despite >60 years of research, the metabolism of metronidazole and associated cytotoxicity is not definitively characterized. Nitroimidazoles are prodrugs that are reductively activated (the nitro group is reduced) under low oxygen tension, leading to imidazole fragmentation and cytotoxicity. It remains unclear if nitroimidazole reduction (activation) contributes to the cytotoxicity profile, or whether subsequent fragmentation of the imidazole ring and formed metabolites alone mediate cytotoxicity. A molecular mechanism underpinning high level (>256 mg/L) bacterial resistance to metronidazole also remains elusive. Considering the widespread use of metronidazole and other nitroimidazoles, this review was undertaken to emphasize the structure-cytotoxicity profile of the numerous metabolites of metronidazole in human and murine models and to examine conflicting reports regarding metabolite-DNA interactions. An alternative hypothesis, that DNA synthesis and repair of existing DNA is indirectly inhibited by metronidazole is proposed. Prokaryotic metabolism of metronidazole is detailed to discuss new resistance mechanisms. Additionally, the review contextualizes the history and current use of metronidazole, rates of metronidazole resistance including metronidazole MDR as well as the biosynthesis of azomycin, the natural precursor of metronidazole. Changes in the gastrointestinal microbiome and the host after metronidazole administration are also reviewed. Finally, novel nitroimidazoles and new antibiotic strategies are discussed.
Collapse
Affiliation(s)
- Simon A Dingsdag
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| | - Neil Hunter
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
20
|
Meenakshi S, Jancy Sophia S, Pandian K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:407-419. [DOI: 10.1016/j.msec.2018.04.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
|
21
|
How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin Microbiol Infect 2018; 24:1139-1148. [PMID: 29458156 DOI: 10.1016/j.cmi.2018.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND There has been increased interest in the study of anaerobic bacteria that cause human infection during the past decade. Many new genera and species have been described using 16S rRNA gene sequencing of clinical isolates obtained from different infection sites with commercially available special culture media to support the growth of anaerobes. Several systems, such as anaerobic pouches, boxes, jars and chambers provide suitable anaerobic culture conditions to isolate even strict anaerobic bacteria successfully from clinical specimens. Beside the classical, time-consuming identification methods and automated biochemical tests, the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has revolutionized identification of even unusual and slow-growing anaerobes directly from culture plates, providing the possibility of providing timely information about anaerobic infections. AIMS The aim of this review article is to present methods for routine laboratories, which carry out anaerobic diagnostics on different levels. SOURCES Relevant data from the literature mostly published during the last 7 years are encompassed and discussed. CONTENT The review involves topics on the anaerobes that are members of the commensal microbiota and their role causing infection, the key requirements for collection and transport of specimens, processing of specimens in the laboratory, incubation techniques, identification and antimicrobial susceptibility testing of anaerobic bacteria. Advantages, drawbacks and specific benefits of the methods are highlighted. IMPLICATIONS The present review aims to update and improve anaerobic microbiology in laboratories with optimal conditions as well as encourage its routine implementation in laboratories with restricted resources.
Collapse
|
22
|
Tursynbolat S, Bakytkarim Y, Huang J, Wang L. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE. J Pharm Anal 2017; 8:124-130. [PMID: 29736299 PMCID: PMC5934733 DOI: 10.1016/j.jpha.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/05/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
An ultrasensitive electrochemical sensor based on polydopamine/carboxylic multi-walled carbon nanotubes (MWCNTs−COOH) nanocomposites modified glassy carbon electrode (GCE) was presented in this work, which has been developed for highly selective and highly sensitive determination of an antimicrobial drug, metronidazole. The preparation of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor is simple and possesses high reproducible, where polydopamine can be coated on the surface of MWCNTs–COOH via a simple electropolymerization process. Under optimized conditions, the proposed sensor showed ultrasensitive determination for metronidazole with a wide linear detection range from 5 to 5000 µmol/dm3 and a low detection limit of 0.25 µmol/dm3 (S/N = 3). Moreover, the proposed sensor has been successfully applied for the quantitative determination of metronidazole in real drug samples. This work may provide a novel and effective analytical platform for determination of metronidazole in application of real pharmaceutical and biological samples analysis.
Collapse
Affiliation(s)
- Satar Tursynbolat
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yrysgul Bakytkarim
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
23
|
Jeverica S, Kolenc U, Mueller-Premru M, Papst L. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015. Anaerobe 2017; 47:64-69. [PMID: 28433670 DOI: 10.1016/j.anaerobe.2017.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 11/30/2022]
Abstract
The aim of our study was to determined antimicrobial susceptibility profiles of 2673 clinically significant anaerobic bacteria belonging to the major genera, isolated in 2015 in a large tertiary-care hospital in Slovenia. The species identification was performed by MALDI-TOF mass spectrometry. Antimicrobial susceptibility was determined immediately at the isolation of the strains against: penicillin, co-amoxiclav, imipenem, clindamycin and metronidazole, using gradient diffusion methodology and EUCAST breakpoints. The most frequent anaerobes were Bacteroides fragilis group with 31% (n = 817), Gram positive anaerobic cocci (GPACs) with 22% (n = 589), Prevotella with 14% (n = 313) and Propionibacterium with 8% (n = 225). Metronidazole has retained full activity (100%) against all groups of anaerobic bacteria intrinsically susceptible to it. Co-amoxiclav and imipenem were active against most tested anaerobes with zero or low resistance rates. However, observed resistance to co-amoxiclav (8%) and imipenem (1%) is worrying especially among B. fragilis group isolates. High overall resistance (23%) to clindamycin was detected in our study and was highest among the genera Prevotella, Bacteroides, Parabacteroides, GPACs and Clostridium. Routine testing of antimicrobial susceptibility of clinically relevant anaerobic bacteria is feasible and provides good surveillance data.
Collapse
Affiliation(s)
- Samo Jeverica
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Urša Kolenc
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Manica Mueller-Premru
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Papst
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Drancourt M, Nkamga VD, Lakhe NA, Régis JM, Dufour H, Fournier PE, Bechah Y, Michael Scheld W, Raoult D. Evidence of Archaeal Methanogens in Brain Abscess. Clin Infect Dis 2017; 65:1-5. [DOI: 10.1093/cid/cix286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
|
25
|
Huang J, Shen X, Wang R, Zeng Q, Wang L. A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode. RSC Adv 2017. [DOI: 10.1039/c6ra25106d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A sensitively electrochemical metronidazole sensor basing on a Pt nanospheres/polyfurfural modified glassy carbon electrode.
Collapse
Affiliation(s)
- Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Xiaolei Shen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Ruili Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
26
|
Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 2016; 1:mSphere00187-16. [PMID: 27840850 PMCID: PMC5103046 DOI: 10.1128/msphere.00187-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease. The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCECandida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease.
Collapse
|
27
|
Coumarin-derived azolyl ethanols: synthesis, antimicrobial evaluation and preliminary action mechanism. Sci China Chem 2016. [DOI: 10.1007/s11426-015-0351-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Aerobic culture of methanogenic archaea without an external source of hydrogen. Eur J Clin Microbiol Infect Dis 2016; 35:985-91. [DOI: 10.1007/s10096-016-2627-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 11/26/2022]
|
29
|
Meenakshi S, Pandian K, Jayakumari L, Inbasekaran S. Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin-film modified glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:136-144. [DOI: 10.1016/j.msec.2015.08.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
30
|
Dione N, Khelaifia S, La Scola B, Lagier J, Raoult D. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. Clin Microbiol Infect 2016; 22:53-58. [DOI: 10.1016/j.cmi.2015.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
|
31
|
Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015; 36:73-8. [DOI: 10.1016/j.anaerobe.2015.10.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
|